
REVIEWbph_1996 11..18

EO9 (Apaziquone): from the
clinic to the laboratory and
back again
Roger M Phillips1, Hans R Hendriks2 and Godefridus J Peters3 on behalf
of the EORTC-Pharmacology and Molecular Mechanism Group

1Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom, 2Hendriks

Pharmaceutical Consulting, Purmerend, The Netherlands, 3Chair of the EORTC-PAMM group,

Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands

Correspondence
Roger M Phillips, Institute of Cancer
Therapeutics, University of Bradford,
Bradford BD7 1DP, UK. E-mail:
r.m.phillips@bradford.ac.uk
-----------------------------------------------------------------------

Keywords
EO9; Apaziquone; Eoquin; bladder
cancer; bioreductive prodrugs;
NQO1; hypoxia
-----------------------------------------------------------------------

Received
19 August 2011
Revised
22 January 2012
Accepted
28 March 2012

EO9 (Apaziquone) is a bioreductive drug that has a chequered history. It underwent clinical trial but failed to show activity in
phase II clinical trials when administered i.v. Poor drug delivery to tumours caused by a combination of rapid pharmacokinetic
elimination and poor penetration through avascular tissue were the major factors responsible for EO9’s poor efficacy. Based
upon an understanding of why EO9 failed, a further clinical trial against patients with superficial transitional cell carcinoma
of the bladder was conducted. The rationale for this was that intravesical administration directly into the bladder would
circumvent the drug delivery problem, and any drug reaching the blood supply would be rapidly cleared thereby reducing
the risk of systemic exposure. EO9 was well tolerated, and clinical activity against marker lesions was recorded in both phase I
and II clinical trials. This article charts the pharmacological history of EO9 and discusses the potential implications that ‘the
EO9 story’ has for the development of other loco-regional therapies.

Abbreviations
AUC, area under the curve; EORTC, European Organisation for the Research and Treatment of Cancer; ICL, interstrand
cross-link; NQO1, NAD(P)H:quinone oxidoreductase-1; NSCLC, non–small cell lung cancer; TCC, transitional cell
carcinoma of the bladder; TUR, trans-urethral resection

Introduction
EO9 (3-hydroxy-5-aziridinyl-1-methyl-2 (1H-indole-4,7-
dione)prop-b-en-a-ol) is a prodrug that belongs to a class of
anti-cancer agents known as bioreductive drugs. Various
chemical classes of bioreductive drugs have been developed
(Denny, 2004; Hay et al., 2007a; 2008; 2007b; Milbank et al.,
2009; Tercel et al., 2009), and all require enzymatic reduction
by various oxidoreductases in order to generate cytotoxic
metabolites. This activation process is reversed in the pres-
ence of oxygen, and these agents have preferential activity
against hypoxic tumour cells (Stratford and Workman, 1998;
McKeown et al., 2007). Selectivity is determined by the pres-
ence of elevated levels of reductases in tumours and the
absence of oxygen (Figure 1). At the time EO9 was developed,
these compounds represented a shift away from the classical
way anticancer drugs were developed (identifying active com-
pounds first and then identifying mechanisms of action)

towards targeted therapeutic agents that selectively exploited
aspects of tumour biochemistry and physiology.

EO9 was originally developed at the University of Amster-
dam in the mid-1980s (Oostveen and Speckamp, 1987). The
project was initially sponsored by the Dutch Cancer Society,
and a series of 90 indolequinone (given the name EO) deriva-
tives of mitomycin C (MMC) were developed, the ninth of
which was EO9 (Figure 1). Preclinical and clinical evaluation
was co-ordinated by the New Drug Development Office of the
European Organisation for the Research and Treatment of
Cancer (EORTC), and a number of laboratories belonging to
the Screening and Pharmacology (SPG) and Pharmacology
and Molecular Mechanism (PAMM) groups across Europe
played key roles in the pharmacological evaluation of these
compounds. Clinical evaluation of EO9 was halted by lack of
efficacy in phase II trials (Dirix et al., 1996; Pavlidis et al.,
1996). Based upon an understanding of why EO9 failed, a
further phase I/II clinical trial against superficial bladder
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cancer using intravesical administration was commissioned
in 2001 and sponsored by Spectrum Pharmaceuticals (Irvine,
California). Significant anti-tumour activity was reported in
the phase I/II study (Puri et al., 2006), and this was subse-
quently confirmed in phase II studies (van der Heijden et al.,
2006). Phase III trials are currently under way, and the results
are expected in the first quarter of 2012. The purpose of this
article is to review the pharmacology of EO9, its preclinical
and clinical history, and to discuss the potential implications
that this story has for the development of other loco-regional
therapies.

Pharmacology of EO9

EO9 is activated by several enzymes, the most widely studied
of these is NAD(P)H:quinone oxidoreductase 1 (NQO1 or
DT-diaphorase). NQO1 is a cytosolic flavoprotein that cataly-
ses the two electron reduction of a wide range of substrates
(Ernster, 1987), and its physiological function is detoxifica-
tion of quinones (Cadenas, 1995). The chemistry of the side
chains attached to the quinone nucleus dictates the reactivity
of the reduced form (Cadenas, 1995), and in the case of EO9,
it is reduced to a DNA-damaging species. In cell-free systems,
reduction of EO9 by NQO1 results in the generation of DNA
damage in the form of single-strand breaks (Walton et al.,
1991). Catalase inhibits this process (Phillips et al., 1999),
suggesting that hydrogen peroxide is formed during the redox

cycling of the EO9 hydroquinone in oxygen (Butler et al.,
1996; Bailey et al., 1998). Alkylation of DNA is possible via the
release of hydroxyl groups at C2 and C3 as well as protonation
and opening of the aziridine ring (Hargreaves et al., 2000).
DNA interstrand cross-links (ICL) following the reduction of
EO9 by purified rat NQO1 under hypoxic conditions have
been reported (Maliepaard et al., 1995), although other groups
have not observed ICLs following reduction by purified
human NQO1 under aerobic conditions (Phillips, 1996).
Limited information exists about the formation of mono-
adducts. Other purified enzymes have been shown to reduce
EO9 and induce either single-strand breaks or DNA cross-
links, including xanthine oxidase (Maliepaard et al., 1995)
and NADPH cytochrome P450 reductase (Bailey et al., 2001).

In cell-based assays, EO9 does not behave as a classical
hypoxia-targeted bioreductive drug as it also has activity
against aerobic cells (Roed et al., 1989; Phillips et al., 1992;
Hendriks et al., 1993; Smitskamp-Wilms et al., 1994; Plumb
et al., 1994a; Collard et al., 1995). Activation of EO9 still
conforms to the concept of ‘enzyme directed bioreductive
therapy’ (Workman and Walton, 1990) as therapy could still
be targeted at tumours that expressed high levels of NQO1.
The role of NQO1 in activating EO9 to DNA-damaging
species in cell-free assays is clear, but its role in determining
cellular response is more complex. Under aerobic conditions,
good correlations between NQO1 activity and chemosensi-
tivity in vitro have been reported (Robertson et al., 1992;
1994; Plumb et al., 1994b; Plumb and Workman, 1994;
Smitskamp-Wilms et al., 1994; Collard et al., 1995; Fitzsim-
mons et al., 1996). In hypoxia, however, significant potentia-
tion of EO9’s activity was only seen in cell lines that lack
NQO1 activity (Plumb et al., 1994b; Plumb and Workman,
1994; Robertson et al., 1994). In cell lines where NQO1 was
high, EO9 was as effective against aerobic and hypoxic cells.
Mechanistically, it is likely that one electron reductases play
a prominent role in the hypoxia selectivity, whereas reduc-
tion of EO9 by NQO1 is an oxygen-independent process
(Workman, 1994). EO9 can therefore be used to target the
hypoxic regions of NQO1-deficient tumours, whereas in
NQO1-rich tumours, EO9 will target both the aerobic and
hypoxic fraction. This feature of EO9’s pharmacology was
seen as a unique and attractive feature as it suggested that
EO9 had the capacity to exhibit single-agent activity against
solid tumours (Hendriks et al., 1993). These preclinical
studies also suggested that EO9 might find its optimal use in
combination with radiation or other drugs.

In animal tumour models, EO9 was inactive against the
P388 murine leukaemia but exhibited anti-tumour activity
against human tumour xenografts and the generally chemo-
resistant murine adenocarcinomas of the colon (MAC)
tumours (Roed et al., 1989; Hendriks et al., 1993; Collard
et al., 1995). Initial evidence that in vivo response correlated
with NQO1 activity (Walton et al., 1992) was not substanti-
ated in subsequent studies where poor relationships between
NQO1 activity and in vivo activity were reported (Collard
et al., 1995; Cummings et al., 1998). EO9 was selected for
clinical evaluation based upon its novel mechanism of action
(which was distinct from MMC), its preferential activity
against cells derived from solid tumours in vitro and in vivo, its
ability to target both aerobic and hypoxic cells and the lack of
myelosuppression in mice and rats (Hendriks et al., 1993).

Figure 1
Chemical structure of EO9 (A) and scheme for possible activation of
EO9 leading to DNA damage (B). 2e and 1e in panel B represent
two-electron reduction (via enzymes such as NQO1) and one-
electron reduction (via enzymes such as cytochrome P450 reductase)
respectively. Q, SQ and HQ denote quinone (parent compound),
semi-quinone (one-electron reduction product) and hydroquinone
(two-electron reduction product) respectively.
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Clinical evaluation
Two phase I trials started in 1992 under the auspices of the
EORTC. In the first study, the maximum tolerated dose fol-
lowing a 3 week schedule (q3wk) of 5 min i.v. infusion was
27 mg·m-2 (Schellens et al., 1994). Bone marrow suppression
was not observed, and the dose limiting toxicity was revers-
ible proteinuria. In a second phase I trial using a weekly bolus
i.v. schedule (q1wk), a maximum tolerated dose of 14 mg·m-2

was reported, and the dose limiting toxicity was again revers-
ible proteinuria (McLeod et al., 1996; Aamdal et al., 2000).
Damage to glomeruli was observed in the clinical trial, and
this correlated with high levels of NQO1 in the kidney
(Segura-Aguilar et al., 1994; Zappa et al., 2003). A total of
three partial responses were recorded in the phase I studies:
two in patients with adenocarcinoma of unknown primary
site and one in a patient with bile duct cancer. Phase II
clinical trials commenced in the summer of 1994, and two
studies were conducted. In the first, a total of 92 patients with
advanced breast, gastric, pancreatic and colorectal cancer
were treated with a 5 min i.v. infusion of EO9 at a weekly
dose of 12 mg·m-2 (Dirix et al., 1996). No anti-tumour activity
was seen. A second study involved the treatment of 38
chemotherapy naïve patients with advanced non–small cell
lung cancer (NSCLC). Two treatment schedules were evalu-
ated; a single bolus i.v. injection at 12 mg·m-2 administered
weekly and i.v. bolus injection at 22 mg·m-2 administered
every 3 weeks. Dose-limiting toxicity was reversible proteinu-
ria; and whilst stable disease was reported in thirteen
patients, these studies concluded that EO9 at these doses, and
schedules had no clinical activity against NSCLC (Dirix et al.,
1996; Pavlidis et al., 1996).

Reasons for EO9’s failure
In a critique of the design of the clinical studies conducted,
Connors (1996) highlighted certain key deficiencies in clini-
cal trial design. These included the fact that NQO1and/or
hypoxia were not measured in patient tumour samples, a fact
that can be partially explained by an incomplete understand-
ing of EO9s mechanism of action in the 1990s when the trials
were designed. Both these parameters are key determinants of
EO9’s activity, and it is conceivable that tumours lacked the
appropriate biochemistry required for drug activation. This is
however unlikely as high NQO1 expression and hypoxia is
typically found in many solid tumours (Siegel et al., 1998;
Siegel and Ross, 2000; Vaupel et al., 2001; Vaupel and Mayer,
2007). On the other hand, EO9 should have been evaluated
in hypoxic tumours that lack NQO1 in combination with
other modalities (such as radiotherapy) that target the aerobic
fraction. Post-irradiation treatment of tumours in vivo with
EO9 indicated that radiosensitization was obtained in various
preclinical tumour models (Adams et al., 1992; Burd et al.,
2005), but no clinical trials of this nature were conducted. In
any future trials of apaziquone or other bioreductive drugs, it
is therefore advised that levels of hypoxia and enzymology
(particularly NQO1 in the case of apaziquone) should be
measured so that they can be used as potential biomarkers to
further stratify patient outcomes.

In addition to concerns about the design of the clinical
trials, attention also focused on whether or not drug delivery
to tumours was impaired. The factors that determine how
much drug is delivered to tumours can be broadly grouped

into supply (extent of tumour vasculature and pharmacoki-
netics), flux (the drug’s ability to penetrate through multiple
layers of cells) and metabolism/sequestration of the drug
within cells or the extracellular matrix (Minchinton and
Tannock, 2006). In mice, the half-life was 1.9 � 0.1 min, and
the AUC was 4.8 mg min·mL-1 following i.v. administration of
EO9 at 12 mg·kg-1; and in male Sprague–Dawley rats, the
half-life was 3.0 � 0.2 min with an AUC of 6.2 mg min·mL-1

following an i.v. dose of 3 mg·kg-1 (Workman et al., 1992).
The rapid clearance and extremely short half-life of EO9 in
rodents was replicated in man, with half-lives ranging from
0.8 to 19 min at the maximum tolerated dose of 27 mg·m-2

administered i.v. (Schellens et al., 1994). Similar preclinical
and clinical data were reported by other groups (Bibby et al.,
1993b; McLeod et al., 1996).

Given these data, it was clear that the supply of EO9 to
tumours is likely to be impaired by its poor pharmacokinetics.
To some extent, poor pharmacokinetics can be offset if the
‘flux’ of drugs through avascular tissue is good, but early
studies using three-dimensional multilayered post-confluent
cultures and multi-cell spheroids suggested that drug penetra-
tion barriers may exist (Bibby et al., 1993a; Pizao et al., 1993).
Resistance in these models could be due to a multitude of
reasons, including low cell proliferation rates, reduced extra-
cellular pH, reduced nutrient status, etc. EO9 is however
preferentially active against cells in acidic extracellular pH
(Phillips et al., 1992), is able to kill confluent monolayer cul-
tures (Phillips and Clayton, 1997) and is active against
hypoxic cells. In 1996, Cowan et al. (1996) described an assay
that could quantify the rate at which drugs crossed multi-cell
layers in vitro. EO9 is able to cross DLD-1 human colorectal
cancer multi-cell layers, but in comparison with tirapazamine
(a nitroimidazole based bioreductive drug), its penetration
rate is slow (Phillips et al., 1998). This study concluded that
when EO9’s rapid pharmacokinetic elimination is taken into
consideration, EO9 would only penetrate a few microns from
a blood vessel within its pharmacokinetic life span, and this
is the probable reason for its failure to demonstrate efficacy in
the clinic (Phillips et al., 1998).

Whilst inadequate drug delivery to tumours appears to be
a plausible explanation, the question remains as to why EO9
is active against preclinical tumour models (Hendriks et al.,
1993) but inactive in clinical trials, although its pharmacoki-
netics are similar in rodents and humans. A critical review of
the preclinical studies however reveals that the magnitude of
anti-tumour response observed was low with specific growth
delays of only a few days reported. This level of activity would
be acceptable if EO9 functioned purely as a hypoxia-targeted
agent as cytotoxic effects against hypoxic cells would be
masked by the continued growth of the aerobic fraction of
cells. In NQO1-rich tumours, however, EO9 would target the
aerobic fraction of cells as well, and in this case, a much
greater level of activity would be expected. EO9 does induce
some responses in preclinical tumours, and partial responses
and stable disease were seen in phase I and II studies (Schel-
lens et al., 1994; Pavlidis et al., 1996), so some EO9 was reach-
ing the tumour. Direct intra-tumoural injection of EO9
resulted in improved anti-tumour activity (Loadman et al.,
2002), supporting the fact that sub-optimal concentrations
of EO9 were reaching the tumours following systemic
administration.
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Clinical evaluation of EO9 against superficial
bladder cancer
Based upon this understanding of why EO9 failed, investiga-
tors were presented with two options: to develop analogues of
EO9 that retained its good pharmacodynamics but had
improved pharmacokinetics (Phillips, 1996; Phillips et al.,
1999; 2004; Loadman et al., 2002) or utilize EO9’s bad phar-
macokinetics to gain therapeutic advantage. In this latter
case, loco-regional administration of drug would circumvent
the problems of drug delivery, and if the drug could be
retained at this site for long periods, improved penetration
into the tumour would occur. Furthermore, any drug that
reached the systemic circulation would be rapidly cleared,
thereby reducing the risk of systemic toxicity. Superficial
transitional cell carcinoma (TCC) of the bladder provided a
suitable clinical model to test this hypothesis as intravesical
administration of chemotherapy or immunotherapy follow-
ing transurethral resection (TUR) is an established mode of

treatment (Hall et al., 2007). Following studies that demon-
strated that TCC of the bladder expressed the key biochemi-
cal machinery required to activate EO9 (Figure 2) (Choudry
et al., 2001; Basu et al., 2004), a phase I/II pilot study com-
menced in 2004.

The purpose of this trial was to establish the dose of EO9
(now renamed EOquin by the sponsor Spectrum Pharmaceu-
ticals, which was later changed to apaziquone) that could be
safely administered intravesically and obtain evidence of effi-
cacy against a marker lesion left in situ at TUR (Puri et al.,
2006; Gofrit et al., 2010). Six patients with multi-focal super-
ficial TCC of the bladder received increasing doses of EO9
(0.5–16 mg/40 mL) administered intravesically, which was
retained within the bladder for 1 h. EO9 was well tolerated at
doses up to 4 mg/40 mL, with grade 2 and 3 dysuria and
haematuria being observed at doses at or above 8 mg/40 mL.
No EO9 could be detected in plasma (Puri et al., 2006). A
further six patients received EO9 at 4 mg/40 mL once a week
for 6 weeks, which was well tolerated in all cases. Analysis of

Figure 2
Representative immunohistochemical analysis of superficial human TCC of bladder expressing high levels of NQO1 (A), the glucose transporter
GLUT1 (B) and pimonidazole-treated tumour (C). GLUT1 and pimonidazole have been used as endogenous and exogenous markers of hypoxia
respectively (Rademakers et al., 2011). The brown staining in panels A to C represents areas of positive staining. Appearance of marker lesion (ML)
in situ before (D) and after (E) a 6 week course of EO9 administered intravesically once a week at a dose of 4 mg/40 mL.
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EO9 in the urine at the end of the instillation demonstrated
that the concentration increased linearly with dose and that
therapeutically effective concentrations were being achieved
(Puri et al., 2006). At 4 mg/40 mL (100 mg·mL-1), the concen-
tration of EO9 in the urine at the end of the1 h instillation
was 72. 2 � 11.8 mM (20.79 mg·mL-1), which represents a
significant increase in drug exposure parameters compared to
those reported following i.v. administration (Table 1). A total
of 8 out of 12 patients had complete remission as defined by
complete loss of the marker lesion, negative cytology and
histology at the site of the lesion (Puri et al., 2006). Repre-
sentative images of the marker lesion in situ before and after
EO9 are presented in Figure 2.

Phase II studies were conducted using an identical study
design to the phase I/II pilot study, and each patient received
six weekly intravesical instillations of EO9 at 4 mg/40 mL,
with the first instillation starting 2 weeks after TUR (van der
Heijden et al., 2006). EO9 was well tolerated, with no sys-
temic side effects and grades 1 to 3 dysuria and haematuria
being the most common local side effects. Of a total of 45
patients with superficial TCC of the bladder, 30 (67%)
patients had complete response as defined by complete
macro- and microscopic elimination of a marker lesion (van
der Heijden et al., 2006). Recurrence-free rates were good in
comparison with the results of other ablative studies (Hen-
dricksen et al., 2009; Jain et al., 2009). EO9 was reformulated
in 2007 (van der Schoot et al., 2007a; 2008; van der Schoot
et al., 2007b), and it is currently undergoing phase III clinical
evaluation in several centres across North America and
Europe. Additionally, studies where EO9 was administered
within 24 h of TUR, which is the standard recommended
treatment for superficial TCC of the bladder (Sylvester et al.,
2004), demonstrated that EO9 was well tolerated and has a
good safety profile (Hendricksen et al., 2008).

Conclusions and future prospects

EO9 has had a chequered history, but by understanding the
reasons why it failed, EO9 has been transformed from a
clinically inactive drug to one that has efficacy against super-
ficial bladder cancer. The outcome of the phase III clinical
trials is eagerly anticipated, but even so, the ‘EO9 story’ dem-
onstrates that compounds with poor systemic pharmacoki-

netics can be effectively used in a loco-regional setting. In the
case of EO9, direct intravesical administration circumvented
the drug delivery problems encountered following i.v. admin-
istration and resulted in high concentrations of drug that are
confined within the bladder. In this setting, EO9’s poor sys-
temic pharmacokinetics were advantageous as any drug that
reached the bloodstream was rapidly cleared. Whilst this
review has focused specifically on EO9, our experience with
EO9 has potentially significant implications for the develop-
ment of loco-regional therapies in general. We suggest that
compounds with good pharmacodynamics, but poor sys-
temic pharmacokinetics could be valuable therapeutic agents
for treating cancers in a loco-regional setting.

Loco-regional chemotherapy is emerging as an important
adjunct to surgery and systemic chemotherapy in selected
patients with certain types of cancer (Ceelen and Flessner,
2010; Lu et al., 2010). In addition, as early detection strategies
for cancer become more effective, there is a case for using
loco-regional chemotherapy as an adjunct to surgical exci-
sion. Therapeutic agents used for loco-regional therapies
are typically conventional chemotherapeutic drugs that are
widely used to treat systemic disease. These can be effective
but the success of this approach has been restricted by local
toxicity, inadequate drug penetration and systemic toxicity
caused by drugs leaking out from the site of administration
into the systemic circulation (Masters et al., 1990; 1996; Lu
et al., 2010). In terms of selecting drugs for use in a loco-
regional setting, experience with EO9 has shown that com-
pounds with poor systemic pharmacokinetics can be locally
efficacious without the systemic toxic side effects observed
when administered i.v. In the context of the majority of drug
discovery programs, compounds with poor systemic pharma-
cokinetics are typically rejected during the process of lead
compound optimisation and currently reside at the back of
the shelves of medicinal chemists. Based upon our experience
with EO9, we suggest that many of these compounds should
be revisited and re-evaluated as potential loco-regional
therapies.
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The values shown following i.v. administration refer to plasma levels, whereas following intravesical administration, values quoted are in the
levels in urine
*Data obtained from Schellens et al. (1994).
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