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Abstract

Chorea can be caused by a multitude of etiologies: neurodegenerative, pharmacological, structural, metabolic, and others. In absence of other apparent causes,

exclusion of Huntington’s disease is often a first step in the diagnostic process. There are a number of neurodegenerative disorders whose genetic etiology has been

identified in the past decade. Molecular diagnosis has enabled genetic identification of disorder subtypes which were previously grouped together, such as the

neurodegeneration with brain iron accumulation disorders and the neuroacanthocytosis syndromes, as well as identification of phenotypic outliers for recognized

disorders. Correct molecular diagnosis is essential for genetic counseling and, hopefully, ultimately genetic therapies. In addition, there has recently been recognition

of other disorders which can mimic neurodegenerative disorders, including paraneoplastic and prion disorders. This article focuses upon recent developments in the

field but is not intended to provide an exhaustive review of all causes of chorea, which is available elsewhere. I also discuss the nomenclature of these disorders which

has become somewhat unwieldy, but may ultimately be refined by association with the causative gene.
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Introduction

Chorea can be caused by a multitude of etiologies: neurodegenera-

tive, pharmacological, structural, metabolic, and others. This article

focuses upon recent developments in the field. I also discuss the

nomenclature of these disorders, which has become somewhat

unwieldy, but may ultimately be refined by association with the

causative gene. This article is not intended to provide an exhaustive

review of all causes of chorea, as this is available elsewhere.1,2

The identification in 1993 of the causative trinucleotide repeat

expansion within the gene responsible for Huntington’s disease (HD)3

was the starting point for the recognition that there were other genetic

causes of chorea. Prior to this, any patient with a progressive

movement disorder and neuropsychiatric changes was given the

diagnosis of HD, particularly if there was a positive family history.

However, between 1%4 and 12–15%5,6 of patients thought to have

HD were found to be negative for the HD mutation. The identification

of the HD gene led to the search for other genes that could cause

familial basal ganglia neurodegenerative syndromes. In addition, it

became possible to make the diagnosis of HD in those with atypical

features, such as late age of onset and the absence of a family history,

who had previously been given the now-obsolete label of ‘‘senile

chorea.’’

‘‘Huntington’s disease-like’’ disorders

The grammatically clumsy naming, involving an adjectival construct

masquerading as a noun, of the Huntington’s disease-like (HDL)

disorders, commenced in 1998 with HDL1.7 Although traditional

requirements for being ‘‘HDL’’ should have been autosomal dominant

(AD) inheritance, in addition to comprising a progressive hyperkinetic

movement disorder and cognitive impairment, one of the four

disorders with this unfortunate name demonstrated autosomal

recessive inheritance (HDL3).

The term HDL1 was used to describe a family with a disorder

characterized by personality changes starting in early–mid adulthood,

followed by chorea, rigidity, dysarthria, myoclonus, and ataxia, and

seizures.7 Symptoms developed in three generations, demonstrating
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AD inheritance. This disease was determined to be a prion disorder

due to an octapeptide repeat.8 Other families with this mutation have a

different phenotype in which psychiatric features predominated over a

variety of cerebellar, pyramidal or parkinsonian signs.9

HDL2 was reported initially as being due to a CAG repeat

expansion, with AD inheritance and clinical features very similar to

HD, in one family.10 The mutation was subsequently identified as

being a CTG/CAG trinucleotide repeat expansion located within a

variably spliced exon, labeled 2A, between exon 1 and exon 2B of

junctophilin-3 (JPH3) on chromosome 16q24.3.11 Unusually, neurode-

generation appears to be due to transcription of the antisense CAG

repeat.12 In addition, mRNA toxicity, in common with myotonic

dystrophy 1 and some of the spinocerebellar ataxias (SCAs),13 may

play a significant role in pathogenesis.12 Intriguingly, the latter feature

may be shared with HD, and may offer insights into a common disease

mechanism.

Only reported to date in subjects of black African ancestry,

HDL2 has been found in many countries,5,10,11,14–16 especially among

black South Africans. Ten percent may have acanthocytes, resulting in

the inclusion of this disorder with neuroacanthocytosis syndromes.17

The term HDL3 was given to five affected siblings with chorea,

dystonia, dysarthria, cognitive impairment, and seizures.18

Neuroimaging showed cortical and caudate nucleus atrophy.

Although linkage localized the mutation to the vicinity of the HD

gene, HD was excluded. No further cases have been reported with this

disorder, nor has a causative gene been identified.

HDL4 was the term given to what transpired to be a familial

phenotypic variation of SCA17:19 1% of a cohort of non-HD patients

were found to have this mutation.5 Although ataxia is a more typical

presentation of SCA17, in some families there may be striking

phenotypic homogeneity.20

Fortunately, no new disorders have been given an ‘‘HDL’’ name. In

addition to being inelegant, the absence of the noun in the term, which

most logically would be the repetitive ‘‘disease’’ (‘‘Huntington’s

disease-like disease 2’’), makes the name challenging to translate into

other languages such as French or German, where the ending of the

adjective should agree with the gender of the noun.

It is this author’s hope that this terminology will be abandoned and

the named HDL disorders given names related to their causative

mutation. One option would be to follow the convention of the

neurodegeneration with brain iron accumulation (NBIA) disorders,

e.g. ‘‘junctophilin 3-associated neurodegeneration (J3AN).’’ Another

alternative would be to adopt terminology similar to that for the

neurodegenerative disorders characterized by abnormal protein

accumulation, such as ‘‘tau-opathy’’ and ‘‘synuclein-opathy,’’ hence

‘‘junctophilin-opathy.’’ One distinction from these disorders is that in

general this terminology has been used to refer to accumulation of the

specified protein on neuropathological examination, rather than the

causative mutation. Although neither of these options is much more

elegant than ‘‘HDL,’’ it is appealing to use nomenclature which is

etiologically accurate, and has the additional advantage of not being

dependent upon the clinical phenotype which may not be choreiform.

Other trinucleotide repeat disorders

In addition to HDL2 and SCA17, movement disorders can be seen

in some of the other SCAs and dentatorubropallidoluysian atrophy

(DRPLA). In some cases the typical cerebellar findings, such as

abnormalities of eye movement and ataxia, are less prominent than the

movement disorder. Parkinsonism, dystonia, and chorea are not

infrequent in SCA3 (Machado–Joseph disease), the most common

SCA in most populations. Patients with SCA121 and SCA222,23 may

occasionally present with or develop chorea. There does not seem to

be a relationship between size of the trinucleotide repeat expansion

and the phenotype.

DRPLA was initially thought to be seen only in Japanese

populations, but has occasionally been reported in Caucasian24,25 or

African-American26 families. There are two typical phenotypes related

to the age of onset, and thus in this case correlate with the size of the

trinucleotide repeat expansion. In younger onset patients myoclonus

and seizures are prominent, in addition to ataxia and dementia. In

patients with age of onset older than 20 years, chorea and

neuropsychiatric symptoms are typical, similar to HD.

Neuroacanthocytosis syndromes

The past decade has seen clarification of the clinically and

genetically heterogeneous disorders given the term ‘‘neuroacanthocy-

tosis.’’ This term is still often used to refer to cases for which the more

accurate term, especially if genetic or protein confirmation has been

performed, is chorea-acanthocytosis (ChAc; also referred to as

choreoacanthocytosis).

Following the seminal reports by Levine et al.,27 and Critchley

et al.,28 in the 1960s, of a neurological disorder accompanied by

acanthocytes with normal lipoproteins, the term ‘‘neuroacanthocyto-

sis’’ was adopted, despite the potential for confusion with the disorders

of lipoproteins (abetalipoproteinemia [Bassen–Kornzweig disease] and

hypobetalipoproteinemia). The term ‘‘Levine–Critchley’’ syndrome

was used initially by authors from Japan, where ChAc is more

common.29 The widely cited case series published by Hardie et al. in

199130 unfortunately perpetuated diagnostic confusion due to its

genetic heterogeneity, but has subsequently been updated.31 It has

recently been confirmed that Critchley’s original Kentucky kindred

were indeed affected by ChAc.32

The identification of mutations in VPS13A (encoding for vacuolar

protein sorting-associated protein 13A) as the cause, and the affected

protein as chorein,33–35 has facilitated precise diagnosis of ChAc.36 Use

of Western blotting to demonstrate absence of the protein has been

useful in clinical practice.37 Molecular conformation is challenging due

to the large gene size and the many locations and natures of

mutations,38 but may be made easier with recent advances in genetic

techniques.

As both acanthocytes39–41 and chorea may be variable or absent at

any point in a patient’s clinical course, it has been suggested that the

name ‘‘chorea-acanthocytosis’’ is inaccurate. As the affected protein

has been named ‘‘chorein,’’ a more appropriate term may be ‘‘chorein

disease,’’ ‘‘chorein-associated neurodegeneration,’’ or ‘‘chorein-opathy,’’
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although I am reluctant to advocate for yet another change in

nomenclature for a disorder whose taxonomy has already resulted in

confusion.

Recognition of an association of the McLeod blood type42,43 with

various movement disorders, including chorea, parkinsonism, tics,

and dystonia, has permitted molecular diagnosis of this X-linked

neuroacanthocytosis syndrome (McLeod syndrome; MLS).44–46

Although very rare, with fewer than a hundred published cases,47

this diagnosis is important because of the potential complications

of blood transfusion incompatibility and preventable cardiac

complications.44,48

Potential diagnostic confusion may be caused by the observations of

acanthocytes in HDL217 and in pantothenate kinase-associated

neurodegeneration (PKAN).49 Indeed, one of Hardie’s original series

was likely to have had this disorder (initially given the name

hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa and

pallidal degeneration [HARP]50).

The mechanism for the production of acanthocytes is not known. In

PKAN, it is likely that this is a result of impaired lipid synthesis;

however, this hypothesis raises the question as to why acanthocytosis is

not a universal finding in these patients.

Neurodegeneration with brain iron accumulation

This group of disorders is characterized by the finding on magnetic

resonance imaging (MRI) of iron deposition primarily in the globus

pallidus. Prior to the advent of MRI, the diagnosis was made only post

mortem, on the basis of neuropathological findings. The disorders

were described as ‘‘Hallervorden–Spatz disease’’ or ‘‘Hallervorden–

Spatz syndrome’’ if atypical. Causative mutations in the PANK2 gene

were discovered,51 and the term ‘‘pantothenate kinase-associated

neurodegeneration’’ was proposed in light of the unethical nature of

the work of Drs. Hallervorden and Spatz in Nazi Germany.52,53 The

prototypical NBIA disorder, PKAN, typically presents in childhood

with dystonia, rather than chorea, in addition to other findings such as

pigmentary retinal degeneration.49 The disorder initially termed

HARP was found to be allelic with PKAN.50,54

Adult onset of basal ganglia iron deposition is associated with

chorea. A small number of families have been reported with autosomal

dominant inheritance of mutations of ferritin light chain, responsible

for iron transportation, resulting in neuroferritinopathy.55–58

Autosomal recessive inheritance of mutations of ceruloplasmin,59,60 a

ferroxidase, results in chorea and dystonia, often orofacial, with the

addition of ataxia. Symptomatic heteroplasmic carriers have been

reported.61 The pattern of basal ganglia iron deposition can be

distinguished in the different disorders by distinctive patterns of iron

and inflammation on neuroimaging.62

Childhood-onset NBIA disorders appear to be characterized by

dystonia and parkinsonism, and include one phenotype of neuroaxonal

dystrophy, due to mutations of PLA2G6 (phospholipase-associated

neurodegeneration; PLAN),63–65 Kufor–Rakeb syndrome (PARK9;

ATP13A2 mutations),66 and fatty acid hydroxylase-associated neuro-

degeneration (FAHN),67 and a growing list of other disorders.

Benign hereditary chorea

Benign hereditary chorea is so called as it does not appear to be

associated with a dementing process or severe neurological impair-

ment. It has been associated with mutation of thyroid transcription

factor 1 (TITF-1),68–70 also known as NKX2.1. However, this mutation

is not found in all families, and the disorder appears to be genetically71

and possibly phenotypically72 heterogeneous. Onset may be in

childhood, and there is sometimes also mild ataxia. The chorea may

respond to l-dopa.73 Neuropathological findings are subtle and reflect

alterations in a subset of striatal interneurons.74 Subtle changes are

reported on structural and functional neuroimaging.75,76

Mutations of the same gene have been reported to cause a

multisystem disorder comprising congenital hypothyroidism, hypoto-

nia, and pulmonary problems, in addition to chorea.70,77–79

Differences in the size and nature of mutations may account for the

varying severity in these two disorders.

Autoimmune disorders

An expanding number of paraneoplastic neurologic syndromes have

been recognized. Although much less common than cerebellar and

neuromuscular presentations, chorea has been reported in renal, small

cell lung, breast, Hodgkin’s and non-Hodgkin’s lymphoma,80–84 due to

anti-CRMP-5/CV283,85 or, occasionally, anti-Hu84 or anti-Yo86

neuronal autoantibodies.

Although not technically choreiform in nature, the identification

of the anti-N-methyl-D-aspartate (NMDA)-receptor antibody-related

syndrome is mentioned here due to its apparent frequency and recent

insights into its course and pathogenesis.87–91 This disorder results in

encephalopathy with complex, often stereotypic movements with

components of dystonia and chorea. In some patients ovarian

teratomas are identified, although in others the etiology remains

obscure.87 Importantly, some patients may recover after a prolonged

disease course.

Prion diseases

Prion disease both inherited and sporadic may cause chorea,92

rather than the more typical movement disorder presentation of

myoclonus in a patient with progressive cognitive deterioration. In

addition to HDL18 (discussed above), new variant Creutzfeldt–Jakob

disease, related to bovine spongiform encephalopathy, can cause

chorea and cognitive impairment which progress subacutely over

months.93,94

Advances in therapies

Neurosurgical advances for other movement disorders appear to

have benefited patients with the non-HD choreas, although at present

it is challenging to accurately gauge success rates as cases with poor

outcomes are less likely to be reported. There is a need to collate all

cases receiving surgery for each of these rare diseases in order to

provide general recommendations.

Case reports and small series have reported the effects of deep brain

stimulation (DBS) or lesioning of the subthalamic nucleus (STN) or
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globus palldus pars interna (GPi) in patients with chorea of various

etiologies. Case reports of DBS of the GPi in ‘‘senile chorea’’95 have

been promising, although in ChAc96–98 and MLS99 results are mixed.

The benefits in these progressive disorders may be limited by ongoing

neurodegeneration. The motor thalamus has also been proposed as a

potentially promising site for DBS in ‘‘senile chorea’’95 and has been

reported as being beneficial in a patient with ChAc.96,99 The optimal

site and frequency of stimulation for treatment of chorea remain to be

identified.99 Positive results following pallidotomy have been reported

in DRPLA100 and ChAc.101

The most significant advance in medical therapies in the USA has

been the recent approval of tetrabenazine,102,103 which depletes

monoamines from presynaptic terminals.104 However, the side effects

of depression, parkinsonism, and impaired swallowing may be

limiting,105 and tetrabenazine should be used with care. Reserpine

may also be useful with the same caveats.

As in HD, the newer atypical antipsychotics, including clozapine,

quetiapine, aripiprazole, and ziprasidone have been a useful addition

to the pharmacological armamentarium. Although parkinsonism and

tardive dyskinesia can occasionally be seen with these agents, and

sedation can be a significant problem, weight gain is rarely an issue in

patients with neurodegenerative choreas, and thus these medications

can be helpful.

Other agents with different mechanisms of action have been

reported to give benefit in non-HD choreas, including levetirace-

tam,106 possibly related to a membrane-stabilizing effect. However,

caution should be employed, as some anticonvulsants, such as

lamotrigine, have been reported to worsen involuntary movements

in ChAc.107 Glutamatergic NMDA-receptor antagonists such as

amantadine and riluzole may reduce chorea in HD108–112 and may

be considered in non-HD choreas.

Neuroimaging

Although limited by the rarity and clinical heterogeneity of these

disorders, quantitative neuroimaging has resulted in demonstration of

specific features in some of the non-HD choreas, such as specific

atrophy affecting the head of caudate nucleus in ChAc113–115 and

progression of neurodegeneration in MLS44,116

Studies of metabolism such as magnetic resonance spectroscopy are

in their infancy, but may ultimately lead to additional insights into

disease pathogenesis.117

Future needs

Despite recent advances with progress in molecular medicine, a

significant number of subjects with chorea remains undiagnosed. The

rarity of many of these disorders means that funding for research is

limited, especially in the current climate. There is a need for an

internationally accessible database of clinical descriptions, neuroimag-

ing findings, other laboratory features, and tissue samples for all non-

diagnosed subjects with chorea, with or without family history. This

could be modeled upon the neuroacanthocytosis database (http://

www.euro-hd.net/html/na/submodule/), which has been piggy-backed

onto the European Huntington’s disease database (http://euro-hd.

net), with the addition of a centralized tissue bank. Such a resource

could be used, for example, for genetic studies, for screening for

serological and neuroimaging biomarkers, for searches for distin-

guishing phenotypic features, and would be a rewarding use of the

technology now at our disposal.
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