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Introduction

In laboratory settings, motor learning has typically been studied in the context of adaptation
paradigms in which subjects must learn to compensate for a systematic perturbation—either
some manipulation of visual feedback (Krakauer et al. 2000) or a change in the dynamics of
the motor apparatus, e.g., a force applied to the hand (Shadmehr and Mussa-Ivaldi 1994),
Coriolis forces induced by rotation of the body (Lackner and Dizio 1994), or an inertial load
attached to the arm (Krakauer et al. 1999). What is typically observed in these tasks is a
monotonic improvement in performance that is initially rapid, and then slows to an
asymptote close to initial baseline levels of performance. The progress of learning is well
described by exponential fits, implying that the amount of improvement on each trial is
proportional to the error (Thoroughman and Shadmehr 2000; Donchin et al. 2003). This kind
of fast, trial-by-trial reduction in systematic errors is typically referred to as adaptation. The
term adaptation has been used in some cases to imply a particular mechanism of learning;
however, we will adhere to a behavioral definition (as a gradual reduction in error following
an abrupt change in conditions) and describe potential underlying learning mechanisms in
more computational terms. As we will argue, learning in adaptation paradigms is likely
predominantly mediated by a specific learning mechanism that is based on changing an
internal forward model.

Not all motor learning falls under our behavioral definition of adaptation. Often one learns
to synthesize entirely novel movements even when there is no perturbation, e.g., learning to
swing a golf club, hit a tennis serve, balance a pole, or drive a car. Although this kind of
learning corresponds more closely to everyday usage of the term “motor learning,” it has
hardly been studied in laboratory settings. The few exceptions typically involve learning to
manipulate an unfamiliar, possibly complex virtual object (Carmena et al. 2003; Mosier et
al. 2005; Nagengast et al. 2009; Sternad et al. 2011). In these kinds of tasks, subjects
progress from initial incompetence to a high degree of proficiency, even approaching
theoretically optimal behavior. However, performance improvements are far slower than in
adaptation paradigms: while tens of trials are usually enough to reach asymptote after a
systematic perturbation is introduced, performance in these more complex tasks continues to
improve over hundreds of trials and even across days. This slow improvement is not entirely
due to the unfamiliarity of the task. Even in much more simple tasks that involve

© Springer Science+Business Media New York 2013
Correspondence to: Adrian M. Haith.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Haith and Krakauer

Page 2

maneuvering a cursor along a constrained path (Shmuelof et al. 2012) or through a series of
via points (Reis et al. 2009), overall variability in task performance reduces substantially
over days of practice, even though subjects immediately exhibit near-perfect performance at
slow speeds. It appears that a qualitatively different kind of learning may be occurring in
these tasks—one that is not reliant on compensating for the highly salient errors that are
present in adaptation settings, but instead is associated with incrementally improving the
quality of one's movements with practice. We define this long-term reduction in movement
variability as skill learning. It is not currently clear whether adaptation, skill, and learning to
control external objects draw upon identical, overlapping, or entirely different neural
mechanisms.

In this review, we argue for the existence of two distinct mechanisms underlying motor
learning: (1) a model-based system in which improvements in motor performance occur
indirectly, guided by an internal forward model of the environment which is updated based
on prediction errors, and (2) a direct, model-free system in which learning occurs directly at
the level of the controller and is driven by re-inforcement of successful actions. These
distinct learning systems are each suited to different tasks and as such are complementary to
one another. Model-based processes are likely to predominate in adaptation paradigms, and
model-free processes predominate in skill tasks. However, we argue that both can contribute
to learning in any given task.

Theory: Model-Based and Model-Free Approaches to Learning Control

Policies

We adopt a general definition of motor learning as the process of improvement in execution
of a task according to some chosen measure of performance such as increased chance of
success or decreased effort (or potentially a combination of the two). Formally, we describe
the state of learning in terms of a control policy 7 mapping current states, stimuli and time
to motor commands vy,

u=m (X, 51, 1) .

This general framework can encompass multiple levels of description. A control policy
could describe selection of a single action per trial or describe an ongoing stream of motor
commands in continuous time according to the instantaneous state. The motor commands u;
could model a high-level decision such as which direction to move the hand or a low-level
decision such as which muscles to activate and when. The stimulus s,would typically
correspond to an observed target location and the state x;would reflect the state of the motor
plant. Any systematic, experience-driven change in this control policy can be described as
motor learning. The quality of each potential control policy can be quantified in terms of the
expected outcome value, i.e., the average performance that would be expected to be obtained
when following that control policy for a given task. In studying motor learning, we study the
process whereby individuals use experience to improve their control policy.

The optimal policy will depend on two specific things: (1) the structure of the task, i.e.,
which states are associated with valuable or successful outcomes and what costs may be
associated with different states or actions and (2) the dynamics of the motor apparatus and
environment, i.e., how do motor commands affect the state. In most motor control
paradigms we would generally expect that the structure of the task is unambiguous;
however, in general it may be that neither the task structure nor the dynamics dynamics is
known precisely.
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This general framework and the problem of determining suitable actions in an uncertain
environment based on ongoing observations is precisely the theoretical problem studied, at a
more abstract level, in the field of reinforcement learning (Sutton and Barto 1998). At the
heart of reinforcement learning theory is the notion of the value function V/ (x; §) which
reflects, for a given control policy, the total future reward that can be expected to be gained
given the current state and time. The goal of reinforcement learning is to determine the
optimal value function—from which the optimal policy follows straightforwardly.

Different variants of reinforcement learning differ in exactly what kind of value function is
represented and how this value function is updated based on experience. In particular, two
distinct computational strategies have emerged for using experience to update estimated
values and thereby determine optimal control policies. The first approach is to use
experience to build models of the dynamics of the motor apparatus and environment and the
structure of the task, and compute the value function based on these models (Fig. 1.1a). This
approach is termed model-based learning. Note that model-based learning of this kind is
very different from what most people understand intuitively by the term ‘reinforcement
learning.’

A second approach, which accords with most people's informal or colloquial use of the term
‘reinforcement learning,’ is to learn the value function directly through a process of trial and
error—explore the space of potential actions in each state and keep track of which states and
actions lead, either directly or indirectly, to successful outcomes (Fig. 1.1b). This approach
is often termed model-free, in contrast to model-based approaches. Other learning strategies
are clearly possible besides the model-free and model-based approaches described here.
However, these represent the most common approaches.

While model-free strategies clearly work and can in certain cases be shown theoretically to
be guaranteed to converge upon optimal behavior (Sutton and Barto 1998), learning by trial
and error is typically very slow in terms of the number of attempts necessary before a good
policy can be acquired, even in relatively simple environments. Model-based learning, by
contrast, makes the best possible use of all observations. Any information acquired about the
outcome of a particular action is retained and can influence planning of future movements,
regardless of whether that action led to success or not. Model-based methods also allow
more principled generalization. If the reward structure of the task changes in a known way
(e.g., the target moves to a new location), an appropriate new control policy can be
computed based on the model of the dynamics that was built in the context of the previous
task.

The major disadvantage with a model-based approach is that although the value of any state/
action pair can in principle be computed exactly, it can be prohibitively computationally
intensive to do so. Existing methods for computing the optimal policy typically involve
either dynamic programming—a backward iteration through time to exhaustively compare
all possible paths to the target and identify the best ones, or some iterative sequence of
approximations to the value function or policy that converge upon a local optimum. Details
of these methods are beyond the scope of this chapter (but for excellent introductions see
Bertsekas 1996; Sutton and Barto 1998; Todorov 2007).

The complexity associated with computing optimal value functions and policies need not
preclude biological systems from utilizing some form of model-based control. In certain
very simple scenarios, it can be trivial to compute the optimal policy given a specification of
the task and plant e.g., if the action on a given trial is simply the aiming direction for a
particular movement, then a model-based solution to a rotational perturbation simply
amounts to subtracting an estimate of the rotation angle from an observed target angle. The
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feasibility of the model-based approach therefore largely depends on the nature of the task.
Even if the computations are simple, however, errors may still arise from accumulation of
noise that inevitably accompanies computations in biological systems (McGuire and Sabes
2009).

Model-free approaches, by contrast, require only relatively trivial computations because
experiences lead directly to changes in the controller. Unlike a model-based approach, there
is no intermediate forward model representation and no calculation required to transform a
forward model into a control policy. In the long-run, model-free approaches tend to deliver
superior performance on a particular task because they do not rely so heavily on noisy
computations each and every time a movement must be made. The disadvantage is that the
scope of the learned control policy is restricted to the task performed during learning. Even
if the reward structure of the task changes in a known way, one must start from scratch (or at
least from some previous but incorrect control policy). This is in sharp contrast to the
flexibility offered by model-based learning.

In summary, if one wants to learn a good control policy in an uncertain environment, a
model-based learning strategy is, in principle, the most powerful and flexible approach but
requires unwieldy computations. Direct, model-free approaches rely only on simple
computations but can require far more training (exploration) before they lead to a
competitive policy. What learning strategy do animals use when placed in a situation where
they must learn what to do? The contrasting ways in which model-based and model-free
learning mechanisms should be expected to generalize to novel scenarios can act as
hallmarks that potentially allow us dissociate an animal's learning strategy based on
observing its behavior.

Model-Based and Model-Free Learning in Operant Conditioning Paradigms

In a situation where an animal must learn what actions will lead to reward, such as a rat
navigating through a maze to find food, it seems that animals adopt both model-based and
model-free learning mechanisms in parallel (Daw et al. 2005). Although any given control
policy could be arrived at by either model-based or model-free strategies, these two modes
of control can be dissociated by changing the reward structure of the task. In rodents this is
typically achieved by stimulus revaluation. For instance, imagine examining the behavior of
thirsty rats in a maze that they had learned while they were hungry and seeking food. Under
a model-free approach, the thirsty rat will have no way of knowing how to obtain water and
will likely either behave like a naive rat, or rely on the same policy that led to reward while
hungry. A model-based approach, by contrast, will enable the rat to flexibly change its
behavior immediately in line with its new objective of finding water instead of food
(provided, of course that it had previously explored the maze sufficiently to have found the
location of the water). In practice, rewards are typically revalued either by sating the animal
prior to the task or, more drastically, pairing a familiar food with a strongly aversive
stimulus (e.g., poison).

Behavior in such devaluation paradigms has been studied extensively, leading to a classical
division between goal-directed behavior, in which animals are sensitive to reward
devaluation, and habitual behavior in which they are not (Killcross and Coutureau 2003;
Balleine and O'Doherty 2010; van der Meer and Redish 2011). Behavior tends to be goal-
directed early in learning but becomes more habitual later on (Balleine and O'Doherty
2010). These differences in behavior can be interpreted in terms of reinforcement learning:
goal-directed behavior can be understood as model-based, while habitual behavior is model-
free (Daw et al. 2005; Dayan 2009). The transition from goal-directed to habitual with
experience can even be explained as an evolving, intelligent trade-off between the
advantages of each strategy.

Adv Exp Med Biol. Author manuscript; available in PMC 2013 February 12.
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Remarkably, these alternative model-based and model-free strategies are neurally
dissociable. Lesions to distinct regions of prefrontal cortex can isolate one pattern of
behavior or another in hungry rats (Balleine and Dickinson 1998; Killcross and Coutureau
2003). Sequential decision-making tasks in humans have revealed that their behavior can
similarly be decomposed into model-based and model-free components (Fermin et al. 2010;
Gléscher et al. 2010), while fMRI reveals that these components have distinct underlying
neural substrates (Glascher et al. 2010).

The kinds of control tasks that we are primarily concerned with in this review are quite
different from the problem that a rat faces in a maze. In decision-making tasks it is the high-
level choice of which path to follow at a junction that is of interest. The low-level
movements that register this decision are considered incidental. In motor control, however, it
is precisely these low-level movements that are of interest. Critically, control of movements
can be cast within the same broad theoretical framework used to describe decision-making.
The only differences are that movements of the eyes and limbs occupy a space of potential
states and actions that is continuous and potentially high-dimensional, and decisions must be
made in continuous time. Nevertheless, the same considerations for solving the general
problem apply as in more discrete domains. In particular, both model-based and model-free
learning strategies are possible and have similar advantages and disadvantages as in discrete
domains. We will argue that, as in the case of rodent decision-making, both strategies are
employed by the motor system for continuous control of movement. The underlying
neurophysiology may, however, be quite different for the motor system as compared with
the discrete action selection paradigms studied in rodents.

Model-Based Motor Learning

Forward models—neural networks which generate predictions about future states of the
motor system given a current state and an outgoing motor command—have long been
posited to be utilized by the motor system (Wolpert and Miall 1996). Model-based learning
has become a dominant framework for understanding human motor learning, with arguably
the majority of theories of motor learning assuming a model-based perspective (Shadmehr
and Krakauer 2008; Shadmehr et al. 2010). The proposed advantages of maintaining a
forward model are twofold: (1) A forward model allows for faster and more precise
estimation of the state of the body and/or environment, and (2) Forward models may aid in
planning future movements by directing changes in the controller itself, i.e. they may
participate in model-based control. While (1) has by now become a relatively
uncontroversial claim, (2) is much more difficult to establish.

Before assessing the case for model-based learning in the motor system, we briefly
disambiguate model-based learning from learning involving /nverse models. The simplest
kind of controller considered in motor learning theories is a static mapping from a desired
outcome to a single action. Such controllers have been referred to as /nverse models since
they are the direct inverse of the forward model. However, inverse model are not really
“models” in the true sense of the word—they do not provide an internal representation of
any process occurring in the outside world. It is more accurate to think of inverse models as
simple control policies. An inverse model control policy can be arrived at in a model-based
manner by first learning a forward model and then inverting it (Jordan 1992). Alternatively,
changes to an inverse model could be driven directly by task errors (Thoroughman and
Shadmehr 2000). We would not describe such learning as model-based, however, since the
learning occurs directly at the level of the controller rather than via a forward model
representation of the task or plant. Learning of this kind is only really feasible in simple,
single-time step scenarios.

Adv Exp Med Biol. Author manuscript; available in PMC 2013 February 12.
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Theories based on the notion of inverse models are fairly limited in scope. More generally,
motor control is described in terms of time-dependent feedback control policies (Todorov
and Jordan 2002). In this context, there is no way to directly update the control policy based
on performance errors. By contrast, model-based learning is a very general approach to
obtaining a good control policy that is applicable to any problem that can be framed as a
Markov decision process. The only limitation to model-based learning is being able to
gather enough information to build the model.

Nothing is presently known about the neural computations that underlie the translation of
knowledge about the environment in the form of a forward model into a control policy.
However, even though the potential mechanisms underlying model-based control processes
are poorly understood, this understanding is not necessary to establish whether or not it
occurs. Here, we focus on reviewing the evidence at the behavioral level for the existence of
forward models and their involvement in motor learning.

The Cerebellum and Forward Models

The cerebellum has long been implicated in motor control and coordination and has emerged
as the most likely neural substrate of putative internal models (Bastian 2006; Shadmehr and
Krakauer 2008; Wolpert et al. 1998). Patients with hereditary cerebellar ataxia or lesions to
the cerebellum have general difficulties in coordinating movement and are grossly impaired
in adaptation tasks (Martin et al. 1996; Maschke et al. 2004; Smith and Shadmehr 2005;
Tseng et al. 2007; Synofzik et al. 2008; Rabe et al. 2009; Criscimagna-Hemminger et al.
2010; Donchin et al. 2011). There are many potential roles for the cerebellum in learning
that might give rise to such an adaptation deficit in cerebellar ataxia. The cerebellum may,
for instance, compute an inverse model that directly maps desired outcomes to actions
(Medina 2011). We argue here, however, that the adaptation deficit following cerebellar
damage stems from an inability to learn forward models.

Neurophysiological recordings from the cerebellum show that Purkinje cell simple spike
activity reflects the kinematics of movement, and not the motor commands required to
achieve the kinematics (Pasalar et al. 2006). This finding clearly demonstrates that the
output of the cerebellum is not directly related to motor output, as would be predicted if the
cerebellum were computing an inverse model or otherwise contributing directly to control.
Furthermore, Purkinje cell activity during movement precedes the actual kinematic state of
the limb (Roitman et al. 2005). So this activity in the cerebellum does not simply reflect a
reporting of sensory feedback—instead it appears that the cerebellum implements an internal
forward model that predicts the kinematic or sensory consequences of motor commands
before that information actually becomes available from the periphery.

Numerous studies have argued from a behavioral standpoint that an estimate of state from a
forward model underlies state-specific feedback corrections during movement (Ariff et al.
2002; Chen-Harris et al. 2008; Wagner and Smith 2008; Munuera et al. 2009). This process
appears to be cerebellar-dependent (Miall et al. 2007; Xu-Wilson et al. 2009). Together with
the above-mentioned neurophysiological findings, these studies make a strong case that the
cerebellum generates predictions about future motor states on the basis of outgoing motor
commands, and that these predicted states are made available to an already-learned feedback
controller that guides ongoing execution of a movement. While this constitutes model-based
control of sorts (Mehta and Schaal 2002), in this article we are more interested in the
question of whether a forward model brings about changes in the controller, rather than
influencing control only through estimates of state. Nevertheless, if forward models exist
and can be used to guide online feedback control, it perhaps makes it more likely that the
same forward models might participate in planning feedforward control.

Adv Exp Med Biol. Author manuscript; available in PMC 2013 February 12.
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Evidence for Forward Model Involvement in Feedforward Control

An often-cited instance where predictions of a forward model are claimed to influence
feedforward control (as opposed to only feedback control) is in compensating for the
consequences of one effector's actions on another—for instance stabilizing one hand holding
a load while removing that load with the other hand or increasing grip force on an object to
prevent slippage when accelerating it upward. It has often been argued that such anticipatory
control is possible because of a forward model that predicts adverse consequences of an
upcoming action before it has happened, enabling an appropriate compensation to be
planned and executed concomitantly (Wolpert and Miall 1996; Flanagan and Wing 1997;
Wolpert et al. 2011). Although the use of a forward model could, in principle, enable this
kind of anticipatory control, coordination per seis no proof of the existence of forward
models. Anticipatory control is simply a feature of a good control policy and there is no way
of knowing how this controller may have been arrived at simply by observing it in action.
Good coordination could have been learned via model-free mechanisms through trial and
error.

Studies of anticipatory control in cerebellar ataxia patients offer some clues as to the nature
of anticipatory control. Interestingly, cerebellar ataxic patients demonstrate intact
coordination in manual unloading tasks (Diedrichsen et al. 2005) and exhibit intact
modulation of grip force with varying load forces (although baseline grip forces are
abnormal) (Rost et al. 2005), suggesting that forward models are not at all a prerequisite for
performing coordinated movement. Cerebellar patients do, however, show impairment in
learning novel anticipatory adjustments (Nowak et al. 2004; Diedrichsen et al. 2005). This
suggests that initial acquisition of anticipatory control is facilitated by a forward model that
can predict the consequences of the actions of one effector on the goals of another but, with
prolonged practice, coordinated control eventually becomes independent of the forward
model. To put it another way, there may be a transition from model-based to model-free
mechanisms.

The notion of model-based learning implies that improvements in performance are driven by
errors in the prediction of a forward model. One plausible alternative to this idea is that
adaptation is driven by the feedback corrections one makes to correct errors, rather than by
the errors themselves (Kawato and Gomi 1992). This does not appear to be the case for
reaching movements, however: learning rates in adaptation tasks are identical whether or not
feedback corrections are allowed during movement (Tseng et al. 2007). Similarly, corrective
saccades do not appear to be necessary to adapt saccade amplitude (Wallman and Fuchs
1998).

Although not driven by corrective movements, adaptation may not necessarily be driven by
prediction errors of a forward model. If control is mediated by an inverse model, changes to
a control policy could be driven directly by task errors, without any need for a forward
model. In most cases, task errors and prediction errors are closely aligned. In certain cases,
however, performance errors and prediction errors can be dissociated. For instance, saccades
to visual targets usually tend to fall slightly short of the target, but this shortfall does not
lead to an increase in saccadic gain as one would expect if it were induced through a target
jump. In fact, if the target is surreptitiously jumped mid-saccade such that the eye lands
perfectly on the target every time, then saccadic gain actually begins to decrease despite the
absence of performance errors (Wong and Shelhamer 2011). Indeed it is even possible for
adaptation to occur in the opposite direction from a task error. This provides compelling
evidence that prediction errors and not task errors are what drive motor adaptation.

A similar, even more striking result can be found for reaching movements. In a study by
Mazzoni and Krakauer (2006) (Fig. 1.2a), subjects were exposed to a 45° rotation of visual
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feedback but were also provided an explicit strategy to counter the rotation: simply aim to an
adjacent target deliberately spaced at a 45° separation from the true target. Initially, subjects
were able to flawlessly implement the strategy and hit the target. However, performance
rapidly began to drift away from the target in the direction of the perturbation despite the
fact that the task was being performed without errors. It therefore does not seem to be task
error per se that drives adaptation, but discrepancies between predicted and observed
behavior. Interestingly, this drift effect does not persist indefinitely—after prolonged
exposure, subjects begin to reduce their errors again, suggesting that there is some
component of learning that acts to close task errors rather than prediction errors (Taylor and
Ivry 2011). When patients with cerebellar ataxia are given an explicit strategy, they are able
to successfully maintain performance without undergoing any drift in performance (Taylor
et al. 2010) (Fig. 1.2b). Thus the adaptation deficit in cerebellar ataxic patients is due to a
reduced sensitivity to prediction errors not task errors.

The idea that adaptation is mediated by changes in predictions about the consequences of
one’s actions can be tested more directly through paradigms that ask subjects to estimate
where they perceived their hand to have moved during a reach. Although such assays
inevitably contaminate forward model-based predictions with actual visual and
proprioceptive sensory experiences, a number of interesting results have been obtained using
this approach. Following exposure to rotated visual feedback, healthy subjects undergo a
corresponding change in their perceived hand path during movement (Synofzik et al. 2006).
Cerebellar ataxic patients show no such perceptual changes (Synofzik et al. 2008; Izawa et
al. 2011). These results support the idea that changes in a forward model, which presumably
lead to the changes in predicted hand position, are a prerequisite for adaptation.

In summary, adaptation is driven by prediction errors and not by task errors or online motor
responses to correct those errors. Exposure to rotated visual feedback leads to a shift in
perceived hand location during movement. In patients with cerebellar ataxia, sensory
prediction errors do not result in changes in feedforward control in future trials and do not
lead to changes in perceived hand position. We believe that the most parsimonious
explanation for all of these results is that the cerebellum computes an internal forward model
that predicts the consequences of motor commands and that this forward model influences
feedforward control of future movements.

Generalization of Learning Across Tasks

A final thread of evidence that has been cited in support of model-based control frameworks
concerns generalization. Human subjects exhibit a high degree of generalization of learned
compensation for a perturbation to a new movement (Shadmehr and Mussa-lvaldi 1994;
Krakauer et al. 2000). While this generalization is consistent with the idea of model-based
control, it is important to bear in mind that model-free learning will also be expected to
exhibit some degree of generalization—only in this case the generalization will be of a
learned control policy, rather than of an internal model. The amount of generalization across
states will be entirely determined by the underlying representation. There is no specific
reason why one should expect model-based learning to generalize more broadly across states
than model-free. However, subjects trained on a visuomotor rotation with full vector error
(presumably engaging primarily model-based mechanisms) do generalize more broadly than
subjects who learned to compensate the same perturbation but were given only binary
feedback about the success or failure of their movements (presumably relying on model-free
learning) (Izawa and Shadmehr 2011).

A more concrete dissociation between model-based and model-free learning mechanisms is
the extent to which learning should transfer across tasks within the same workspace—for
instance tracking a cursor along a curved path versus making point-to-point reaches. This
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form of generalization across tasks is directly analogous to the reward devaluation protocols
that dissociate model-based from model-free action selection processes in rodents (Daw et
al. 2005)—in both cases the reward structure of the task is altered but the consequences of
actions remain the same. A number of studies have examined generalization of learning
from a redundant task, in which the perturbation is task-irrelevant, to a nonredundant task.
For example, Schaefer et al. (2012) had subjects make reaching movements to a point
anywhere on a circular arc while imposing a rotation of visual feedback. This rotation did
not compromise task performance, since subjects still easily landed on the arc as required.
The rotation, however, did lead to sensory prediction errors. In subsequent catch trials
toward a single target, subjects showed significant aftereffects, supporting the idea that
learning was driven by sensory prediction errors rather than by task errors. An identical
pattern was found for subjects who adapted to a visual amplification of movement extent
(gain increase) while performing an analogous task in which reach direction mattered, but
reach extent did not.

Interestingly, although perturbations led to significant aftereffects even when they produced
errors only along task-irrelevant dimensions, the aftereffects found by Schaefer and
colleagues were significantly smaller than when the same perturbations were task-relevant.
A similar study by Synofzik and colleagues (2006) found similar partial transfer of a visual
rotation from reaching to an arc to reaching to a point. In that study, additional probe trials
measured perceptual changes accompanying learning. Significant changes in perceived hand
position during reaching were found. However, although the mean perceptual changes and
mean generalization were of similar magnitude, individual subjects’ perceptual changes
were not predictive of the reaching behavior. Incomplete transfer of adaptation across tasks
is not limited to these two examples. Adaptation to a shift in visual feedback during a
manual tracking task generalizes only partially to subsequent reaching movements (Simani
et al. 2007). In force field adaptation, subjects who learn a force field while performing a
series of point-to-point reaching movements show partial but incomplete generalization of
their learning when subsequently asked to make circular movements (Conditt et al. 1997).

The finding that learning is consistently seen to transfer across tasks is consistent with
model-based learning. However, the variation in the extent of learning under task-relevant
and task-irrelevant conditions suggests that learning might not be purely driven by changes
in a forward model. On the one hand, one could interpret these results in terms of task-
specific internal models mediating task-specific model-based controllers. However, the
notion of task-specific internal models rather defeats one of the primary benefits of a model-
based approach to control: the ability to flexibly generalize knowledge about the
environment across tasks. It perhaps seems more parsimonious to suggest that task
specificity of learning arises because of the task specificity of components of learning that
are independent of internal models.

Evidence for Model-Free Learning

Model-based learning implies that the motor system learns to compensate for systematic
perturbations by first identifying the dynamics of the system being controlled through a
forward model (likely in the cerebellum), then somehow translating this knowledge into a
control policy in the motor cortex. We have argued that this kind of mechanism can
parsimoniously account for a variety of experimental results. However, not all aspects of
motor learning are well explained by such a model-based framework. Here we outline the
evidence that the motor system also relies on direct, model-free learning of actions.

As we have described above, patients with cerebellar ataxia are severely impaired in
compensating for systematic perturbations. According to a model-based interpretation, this
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inability arises from a primary deficit in the ability to learn or update an internal forward
model describing the perturbation (either explicitly, or as an adjustment to baseline forward
models). Perhaps surprisingly, however, cerebellar ataxic patients are able to learn to
compensate for perturbations if the perturbation is introduced sufficiently gradually
(Criscimagna-Hemminger et al. 2010; Izawa et al. 2011) (Fig. 1.3). Successful learning in
this case is not accompanied by a change in the perceived consequences of actions (I1zawa et
al. 2011). This spared learning ability of cerebellar patients therefore does not appear to be
associated with any change in an internal model. Interestingly, healthy subjects who learn to
compensate for a rotation given only binary feedback about the success or failure of their
movements are similarly able to successfully learn to counter the rotation without updating
their predictions about the outcome of their movements (Izawa and Shadmehr 2011). These
findings suggests that cerebellar ataxia patients, as well as healthy controls deprived of
being able to extract prediction errors from a movement, are able to compensate by engaging
an alternative learning mechanism that relies solely on the degree of success of a movement
and not on the directionality or magnitude of errors. This also explains why learning is only
possible in a gradual paradigm: natural variability in movements ensures occasional success
when perturbations are small, sufficient to allow the patients to shift their control strategy
and in turn enabling them to find movements that successfully counter larger perturbations
later on.

The clearest example where model-based and model-free learning can be clearly dissociated
is in explaining the ability to relearn a perturbation faster the second time around (savings).
Huang and colleagues (2011) had subjects reach to a series of targets, while giving them
rotated visual feedback. Crucially, the rotation changed pseudo-randomly from trial to trial,
so that subjects achieved little success and never repeatedly made the same movement with
success. Subjects did, however, adapt to the average imposed perturbation, which was a
clockwise rotation of 20°. Following washout of this learning, subjects were given a further
test block in which they made reaching movements to a single target under a constant
rotation. In this test block, these subjects adapted no faster than naive subjects, i.e., they did
not exhibit savings despite having previously adapted their movements in the direction
appropriate to counter the test perturbation. By contrast, a second group of subjects was
faced with a nonrandom perturbation that was designed such that the same action would lead
to success on every trial, regardless of the target location. After washout, subjects in this
group adapted substantially faster to a subsequent test rotation, i.e., they exhibited strong
savings. These results suggest that learning an internal model alone does not suffice to
achieve savings—some degree of repetition of a successful movement is also necessary.
Even so, the savings might have been due to a model-based process that is modulated by
task success. A further experiment established that this is not the case by showing that
savings can arise from prior learning of an gpposite rotation, provided that both rotations
required the same hand movement to achieve success (Fig. 1.4).

These results suggest that savings arises through recall of previously successful actions,
rather than recall of a learned internal model. It may even be that the recall of successful
actions is prompted by reward prediction errors rather than by sensory prediction errors. In
force field learning, withholding a previously given reinforcement signal triggers partial
recall of previously learned actions, even when kinematic performance errors are
mechanically clamped at zero (Pekny et al. 2011).

Dopamine-dependence of Model-free Learning

From a theoretical perspective, model-free learning relies on errors in predicted reward
(unlike model-based learning, which relies on errors in predicted sensory feedback).
Dopamine neurons have been consistently linked with reward prediction errors (Montague et
al. 1996; Schultz et al. 1997). Parkinson's disease (PD), in which there is widespread death
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of dopaminergic neurons, is known to lead to learning deficits in operant learning tasks that
rely on reward prediction error signals (Frank et al. 2004; Shohamy et al. 2005; Avila et al.
2009). Thus the study of learning in PD patients may offer crucial insights into which
components of motor learning are subserved by model-free processes. PD patients show no
impairment in learning a visuomotor rotation compared with age-matched control subjects.
However, savings upon re-adaptation is almost absent in patients with PD (Marinelli et al.
2009; Bedard and Sanes 2011; Leow et al. 2012). This remarkable finding clearly
demonstrates the importance of reinforcement and reward for savings and strongly accords
with the results of Huang and colleagues (2011). Dopamine is also known to play a pivotal
role in skill acquisition in rats. Blocking dopaminergic innervation of M1 from the ventral
tegmental area (VTA) abolishes the ability of rats to improve performance in a grasping
task. Blocking dopamine did not, however, impair performance of previously acquired
skills, suggesting that dopamine plays a key role in learning but not execution of motor skill
(Hosp et al. 2011).

Use-Dependent Learning

A significant line of observations that is difficult to reconcile with purely model-based
frameworks is the fact that, even in the absence of perturbations, current movements appear
to be influenced by previous movements—a phenomenon that has been termed use-
dependent learning. Repeated movements toward a particular target lead future movements
to be biased toward that movement direction (Huang et al. 2011; Verstynen and Sabes
2011). Point-to-point reaching movements around an obstacle lead to a distinct trajectory
bias once the obstacle has been removed (Jax and Rosenbaum 2007). In redundant tasks,
subjects are biased toward solutions that they were led to on previous attempts, even though
these may be far from energetically optimal (Diedrichsen et al. 2010). These history-
dependent biases in behavior may originate in primary motor cortex: motor responses
elicited by transcranial magnetic stimulation (TMS) over M1 tend to be biased toward
movements that were practiced immediately beforehand (Classen et al. 1998). Long-term
practice over years seems to have a similar effect—TMS of M1 in expert musicians is more
likely to elicit the same hand movements that occur while playing their instrument compared
to nonmusician controls, or musicians that play other instruments (Gentner et al. 2010).

Use-dependent learning appears to be difficult to reconcile with the model-based view that
movements are planned to be optimal according to a current model of the environment. Use-
dependent learning also does not seem to be due to the same model-free learning
mechanisms that give rise to savings. Movement execution biases can be induced without
giving rise to savings (Huang et al. 2011), and savings occurs when target directions are
distributed uniformly around a single start position, in which case no use-dependent learning
occurs (Verstynen and Sabes 2011). It can be argued that these kinds of history-dependent
effects reflect a learned model of the structure of the task, with biases in movement direction
reflecting the influence of prior expectations about the location of the target (Verstynen and
Sabes 2011). In this case, use-dependent learning can be thought of as a form of
unsupervised learning, being driven not by prediction errors or rewards but by the statistics
of previous actions.

An alternative way to frame use-dependent learning is as a form of motor Aabit-i.e. an
insensitivity to changes in task goals (which is a generalization of the notion of reward
revaluation). Habit and model-free learning have been equated in the realm of rodent
decision-making (Daw et al. 2005). It may be possible, however, to dissociate them in the
domain of motor control where, critically, independent assays of habit (movement biases)
and model-free learning (savings) are available.
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In summary, there are an increasing number of experimental observations in motor learning
that are difficult to describe within model-based frameworks. We do not wish to suggest that
these findings negate the idea of model-based learning. Rather, we propose that these
phenomena occur due to additional learning mechanisms that operate independently of
internal models. Furthermore, these mechanisms constitute more than just a curious nuisance
that contaminates behavior in adaptation paradigms. We suggest that they are equally if not
more critical than model-based learning. Indeed, acquisition of entirely novel motor
behaviors may depend upon model-free learning mechanisms in which successful control
policies in motor cortex are dopaminergically reinforced.

Combining Model-Based and Model-Free Learning Mechanisms

In sequential decision-making contexts, model-based and model-free learning systems are
often conceived as operating independently, interacting only at the action selection stage.
Both model-based and model-free strategies yield estimates of the value of choosing a
particular action in a particular state, and these independent estimates must be combined to
guide the ultimate choice of action. The confidence in each estimate plays a crucial role in
this arbitration process—a concept that can formalized in a Bayesian sense (Daw et al.
2005). The ultimate course of action could be based on either choosing the most reliable
estimate (Daw et al. 2005) or combing the estimated values weighted by their relative
reliabilities (Glascher et al. 2010). Early in learning, when there are few observations
available, model-based approaches tend to be more reliable than model-free ones. Imprecise
computations place a limit on the reliability of model-based methods, however, so that,
when data are abundant, the direct approach of model-free learning becomes more reliable.
Consequently, behavior tends to rely more on model-based mechanisms early on and more
on model-free mechanisms after extensive practice.

In the context of control of the eyes and limbs, there is a continuous, possibly high-
dimensional space of potential actions. When choosing among a discrete set of actions, an
animal can exhaustively sample all available actions in each state—the only constraints on
learning are the confidence that the animal has in its own observations and in the constancy
of the environment. When the action space is continuous-valued, however, exhaustive
sampling is not possible. In these scenarios, the model-based system becomes essential to
rapidly guide behavior toward promising control policies, effectively guiding exploration for
model-free learning. As is the case in discrete domains, abilities that are initially learned
model-based should, with experience, become model-free behaviors. This transfer of
responsibility explains the fact that anticipatory control remains intact in patients with
cerebellar ataxia (who will have initially learned such coordination long before the onset of
ataxia (Diedrichsen et al. 2005)) but new patterns of coordination cannot be learned.

Conclusions and Outlook

We have contrasted two distinct approaches to learning new control policies: model-based
learning, in which sensory prediction errors indirectly drive updates to a control policy by
updating a forward model, and model-free learning in which reward prediction errors drive
changes to a control policy directly. We have argued that the motor system utilizes both
kinds of learning. A parallel learning architecture lends the motor system robustness and
redundancy; learning a given task can be achieved in many different ways, so that if one
fails either through circumstance (such as if impoverished sensory feedback precludes
learning a forward model) or disease, other mechanisms are still in place to ensure that
overall performance can still be maintained or improved.

It has long been argued that the different structures within the brain appear to be well suited
to learning from experience in different ways (Doya 1999).The complementary roles of
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different brain regions for model-based and model-free learning are particularly nicely
exhibited in a recent study by Galea and colleagues (2011). They found that anodal
transcranial direct current stimulation (tDCS) over primary motor cortex did not affect the
rate of adaptation to a visuomotor rotation. However, it did lead to a large effect on retention
of learning. Conversely, anodal tDCS of the cerebellum substantially increased the rate of
adaptation, but did not influence retention. Although the exact mechanisms by which brain
stimulation is able to modulate learning in this way are far from clear at present, we suggest
a general way of viewing this result as tDCS of the cerebellum promoting model-based
learning and tDCS of M1 promoting model-free learning.

It is likely that the brain utilizes many different forms of learning, not restricted to the
specific strategies and mechanisms we have focused on here. For instance, although we have
described model-based learning as being dependent on an implicit internal model in the
cerebellum, it is likely that other brain areas such as prefrontal cortex may contribute
alternative, explicit task models that may give rise to a form of model-based control that
might be considered more strategic (Mazzoni and Krakauer 2006; Taylor and lvry 2011).
Use-dependent learning appears to be neither model-based nor model-free in the sense that
we have described. Many error-driven learning strategies have been proposed in which
vector performance errors directly drive updates to a controller (Thoroughman and
Shadmehr 2000; Franklin et al. 2008). Such strategies are neither model-based in the sense
we have described (since the error directly influences the controller, rather than going
through a forward model) nor model-free (since learning is error-driven rather than reward-
driven).

A deeper understanding of the multiple component processes that support motor learning is
paramount to advance the efficacy of neuro-rehabilitation following brain injury. The most
promising path to achieving this goal is through coupling theoretical insights with carefully
designed experiments, study of specific patient groups, and the use of brain stimulation
techniques. Dissecting motor learning into its constituent components is a clear and
important goal for future motor control research. We believe that computational levels of
description offer a sound basis by which to begin this classification (Fig. 1.5).
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Fig. 1.1.

b Model-free learning

Learning

success/
failure

Direct:
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M1

Control Policy

« Remember and repeat

actions that led to success

Comparison of model-based and model-free strategies for updating a control policy based on
experience. a Model-based learning schematic. Changes to the control policy are brought

about indirectly through first updating a forward model of the motor apparatus and

environment based on sensory prediction errors, then using this knowledge to calculate an
appropriate controller for the current task. b Model-free learning schematic. The control
policy is updated directly based on reward prediction errors
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Fig. 1.2.

Motor learning is driven by sensory prediction errors. a Healthy subjects that are provided
with an explicit strategy to counter a 45° rotation initially counter the perturbation
successfully, but performance immediately drifts in the direction opposite the rotation.
(Reproduced from Mazzoni and Krakauer 2006). b This drift is attenuated in patients with
cerebellar ataxia (note that rotation direction is opposite as compared with panel a).
(Reproduced from Taylor et al. 2010)
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Fig. 1.3.

Force field learning in patients with cerebellar ataxia. a Severe patients are grossly impaired
in adapting to an abruptly introduced force field. b Introducing the force field gradually
allows compensation similar to healthy controls. (Reproduced from Criscimagna-
Hemminger et al. 2010)
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Adaptation to a visual rotation is accelerated by prior learning of an opposite rotation,
provided the targets are arranged such that the action required to successfully counter the
rotation is the same in both cases. (Reproduced from Huang et al. 2011)
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Fig. 1.5.

A motor learning taxonomy, by analogy to the famous taxonomy of memory by Squire.
(Squire 1992)
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