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Abstract

Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating
structural equation models in small samples and with potentially nonnormal data, but this statistic
has received only limited evaluation. The performance of this statistic is compared to normal
theory maximum likelihood and two well-known robust test statistics. A modification to the
Satorra-Bentler scaled statistic is developed for the condition that sample size is smaller than
degrees of freedom. The behavior of the four test statistics is evaluated with a Monte Carlo
confirmatory factor analysis study that varies seven sample sizes and three distributional
conditions obtained using Headrick’s fifth-order transformation to nonnormality. The new statistic
performs badly in most conditions except under the normal distribution. The goodness-of-fit ;(2
test based on maximume-likelihood estimation performed well under normal distributions as well
as under a condition of asymptotic robustness. The Satorra-Bentler scaled test statistic performed
best overall, while the mean scaled and variance adjusted test statistic outperformed the others at
small and moderate sample sizes under certain distributional conditions.

1. Introduction

Classical goodness-of-fit testing in factor analysis is based on the assumption that the test
statistics employed are asymptotically chi-square distributed, but this property may not hold
when the factors and errors and hence the observed variables are nonnormally distributed.
Even when the factors and errors are normally distributed in the population, the performance
of test statistics in small sample sizes may be compromised (Hu, Bentler and Kano, 1992;
Curran, West, & Finch, 1996). Robust methods such as Satorra-Bentler’s (1994) mean
scaling and mean and variance adjusted statistics were developed to be robust to
nonnormality. As is well known, the Satorra-Bentler scaled chi-square statistic scales a
normal theory statistic such as the maximum likelihood (ML) so that the mean of the test
statistic asymptotically has the same mean as the reference chi-square distribution. Recently,
Lin and Bentler (2012) proposed an extension to this statistic which not only scales the mean
but also adjusts the degrees of freedom based on the skewness of the obtained test statistic.
This statistic was proposed primarily in order to improve its robustness under small samples.
A small simulation was consistent with this expectation, but the statistic was not evaluated
for its performance under a wider range of conditions.

The purpose of the study is to evaluate the new mean/skewness test in comparison to other
well-known robust statistics. The performance of four goodness-of-fit chi-square test
statistics is evaluated under small sample sizes as well as under violations of normality in
order to evaluate the relative performance of these statistics under the correct structural
model as well as under misspecification to evaluate power. The behavior of maximum
likelihood goodness-of-fit chi-square test (7;4,) and its three robust extensions: Satorra-
Bentler scaled chi-square statistic ( 75 g), mean scaled and variance adjusted statistic ( 741
and mean scaled and skewness adjusted statistic ( 7,,s) are examined in this study. The study
also provides a comparison of the standard 7 g statistic to one that is corrected for small
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sample size. Headrick’s (2002; Headrick & Swailowsky, 1999) relatively unstudied
methodology for generating nonnormal data is used due to its ability generate a wider range
of skew and kurtosis as well as control higher order moments than the more standard Fleish-
man (1978) and Vale and Maurelli (1983) procedures.

2. Test Statistics

The discrepancy between S (the unbiased estimator of population covariance matrix X
based on a sample of size /1) and Z(6) (the structured covariance matrix based on a specified
model of g parameters) is typically evaluated by the normal-theory maximum-likelihood
(ML) or quadratic form discrepancy functions:

Fy=logl Y @)1+irs >~ @)-loglsl-p @

Fop=(s=0(6)) W(s=0'(6) (2)

where pis the number of observed variables, sand o(6) are p(p + 1)/2 dimensional vectors

formed from the non-duplicated elements of Sand £(6). Assume Va(s—c(6)) = N(0,T) in
distribution as n7— oo, where T is the asymptotic covariance matrix of s. The typical
elements of I" are given by

Yijki=O ikl =0 ij0kl  (3)

where the multivariate product moment for four variables z; z ; zxand zis defined as

O ik =E(Zi— i) (2= ) k=)= (4)

and o; is the usual sample covariance. Under multivariate normality, a consistent estimator
of Wis given by

v=2k,Y @ YK, ©

where Ko is a known transition matrix. Furthermore, we define

. L =1
u=w'l-wle@w'lo) cw'! ®©

where o= 9 o(6)/ 90 is the Jacobian matrix evaluated at 6. In practice, U can be estimated
by plugging in W1 = V. Then the goodness-of-fit chi-square statistic is given as:

T,,=(n-DF,, (7)

where £y, is the minimum of (1) evaluated at the maximum likelihood estimate of
parameters. Under assumptions of multivariate normality, 7, has a y? distribution with
degrees of freedom d= p(p + 1)/2 — g, and this holds asymptotically under specific
nonnormal conditions (see e.g., Savalei, 2008). For example, in a confirmatory factor
analysis, when all factors are independently distributed and the elements of the covariance
matrices of common factors are free parameters, 7,4, can be insensitive to violations of the
normality assumption. The Satorra-Bentler scaled chi-square statistic:
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3. Method

T,=T,, [k (8)

where k= trace(UI')/d'is a scaling constant that corrects 7,,; so that the sampling
distribution of 7, will be closer to the expected mean d. The scaling constant kis an
estimate of the average of the nonzero eigenvalues of UI'. However, when the sample size is
smaller than the degrees of freedom (V< d), (8) is not the correct formula since there will
not be dnonzero eigenvalues. Hence, when N < d, we propose the use of k= trace(UD)IN
instead. This new Satorra-Bentler scaled chi-square statistic is thus given by:

T B(New) — Ty lk ©)

where k= trace(Ur')/min(a, N), and Ts g(new) is referred to a/yz distribution with min(d, )
degrees of freedom. The Satorra-Bentler mean scaled and variance adjusted statistic:

T,,=vT,, [trace(UT) (10)

where v = [trace( UD)]4/ trace[(U)?]. Ty involves both scaling the mean and a
Saitterwarthe second moment adjustment of the degrees of freedom (Saitterwarthe, 1941),
and the new reference distribution is a central y2 with degrees of freedom v. The mean
scaled and skewness adjusted statistic 7,5, newly proposed by Lin and Bentler, is defined
as:

T, =v'T,, [trace(UT) (11)

where V" = trace[(UD)2)3/ trace[(UT')3]? is a function of the skewness of 7. In addition to
scaling the mean as in 7sgand 7y, Tysadjusts the degrees of freedom such that
asymptotically, the quadratic form of T has the same skewness with a new reference
distribution ;(Z(v*). The goal of modifying the degrees of freedom in 7,4,and 7Tyys, is to
downwardly adjust the obtained statistic such that its distributions is as close to a central chi-
square as possible. Note the above test statistics are described in their population form, but
in estimation, (7) — (11) can be implemented by replacing O for LT

The confirmatory factor model is specified as y= An+ e, where yis a vector of observed
indicators that depends on A, a common factor loading matrix, 7 is a vector of latent factor
scores (common factors) and e is a vector of unique errors (unique factors). Typically, we
assume that 7 is normally distributed and uncorrelated with e. Hence, the restricted
covariance structure of yis £(6) = A®A T+ ¥, where @ is the covariance matrix of the
latent factors and 'V is a diagonal matrix of variances of errors. Since the observed indicators
are a function of parameters in the factor analytic model, nonnormality in observed
indicators is an implied consequences of nonnormality in the distributions of factors and
errors.

In this study, a confirmatory factor model with 15 observed variables and 3 common factors
is used to generate a model-based simulation. A simple structure of A is used where each set
of five observed variables load onto a single factor with loadings of 0.7, 0.7, 0.75, 0.8 and
0.8 respectively, as shown in (12). Under each condition, the common and unique factors are
generated using Headrick’s fifth-order transformation (Headrick, 2002), and then the 15
observed variables are generated by a linear combination of these factors.
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0.7 0.7 0.75 0.8 0.8 0/0.8 O 0 0o 0 0 O 0 0 O
AT=] 0 0 0 0 O 07 07 075 08 08 0 O 0 0 O (12)
0 O 0 0 O 0 0 0 0 0 07 07 075 08 0.8

After generation of the population covariance matrix X, random samples of a given size
from the population are taken. In each sample, the parameters of the model are estimated
and the above four test statistics are computed by calling EQS using the REQS function in R
(Mair, Wu, & Bentler, 2010) and specifying METHOD = ML, ROBUST in EQS. In
estimation, the factor loading of the last indicator of each factor is fixed for identification at
0.8, and all the remaining nonzero parameters are free to be estimated. The behavior of 7,
Tss Tpvand Ty sare observed at sample sizes of 50, 100, 250, 500, 1,000, 2,500 and
5,000. Particularly, when V=50 < d'= 87, the behavior of 7 g(ney) is also observed. At
each sample size, 500 replications are drawn from the population. A statistical summary of
the mean value and standard error of 7under the confirmatory factor analysis model across
the 500 replications, and the empirical rejection rate (Type | Error) at significance levels of
a = 0.05 on the basis of the assumed y? distribution, are reported in Tables 2-4. An ideal
type | error rate should approach 5% rejection of the null hypothesis, with a deviation of less
than 2[(.05)(.95)/500]%-° = .0195.

To measure the empirical power of these test statistics, a misspecified model with an
additional path from 7, to y4 is used for hypothesis testing. The loading of this path is fixed
at 0.8 in estimation. The observed variables are still generated under the correct model, but
are then analyzed under the incorrectly specified model. The empirical power, reported in
the fourth row for each cell in Tables 2-4, is defined as the proportion of rejections of the
null hypothesis for 500 simulated trials. A high rejection rate typically implies ideal
performance of the test statistic, but this is not the case when simultaneously a high type |
error rate exists (e.g., larger than 0.0695).

Three different conditions of distributions of factors and errors are simulated to examine the
robustness of the above test statistics. In Condition 1, both common and unique factors are
identically independently distributed as MO, 1), resulting in a multivariate normal
distribution of the observed variables. Condition 2 is designed to be consistent with
asymptotic robustness theory, where the common and unique factors are independently
generated nonnormal distributions. The common factors are correlated with specified first
six moments and intercorrelations as in Table 1, while the unique factors are independent
with arbitrarily chosen first six moments. In Condition 3, based on the distributions in
Condition 2, the factors and error variates are divided by a random variable

Z=[)(2(5)]1/2/ V3 that is distributed independently of the original factors and errors. This
division results in the dependence of factors and errors, even though they remain
uncorrelated. Because of the dependence, asymptotic robustness of normal-theory statistics
is not to be expected under Condition 3.

Under the model %(6), the degrees of freedom is 87. According to asymptotic robustness
theory, we expect the normal-theory based test statistics to be valid for nonnormal data in
Condition 2, in addition to the standard normal data in Condition 1. The expected mean of
Ta is 87 under Condition 1 and 2, while 7,4, might break down in Condition 3. The
anticipated mean of 7 gis 87, regardless of the three types of distributions and conditions
considered. Particularly, when V< 4, the expected mean of 7 g(ney) is corrected to N. The
predicted means of 7, and 7,,sdepend on the variables and are to be estimated during
implementation.
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The simulation results for Conditions 1-3 are reported in Tables 2—4, one table per
condition. The columns of each table give the sample size used for a particular set of 500
replications from the population. At each sample size, a sample was drawn, and each of the
four test statistics shown in the rows of the table (ML, SB, MV, MS) was computed; this
process was repeated 500 times. Then the resulting T statistics were used to compute (a) the
mean of the 500 T statistics, (b) the standard deviation of the 500 T statistics, (c) the
frequency of rejecting the null hypothesis at the 0.05 level under the correct model, i.e., the
type I error, and (d) the frequency of rejecting the null hypothesis at the 0.05 level under the
incorrect model, i.e, the empirical power. These are the four entries in each cell of each
table.

Condition 1 in Table 2 is the baseline condition in which the factors and errors, and hence
the observed variables, are multivariate normally distributed. Asymptotically, 7,4 and 755
yield a mean test statistic 7 of about 87, and the standard deviations are around 13.19. The
means and standard deviations of 7,,,and 7,,sincrease as the sample size gets larger,
which turns out not to be a constant as we anticipate. All test statistics yields ideal type |
error (within £0.0195 deviation from the 0.05 level) when the sample size reaches 1,000.
Under small and moderate sample sizes, Ty, performs the best, followed by 7, and 75 g,
while Ty,stends to accept the null hypothesis too readily. It is clear that the adjustment on
the Satorra-Bentler scaled test statistic, 7s g(yen), demonstrates improvement to some
extent. The empirical power of all the test statistics reaches 100% when sample size is as
large as 500. At smaller sample sizes, 7sgand 7,4 perform on par in rejecting the
misspecified model, while 7, loses its advantage. Again, 7,saccepts the wrong model
too frequently and yields very low rejection rates.

Condition 2 is designed to be consistent with asymptotic robustness theory. As we can see
from Table 3, the behavior of the four test statistics is very similar to that in Condition 1.
Asymptotically, Ty and T gperform almost exactly as we expected, whose type | error lie
within 0.008 deviation from 0.05. 7,,,/begins to approach 7,4 and 75 gwhen sample size
exceeds 500, while 7,45 requires a sample size of 5,000 to demonstrate an ideal rejection
rate. At smaller sample sizes, T,y still outperforms the other test statistics while 7j,s
accepts the null hypothesis even more frequently than in Condition 1. The empirical power
repeats the pattern we have observed in Condition 1, with 75 gand 7,4, performing the best,
followed by Ty and Tyysstill performing the worst.

Condition 3 simulates a situation when the asymptotic robustness of normal-theory based
test statistics is no longer valid. The empirical robustness of all test statistics except 75 g
completely breaks down in this case: 7, tends to always reject the correct model while
Tymvand Tystend to always accept the null hypothesis. In either case, the empirical power
of the test statistics can not be trusted. 7 g performs the best across all sample sizes, though
the type I error rates are not so close to 0.05 level as those under Condition 1 and 2. The
expected mean, standard deviation and empirical power of 7 g are retained asymptotically,
indicating that 75 gshould be a reliable test statistic under nonnormal distributions. The
advantage of 7, at small sample sizes disappears in this case, and 7j,scontinues giving
unsatisfying results.

In conclusion, 7 g performs the best across three types of conditions. In particular, 7 g
shows superior performance when all the other test statistics break down under Condition 3,
in which case the asymptotic robustness theory is invalid. 7, performs at least as well as
75 gunder Conditions 1 and 2, and gives a slightly better type | error rate at small and
moderate sample sizes. Under Conditions 1 and 2, 7,4y significantly outperforms the other
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test statistics at small and moderate sample sizes, in terms of the frequency of rejecting the
null hypothesis under the correct model. The performance of 7,,simproves as sample size
increases under Condition 1, while it tends to accept the null hypothesis too frequently under
Condition 2 and 3. This indicates that 7,,s may downwardly overcorrect 7, and thus
cannot be trusted in testing when the data is nonnormally distributed.

5. Discussion

The behavior of the recently proposed mean scaled and skew-adjusted statistic was
evaluated through a Monte Carlo study. To provide an appropriate comparison, two
additional classical robust extensions of the standard maximum likelihood goodness-of-fit
chi-square test statistic were utilized. As we can see from equations (8)-(11), the
performance of these scaled and adjusted test statistics will mainly be affected by the
eigenvalues of the product matrix UI'. Yuan and Bentler (2010) evaluated the type | error
and mean-square error of 7,,,and 7 gunder different coefficients of variation in the
eigenvalues of UI', and found that 7, will perform better than 75 g when the disparity of
eigenvalues is large. This might lead to the situations we observed at small and moderate
sample sizes under Condition 1 and 2. Lin and Bentler (2012) pointed out that when the
eigenvalues of UI" are constant, V' = d, and 7y,swill be equivalent to 7j,,. This equivalence
was not observed in the three conditions simulated in this study. It seems likely, as noted by
Lin and Bentler, that the distribution of sample eigenvalues of UI' may depart substantially
from those of the population, especially in smaller samples. While it is clear 7y and 75
have tail behavior consistent with the asymptotic chi-square distribution under Condition 1
and 2, 7yysdoes not provide a better approximation of the chi-square variate and does not
perform ideally. Also, the performance of 7,45 under normality assumptions improves with
an increasing sample size instead of a decreasing size as Lin and Bentler hypothesized.

We also proposed a modification to the Satorra-Bentler scaled statistic for the case of
sample size smaller than degrees of freedom. In each of the conditions studied, this
modification performed better than the standard version of the scaled statistic. However, at
the smallest sample size this modification is still inadequate as model overacceptance
remains a problem. Nonetheless, our overall results imply that in practice it may be
beneficial to always apply the Satorra-Bentler scaled test statistic when we have little
information about the distributions of observed variables. However, when we have sufficient
confidence in the assumptions of normality or asymptotic robustness with a small or
moderate size of observations, Ty, is recommended as an additionto 7,4 and 75z Tys
could be taken into consideration when we want to be more conservative in confirming the
fit of a model, but with limitation to normally distributed data.
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