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ABSTRACT

Motivation: The Gene Ontology (GO) is heavily used in systems biol-

ogy, but the potential for redundancy, confounds with other data

sources and problems with stability over time have been little

explored.

Results: We report that GO annotations are stable over short periods,

with 3% of genes not being most semantically similar to themselves

between monthly GO editions. However, we find that genes can alter

their ‘functional identity’ over time, with 20% of genes not matching to

themselves (by semantic similarity) after 2 years. We further find that

annotation bias in GO, in which some genes are more characterized

than others, has declined in yeast, but generally increased in humans.

Finally, we discovered that many entries in protein interaction data-

bases are owing to the same published reports that are used for GO

annotations, with 66% of assessed GO groups exhibiting this

confound. We provide a case study to illustrate how this information

can be used in analyses of gene sets and networks.
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1 INTRODUCTION

The Gene Ontology (GO) (Ashburner et al., 2000; Camon et al.,
2003) is a key means by which systems biologists operationalize
gene function, making it a heavily relied on tool in innumerable

analyses and data interpretation exercises. Although GO annota-
tions are often used as a gold standard, it has widely appreciated
imperfections. Ironically, it is difficult to assess the properties of

GO itself, as there is no other comprehensive gold standard
against which to hold it. Broadly speaking, assessment of GO
has focused on three distinct attributes: the accuracy of annota-

tions assigned to GO, GO’s structure independent of annotation
and the utility of GO and its annotations for the interpretation of
data.

Although GO was initially conceived as providing explicit def-
initions of gene function concepts (Lewis, 2005), GO can also be
thought as defining each function by the genes that have a

particular GO term assigned to them (in the field of logic, this is

the distinction between ‘intensional’ and ‘extensional’ definitions).

Despite misgivings about the incompleteness of GO annotations

(Thomas et al., 2012), the use of GO ‘sets’ as representing ‘func-

tions’ is now endemic. This is put to use in numerous applications

such as ‘gene group enrichment’ (Subramanian et al., 2005), gene

network analysis and gene function prediction (Gillis andPavlidis,

2011a; Warde-Farley et al., 2010). It is essential to understand the

extent to which such applications are valid.
There have been multiple assessments of GO annotation cor-

rectness, often focusing on subsets of annotations (Andorf et al.,

2007; Devos and Valencia, 2001; Naumoff et al., 2004; Park

et al., 2005; Schnoes et al., 2009; Škunca et al., 2012).

Assessment of GO’s structure independent of annotation has

tended to focus on issues of redundancy within the ontology

structure; that is, using different names for the same concept

or different concepts for the same name (Alterovitz et al.,

2007; Onsongo et al., 2008). To the extent assessment of GO

and its annotations are considered together, it is almost exclu-

sively in the context of gene group enrichment analyses (Gross

et al., 2012; Grossmann et al., 2007; Jantzen et al., 2011; Yang

et al., 2011). In comparison, there has been little attention given

to the changing or redundant role of individual genes within GO,

rather than the changing or redundant role of functions. This

article is an attempt to address this gap.

We describe a series of evaluations that take the approach of

assuming that GO annotations are correct, focusing instead on

whether they can be considered meaningful. We do this by

performing three types of ‘sanity checks’ of GO annotations

that would be expected to hold.

We first explore whether each gene has a consistent functional

identity between versions of GO. We then consider the degree

to which GO assignments are distributed unequally among

genes and how this has changed over time. This annotation bias

is crucial to assigning appropriate priors to the probability a gene

might appear in a functional analysis by chance (Gillis and

Pavlidis, 2011a; Greene and Troyanskaya, 2012). Finally, we

study the degree to which GO can be safely integrated with net-

work data without confounds that would lead to misleading con-

clusions or circular reasoning. To illustrate how our analyses can

be applied, we close with a biologically motivated case study. Our

results provide novel insights leading to a specific set of recom-

mendations for both the developers of GO and its users.*To whom correspondence should be addressed.
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2 METHODS

2.1 Historical analyses

GO files were obtained from the GO FTP site. The GO was processed

from the ‘termdb’ rdf-xml files. The GO annotations (GOA) were from

the monthly GOA files for human genes (from the EBI FTP site), releases

1–103 (releases 26 and 53 were not available, and releases 39 and 41 failed

quality control), covering a 10-year period from November 2001 to

November 2011. For each GOA file, an ‘xref’ file was matched based

on the edition number, and a termdb file was matched based on the

modification date of the GOA file and the date embedded in the

termdb file name (using the file from the first day of the nearest month

prior to that of the GOA file; in a few cases, we had to use termdb files

from the next later date, as the earliest ones do not seem to be available).

The termdb files were used to infer the ancestor terms in the GO hier-

archy (excluding the three GO root terms and any obsolete terms). All

annotations are thus up-propagated using the matching edition of the GO

hierarchy. Yeast (Saccharomyces cerevisiae) genes annotations were

obtained from the GO archives and the Saccharomyces Genome

Database FTP site (discontinuities between data from these two sources

were resolved in Figure 2B by alignment of neighboring time points).

Genes were matched across editions using NCBI gene IDs and gene

symbols. IEA annotations were ignored or irrelevant to all analyses,

except for Figure 2, where they were retained. Semantic similarity was

measured by the Jaccard distance; similar results were obtained using

term overlap (Mistry and Pavlidis, 2008). Annotation bias

(‘multifunctionality’ or ‘prevalence’) was measured as described in

(Gillis and Pavlidis, 2011a). Briefly, the ranking of genes by the

number of GO terms was used as a ‘predictor’ of GO term

membership for all GO terms (with at least 10 genes), evaluated by

receiver operating characteristic curves. The mean area under the ROC

(AUROC) curve provides an overall measure of annotation bias.

2.2 Protein interaction network analysis

Human protein–protein interactions (PPIs) were obtained from the

HIPPIE database (Schaefer et al., 2012), which aggregates multiple

sources and contains 73 324 unique interactions across 8969 proteins

that possess annotations in GO. These interactions come from 24075

publications (as determined by PubMed id) reporting between 1 and

5119 interactions each (mean: 4.4) and with approximately half of the

publications (12 030) reporting only a single interaction. A large propor-

tion of the interactions (57185) are based on a single report. Over the

same set of genes, in the latest edition of GO we assessed (103), GO

reports 77 723 assignments of function totaling 741270 assignments

after propagation to ancestors. We reported results only for those func-

tions with 10–300 genes, to emulate the use within many network analyses

(Pena-Castillo et al., 2008) and reduce the effects of overlaps in large or

small functions. Over this range, GO reports 14.4 functions per gene. The

confound of function annotations with PPIs was determined by compar-

ing the PubMed IDs for interactions linking pairs of genes within the

function to the PubMed ID associated with the assignment of those genes

to the function. We did not consider if multiple lines of evidence may

have otherwise supported linking those genes (or supplying that func-

tion), as which evidence to pick to avoid confound would still be an

unwanted bias. Prediction of gene function using interaction data used

a basic neighbor-voting algorithm in which genes are ranked based on the

fraction of their neighbors’ matching genes labeled as positive in the

training data, described in more detail in Gillis and Pavlidis (2011b).

2.3 Postsynaptic proteome

The postsynaptic proteome gene list was obtained from Collins et al.

(2006). Spectral clustering was performed as described by Ruan and

Zhang (2008). Only the 195 genes with greater than four subnetwork

connections were included in the clustering to remove many isolated

small components. Enrichment analysis was performed using Fisher’s

exact test with control of the false discovery rate (FDR) (Benjamini

and Hochberg, 1995).

3 RESULTS

3.1 Changes in gene functional identity over time

Although GO (and associated annotations) changes over time,

most users assume their results are not sensitive to this. Indeed, it

is rarely noted which version of GO was used in an analysis, and

even rarer to test a result for stability against different versions of

GO. To assess functional identity, we used semantic similarity

(Lord et al., 2003). We define functional identity as the degree to
which a gene is most semantically similar to itself in different

editions of GO (where by ‘GO’ we mean both the structure of

GO and the annotations). If annotations are stable, it will be

most semantically similar with itself, or at least tied for first,

among all genes. If a gene’s annotations have changed dramat-

ically relative to other genes, it is in a sense a functionally differ-

ent gene.
Figure 1 plots the fraction of human genes having a consistent

functional identity (meaning having the highest semantic similar-

ity with itself) between every pair of editions of GOA. The aver-

age fraction of identity maintained in successive editions is 0.971.

A useful way to think of this is that if one uses GO annotations

as a basis for selecting a particular gene as ‘interesting’, one

cannot be more certain of this than 1–0.97 (i.e. a P-value of
0.03). That is, there is a chance that the next month, the gene’s

annotations will have changed so substantially that it is not func-

tionally ‘the same gene’. This estimate is conservative because of

ties in semantic similarity; therefore, the useful level of retained

identity is likely to be lower. Gene-level data on stability can be

used to evaluate results of GO-based analyses, as we illustrate

later in the use case (Section 3.4).
The preservation of functional identity is not uniform over

time; it is both slightly increasing (r¼ 0.20, P50.01) and

marked by sporadic large shifts (identity match falls as low as

0.82), which have been diminishing in magnitude and appear to

reflect changes in the ontology structure (and the resultant

change in propagated assignments), rather than new direct func-

tion assignments (Fig. 1). Of course, as shown in Figure 1, GO

changes even further over longer periods. The median duration
for which it retains a 95% gene identity match is five editions

(�5 months), whereas it takes a median of 25 editions for gene

identity to fall to 80%.

3.2 Changes in functional redundancy over time

Genes vary widely in how many GO annotations they have, and

this property is important to the use of GO. In Gillis and Pavlidis
(2011a), we treated the number of GO annotations as a measure

of gene multifunctionality, but it can also be thought of as the

prevalence of a gene in GO. It is unclear the degree to which

annotation bias reflects biology (‘actual’ multifunctionality)

versus popularity, in which some genes accrue more functions

simply because they are studied more. The interpretation of

differences in prevalence (‘annotation bias’) can be enhanced

by examining historical trends. A decrease in bias would mean
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GO annotations are becoming more evenly distributed among

genes. At the gene level, a gene that dramatically changes its

degree of annotation would have a direct impact on GO-based

analyses that focus on the gene.
As in our previous work, we quantified overall annotation bias

using ROC curves [see Gillis and Pavlidis (2011a) and Section 2].

If all genes have the same number of GO terms, the annotation

bias is 0.5. At the other extreme, if there are only a few GO terms

used and they are all applied to the same set of genes, then the

bias is 1.0. Put another way, if one can perfectly predict which

GO terms genes have based on how many they have, the bias is

1.0. Thus, annotation bias measures the degree to which a state-

ment about a GO group of interest would apply equally well to

another randomly selected GO group, just because it will tend to

have some genes in common. In this sense, annotations can be

said to be redundant. Consistent with Gillis and Pavlidis (2011a),

in the last edition of human gene GO annotations we studied, the

bias was 0.84, many standard deviations away from 0.5. For

yeast, the current bias is less extreme, but still high (�0.7). To

be conservative, we calculated bias using only genes that have at

least one GO annotation; including all genes would increase

these values substantially.

The historical analysis (Fig. 2) reveals a steady increase in bias

over time for human genes until approximately GOA edition 70

where it leveled off (Fig. 2A). Interestingly, for yeast genes,

annotation bias was decreasing until approximately edition 60

where it leveled off (Fig. 2B).
These trends could be due to either accumulation of annota-

tions or changes in the structure of GO. To test this, we held GO

structure constant at the earliest edition studied and assessed the

change in bias as a consequence only of changes in annotation.

The yeast annotation bias retained the same pattern, but the

human annotation bias reversed direction, to more closely resem-

ble the pattern for yeast, decreasing over time (r¼�0.5). This

suggests much of the increase in annotation bias for human genes

is due to the proliferation of terms and/or relations in GO. This

proliferation is not primarily occurring at the ‘leaf’ level, as indi-

cated by the fall in the fraction of leaf terms in the ontology from

50 to 39.5% (from editions 1 to 103, with leaf annotations simi-

larly falling from 5 to 3.2%) and a corresponding increase in the

number of ancestors per term of 8.5–13.0 over this interval. In

addition, the most heavily annotated genes have remained rela-

tively stable over GO editions, with the correlation between

genes ranked by prevalence in different versions of GO shown

in Figure 2C. The consistency of ‘popular genes’ over history is

also reflected in the degree to which numerical NCBI gene IDs

predicts the number of GO terms found for genes at present;

genes that were entered into NCBI first tend to be more heavily

annotated (Fig. 2D). A related observation was recently made

for disease annotations (Cheung et al., 2012).

3.3 Independence of GO and protein interaction data

The tendency of proteins interacting in a network to share GO

categories (‘guilt by association’) serves to validate both the

networks and the GO as encoding ‘real’ function. Underlying

this is an assumption that the two forms of data are independent.

However, because both GO annotations and protein interactions

are derived from the published literature, there is a potential for

logical circularity that has, to our knowledge, never been

explored. We therefore compared the citations attached to

reported interactions and those attached to function assignments

A B

C D

Fig. 2. Annotation bias persists in the GO. (A) Annotation bias has risen

among human genes, indicating genes with many annotations have

become more dominant within GO over time. (B) Annotation bias has

generally fallen for yeast, aligned to remove two discontinuities that we

regarded as artifactual. (C) The relative number of annotations a gene

possesses has remained stable over time, with some change (correlation

shown). (D) Annotation bias (expressed as the number of GO terms for a

gene) is correlated with the rank of the numerical ID of the gene in NCBI,

indicating a historical bias

20 40 60 80 100

20

40

60

80

100

Gene Ontology edition

G
en

e 
O

nt
ol

og
y 

ed
iti

on

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Gene functional identity changes over GO editions. The shading

indicates the fraction of genes that retain a functional identity between

GO editions. Semantic similarity is calculated and genes are matched

between editions; if a gene is most similar to itself between editions, it

is said to retain its identity. Similarity is not symmetric in time

(GeneiGOA may rank GeneiGOB as most similar to it, without the re-

verse being true). Below the diagonal is matching backward in time;

above, forward in time
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in GO, to look for overlapping sources of data that would be

considered potentially confounded. We use the term ‘con-

found’to indicate an overlap in data source that could affect

interpretation if independence was an important assumption.
We used a human PPI dataset from HIPPIE (Schaefer et al.,

2012), which documents 73 324 PPIs from 24 075 published

articles (based on PubMed IDs). The GO annotations for the

genes covered by this set are drawn from 18 195 distinct publi-

cations. We found that 4313 of the PubMed IDs are common

between sources for the PPI and GO datasets, creating a strong

opportunity for overlap at the level of specific genes and their

interactions. One possibility is that ‘functional’ edges (those that

link genes sharing a GO term) are created by a single report.

That is, a single article might be used to assign GO terms and

protein interactions to the same gene. In these confounded cases,

artifactual similarities will easily appear.
We found that, as expected, interacting proteins shared GO

terms at a rate much higher than chance (mean 1.6, P510�87),

indicating substantial ‘guilt by association’. However, 13% of the

time, the GO annotation shared by the two genes was derived

from the same article that reported the protein interaction. At the

GO term level, 66% of GO groups with functional edges possess

confounds of this type (Fig. 3A), and on average, 18% of a given

gene set’s functionally relevant edges will consist of this type of

confound. One concern is the propagation of annotations to

ancestors in the GO graph could cause a misleading overestimate

in overlaps for annotations of higher-level terms. To exclude this

possibility, we permuted the PubMed IDs attached to GO IDs

and repeated the analysis and found all average confound scores

were51%.
We hypothesized that the overlap between data sources for

GO annotations and PPIs would have an impact on the utility

of the PPIs for gene function prediction. We used a simple

machine-learning approach to test the predictability of GO

term annotations using the PPI network as the data source.

The algorithm is blinded to a fraction of GO annotations and

attempts to reconstruct them from the other labels and the rela-

tionships encoded by the interaction data, based on guilt by

association (e.g. genes interacting with genes of a particular func-

tion are predicted to have that function themselves). Again, in

agreement with the guilt by association principle, GO terms are

significantly learnable on average, with a mean AUROC of 0.67.

However, this performance was significantly correlated (r¼ 0.2,

Spearman correlation, P510�24) with the number of ‘confound’

edges the functions contained, indicating logical circularity may

play a major role in the network interpretation of function.

Indeed, a network built from only confounded edges yielded a

mean AUROC of 0.58 (much higher than expected by chance),

suggesting the use of GO to interpret network structure is

affected by a form of circular logic. One possibility we considered

is that those edges most likely to be confounded were also most

likely to be important in determining function. We used our

previously described analysis of network edges in which they

are ranked by their contribution to function prediction (mea-

sured as the impact removing that edge has on aggregate

performance) (Gillis and Pavlidis, 2012). ‘Exceptional edges’

are those that contribute substantially to the learnability of

many gene functions. We found there is a v-shaped relationship

(Fig. 4) between exceptionality and confound such that both

exceptional and unexceptional (but still linking functionally

related genes) are both highly confounded on average.
Finally, we conducted a historical analysis of these potential

sources of confounds (starting with edition 61, where annotation

bias leveled off), shown in Figure 5. We find that both

function-centered and connection-centered measures of con-

found have been relatively stable in GO over this time. As

expected, those annotations labeled as ‘inferred from protein

interaction’ (evidence code IPI) were substantially more likely

to be confounded. Even though IPI annotation may not expli-

citly be transferring functional assignment (instead, e.g., it may

indicate regulatory interactions implying different functional

assignment), at slightly higher levels in the ontology, the assign-

ment will be equivalent to being transferred across the inter-

action. Subsequent use of the interaction data in conjunction

with these higher-level terms would then be confounded.

Removing IPI annotations did not substantially alter the average

overall confound (Fig. 5B and D); therefore, this is not a suffi-

cient solution.

10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Exceptionality (rank)

C
on

fo
un

d

0.2 0.4 0.6 0.8

Fig. 4. Confounded edges are likely to either have very low or very high

impacts on determining function within networks. ‘Confound’ is calcu-

lated as the fraction of shared functional assignments for a protein pair,

which overlap (in either part) with the article reporting the protein inter-

action. Exceptionality was calculated as the effect of a given edge’s re-

moval on network function prediction performance in cross-validation

(Gillis and Pavlidis, 2012). The data are binned (bins of 100 edges per

point, non-overlapping) to emphasize the trend

A B

Fig. 3. Data are reused in protein-interaction networks and GO. (A)

Many GO groups have a large fraction of their network functional con-

nectivity coming from the same publication as the GO annotations (‘con-

founded’). (B): Most network connections can be used to infer some

function due to confounds
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3.4 Use case: the postsynaptic proteome

Thus far, we have considered phenomena at a high level while

arguing that the gene-level details can be exploited to assist in

more typical applications of GO. As an illustration, we describe

an extended sample use case.

One common use of GO is the analysis of network ‘modules’

enriched for particular functions as well as candidate genes, for

example in O’Roak et al. (2012) and Rossin et al. (2011). We take

as our gene list of interest the ‘consensus post-synaptic proteome’

(PSP) characterized in a meta-analysis of proteomics data

(Collins et al., 2006). This set is an interesting target because of

the role of synapses (the points of chemical communication

between neurons) in biological processes such as learning and

memory, and diseases such as autism and schizophrenia. We

note that the PSP gene set was chosen not through an exhaustive

search for gene sets that have ‘problems’, but owing to our

laboratories’ research interests. Our analysis follows a workflow

that one sees commonly in the literature when researchers are

confronted with a new set of genes to interpret (albeit with

numerous methodological variations).

When enrichment analysis is run on this list, 67 diverse func-

tions are significantly enriched (FDR50.01). We then hypothe-

sized that the genes will preferentially show protein interactions

(‘guilt by association’). Indeed, considered as a target for func-

tion prediction, membership in the PSP is predictable from the

full network using a simple machine-learning algorithm on the

protein interaction data discussed in Section 3, with an AUROC

of 0.73 in cross-validation. We then used the same protein inter-

action to construct a PSP subnetwork. As the network was still

fairly large, we attempted to find sub-components, using spectral

partitioning (Ruan and Zhang, 2008). This yielded six subnet-
works (modules) varying in size from 11 to 67 genes. The parti-

tioning had modularity function Q of 0.40, indicating high
community structure (White and Smyth, 2005). Considered

separately, four of the modules had significantly enriched GO
groups (FDR P50.01), suggesting the modules partly reflect

different functions. There were multiple GO groups associated

with each modules, with clear themes: glutamatergic activity and
synaptic transmission (cluster 1), cell junctions and adhesion

(cluster 3), ribosomal components (cluster 4) and endocytosis
(cluster 6) (see Supplementary Table S1).
We now move to considering the impacts of the effects

described in the previous sections. We first tested whether the

enrichment was sensitive to GO edition. We measured this by
determining the number of editions over which a gene’s most

semantic similar match at a previous time point was itself, as
discussed in Section 3.1. All clusters except for cluster 3 had a

self-similarity match of430 GO editions (�2.5 years), whereas
cluster 3 exhibited only moderate consistency (genes mapped to

selves by self-similarity for 21.6 editions). Only cluster 3 (shown
in Fig. 6) contained genes significantly different in the semantic

similarity consistency from other clusters (P50.05, rank sum
test). This suggests cluster 3’s results may not be robust.

Another possibility is that separation of functions by PPI clus-
tering does not indicate an orthogonal property, but simply that

different articles reported both certain interaction and certain
functions, as analysed in Section 3.3. We found that two inter-

acting proteins in cluster 3 were confounded in this way, owing
to annotation from two articles (diamonds in Fig. 6). Removing

those GO terms from the two genes reduces the functional en-
richment for the module to the point that no functions meet the

FDR 0.01 threshold.
Another notable feature of module 3 is the hub-like status of

FYN (encoding the Fyn tyrosine kinase protooncogene). FYN is
not among the genes driving GO term enrichment within this

module, but it clearly possesses an unusually dense connectivity.
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Fig. 5. Potential confounds in functional analysis of protein interactions

over time. ‘Confound’ is defined as in Figure 3A (function centered, black

lines) and 3B (connection centered, gray lines). (A) The number of func-

tions per connection with PubMed ID overlaps between function assign-

ment and interaction report is shown (connection centered) as well as the

number of functional edges within a function that have PubMed ID

overlap (function centered). (B) Confounds computed using only ‘IPI’

(inferred from physical interaction). (C) Confounds calculated using

changing Gene Annotations on a fixed GO (most recent).

(D) Confounds for IPI annotations calculated using a fixed ontology

Fig. 6. Module 3 from the PSP case study. The module is shown with

genes annotated with the enriched functions shown in dark gray. JUP and

CDH2 (diamonds) received annotations from articles reporting both their

functional annotation and their interaction (PubMed IDs 1639850 and

7650039)
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Although FYN has many interactions in the full network, it is

significantly attached to this module in particular (P510�14).

Checking the multifunctionality of FYN (as in Section 3.2), we

find it is in the top 12% of annotated genes, suggesting any

attempt to interpret FYN’s hub-like status, as characteristic of

the module will potentially fall prey to confabulation. That is, if

FYN is heavily studied enough, we will be able to find literature

support for many interesting hypotheses about this module if we

assume FYN characterizes it. However, a top 12% score is not

so high that such analyses are impossible but merely require

some greater degree of care.
We propose that the interpretation of many ‘interesting gene

sets’ will be enhanced by the considerations just described. To

assist others in conducting similar analyses, we have made a

number of resources available as supplementary data at

http://chibi.ubc.ca/assessGO:

(1) A list of GO functions and the PubMed IDs of articles

contributing the most (typically, all) confound edges for

each of those functions. Thus, if a module of candidate

genes is found to be enriched for a particular function, the

articles underlying that overlap can be easily checked

against our list.

(2) A list of genes and the number of GO editions since they

changed functional identity (measured as not having the

highest semantic similarity with itself). Thus, for example,

we can see that the gene most tenuously connected to our

module (Fig. 6), NSF, has changed functional identity

within the last three editions of GO.

(3) A table of the similarity ranking for each gene back

through each edition of GO. For each edition of GO,

the semantic similarity of each gene is calculated for a

given gene. The score the given gene receives is the rank

of similarity it has with itself, relative to other genes. Thus,

most genes take a score of 1 when compared with the

previous edition of GO (they are most similar to them-

selves). These numbers allow us to assess whether results

based on old data are likely to hold true. If, for example, a

gene is prioritized for investigation through some

GO-based analysis at some time in the past, this table

indicates whether the same gene would be obtained

today (or whether results need to be updated).

(4) A list of gene multifunctionality rankings over time. This

may be of use to developers in attempting to reduce the

annotation bias in GO. For example, one of the least

stable human genes is PDE2A, which gained 4200 GO

terms during the past 2-month period measured an

increase of4300%.

We intend to expand these resources to include data for more

organisms and to maintain updated versions as a resource for the

community.

4 DISCUSSION

Our contribution in this report is the identification and analysis

of three types of quantifiable issues with the GO that we argue

are essential to its usefulness. Importantly, these issues are

distinct from the question of the ‘correctness’ of the annotations.
Although the issues we have uncovered certainly do not cripple
GO’s utility, they are severe enough to run a strong risk of

misleading the field if not adequately taken into account. Here,
we discuss some implications of each of our findings.
We presented a way to quantify the stability of GO annota-

tions over time and showed that over moderate time spans many
genes become different in their annotated functionality. The
statement ‘the differentially expressed genes were enriched for
genes with functions in cell growth’ does not necessarily mean

the same thing today as it did 5 years ago because the definition
of ‘cell growth genes’ has changed in GO. Valid experimental
results often become obsolete over time, but the reported facts of

the experiment should not. But that is what happens when the
GO changes. This is of course to be expected, and the problem
can be ameliorated by reporting which version of the gene an-

notations was used. But we can do better, thanks to the formal
structure of GO: it is possible to quantitatively evaluate how
volatile a result is likely to be. That is, users of GO could con-

sider the likely future stability of their results, as well as the
current relevance of past results. We suggest that in the future
the GO consortium might track stability and report the duration

since each gene’s last major shift in its functional identity. Any
review of the literature thereafter could check that the ‘best
before’ date for those results had not passed. A similar conclu-

sion was reached by Gross et al. (2012) in their consideration of
the time dependence of GO enrichment results.
We further found that annotation bias is a long-standing

feature of GO and has no signs of declining. This bias has
broad effects on the interpretation of analyses (Gillis and
Pavlidis, 2011a; Greene and Troyanskaya, 2012). In general,

this fact enjoins researchers to be cautious in the interpretation
and use of GO: the biases in GO annotation are of sufficient
magnitude to swamp almost any true result about gene function.

This problem with GO can be regarded as a particular variant of
‘publication bias’, in which GO makes it even easier than usual
to select genes for study, only because they have already been

heavily studied. However, this does not mean GO is useless
because those biases are sometimes easy to assess. Rather than
simply discarding enrichment or network results using GO, they

should instead be explicitly assessed for their specificity. Results
where divergent lines of evidence (one involving GO) both point
to a highly studied gene are much less interesting than ones

where divergent lines of evidence point to genes with more cir-
cumscribed-documented function. Our results further suggest
that the increase of this bias for human genes (between 2001

and 2009) seems to be owing to the proliferation of GO terms
and relations (as opposed to biased annotation). Thus, it appears
to be more of an effect of data organization and representation

than biological reality or new discoveries about gene function.
We suggest the GO developers consider the impact on interpret-
ability of additions to GO.

Our third set of findings concerned the confound between GO
and other data. We consider ensuring independence of GO from
the datasets to which it is being applied as an absolute minimum

standard, and our results show that at least some protein inter-
action data do not meet this standard. Because this does not
affect all proteins and functions, we suggest that particular

results be checked for confounds as in our case study. For
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example, a gene that was prioritized on the basis of its having a

particular subset of functions should be carefully checked against

any other sources of data used.
We also observed an interesting v-shaped relationship between

the tendency for genes to have GO annotations from the same

citation as PPIs and ‘exceptionality’ of edges associated with the

gene (Fig. 4). Because low exceptionality is associated with a high

number of GO annotations (Gillis and Pavlidis, 2012), our ten-

tative interpretation is that highly annotated genes will tend to

accumulate at least one confounded annotation (low exception-

ality and high confound). We further speculate that less-studied

genes are more likely to possess functions, which are themselves

little studied (and thus knowledge of that gene is critical), and yet

because these functions and genes are little studied, they too are

likely to draw on overlapping citations (high exceptionality, high

confound). The happy medium occurs when divergent lines of

evidence point specifically to both interactions and functions.
In our experience, among systems biologists there seems to be

a broadly appreciated disjunction between the true utility of GO

and how often it is used, even if this is rarely acknowledged in the

peer-reviewed literature. The use of GO annotations is often

regarded as a minimally interesting validation of results, but

not safe to use for discovery purposes. We believe the problems

we have identified are among the underlying sources of these

mixed feelings about GO. If it is too easy to obtain interesting

results using GO, and those results do not consistently hold up,

then GO’s use for such purposes is limited. We hope that our

concrete suggestions to recognize and possibly correct these

issues will help in the development of best practices and help

ensure that GO remains useful and relevant to systems biologists.
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