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The Yin and Yang of Cystic Fibrosis Transmembrane
Conductance Regulator Function
Implications for Chronic Lung Disease

The cystic fibrosis (CF) transmembrane conductance regulator
(CFTR) is a cAMP-activated anion channel, primarily expressed
in ciliated epithelial cells that have an endoluminal lining of
mucus. Genetic mutations in CFTR are known to induce its pe-
ripheral and/or endoplasmic reticulum–associated degradation
affecting its cell surface expression and/or stability, resulting in
the pathological manifestations of CF lung disease, including
hypohydration and increased viscosity of mucus, predisposing
affected individuals to recurrent infections. Recent studies have
identified low levels of CFTR expression in inflammatory cells
such as T cells, neutrophils, and macrophages (1–3), suggesting
an additional role for CFTR in the pathogenesis of chronic inflam-
matory CF lung disease. CFTR has also been suggested to mediate
internalization and phagocytosis (4, 5) of Pseudomonas aeruginosa
(Pa), a common CF pathogen. A recent study suggests that a bac-
terial toxin, Cif (PA2934) secreted in outer membrane vesicles by

Pa, reduces CFTR-mediated chloride secretion by human airway
epithelial cells (6). In this issue of the Journal, Le Gars and col-
leagues (pp. 170–179) describe a novel mechanism for proteolytic
cleavage of CFTR that disables the channel function (7).

Several recent studies demonstrate that membrane-CFTR
expression/activity ismodulated by cigarette smoke (CS) exposure
(3, 8–10). The CFTR-dependent nasal potential difference is also
suppressed in cigarette smokers (9, 11). These studies provide
experimental evidence supporting the concept of acquired CFTR
dysfunction induced by CS and its role in pathogenesis of chronic
obstructive pulmonary disease (COPD). The CS-induced CFTR dys-
function has been suggested to modulate lipid-raft platforms initia-
ting inflammatory-apoptotic responses and aberrant autophagy (3,
12). The mechanisms by which CS modulates membrane-CFTR
levels and activity may include the induction of unfolded protein
response, as theCftr gene is a target of the unfolded protein response
protein ATF6 (13, 14). In addition, CS may induce accumulation ofAuthor Contributions: N.V. and G.P.D. jointly wrote the manuscript.
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CFTR as an immature B-form in the endoplasmic reticulum (3) by
inducing its misfolding. Oxidants and CS may also interfere directly
with CFTR protein function by altering key cysteine residues in
CFTR to affect its potentiation or open channel probability (15).

The current study by LeGars and colleagues describes an impor-
tant and novel observation that neutrophil elastase promotes CFTR
degradation (7), raising the intriguing possibility that this mecha-
nism contributes to the pathogenesis of chronic obstructive lung
disease. Recent studies demonstrating CS-induced acquired CFTR
dysfunction in COPD support this notion. Additionally, the authors
suggest that Pa infection may similarly impact CFTR ion channel
activity in both CF and COPD. Conversely, membrane-CFTRmay
regulate bacterial pathogenesis and inflammatory-apoptotic signal-
ing (3, 8, 12). It is not clear if the decrease in membrane-CFTR
(genetic or acquired) activity is sufficient to trigger chronic lung
disease or whether it requires an additional stimulus such as sub-
sequent Pa infection (CF/COPD) and/or CS exposure (COPD).

The current study uses a carcinoma cell line and an acute in-
fection animal model to clearly demonstrate the role of neutro-
phil elastase and calpains in CFTR dysfunction, suggesting an
additional mechanism whereby neutrophil elastase contributes
to the pathogenesis of CF lung disease. The chief function of neu-
trophils in host defense is to restrain and destroy invading micro-
bial pathogens (16). Neutrophils accomplish this task by binding
and internalizing the pathogens via a complex process termed
phagocytosis, eventually killing the organisms through the com-
bined actions of potent antimicrobial compounds including re-
active oxygen and nitrogen species, antimicrobial peptides, and
proteinases such as elastase that are delivered to the nascent
phagosome (17). Although these antimicrobial functions are usu-
ally performed without injury to host tissues, in pathological cir-
cumstances such as during progressive bacterial infection, these
potent antimicrobial compounds can be released extracellularly
where they can induce a spectrum of responses in host cells
ranging from activation to injury and death. Unregulated re-
lease of these neutrophil-derived cytotoxic compounds, partic-
ularly elastase, is believed to contribute to inflammatory injury
to the gastrointestinal tract (18) and lungs (19, 20).

As indicated by their name, proteinases were originally iden-
tified as protein-degrading enzymes that can degrade a diverse
range of substrates including various components of the extracel-
lular matrix such as collagen (collagenases) and elastin (elas-
tases) (21). In contrast to the widely held view that proteinases
function primarily as simple degradative enzymes, it is now appreci-
ated that proteinases control diverse physiological processes includ-
ing immune responses, cell proliferation and death, wound repair,
digestive processes, and recycling of critical proteins and organelles
(22, 23). With respect to inflammatory processes, proteinases such as
elastase and matrix metalloproteinases are able to activate cytokines,
growth factors, and cell surface receptors by limited proteolytic
processing (24). In contrast to signal transduction pathways initi-
ated by traditional receptor–ligand interactions, proteinase-
mediated signals are transmitted through the cleavage of protein
substrates resulting in their activation, inactivation, or alteration
of function (22). One example of such proteinase-mediated
signaling relevant to inflammatory lung diseases involves proteinase-
activated receptors (PARs) such as PAR-1, which can be activated
by limited proteolytic cleavage by elastase, resulting in apoptosis of
lung epithelial cells (25). Notably, elastase-mediated apoptosis of
lung epithelial cells has been implicated in the pathogenesis of the
acute respiratory distress syndrome (26, 27) and COPD (28).

In addition to PARs, neutrophil elastase has been shown to
degrade numerous receptors involved in control of innate and adap-
tive immune responses such as CD2, CD4, and CD8 on T lympho-
cytes (29), and phagocytic receptors such as CD16 (30) expressed by
neutrophils and macrophages. Neutrophil elastase is able to degrade

receptors that are involved in recognition and clearance of apoptotic
cells, which has significant implications for the resolution of neutro-
philic inflammation in diseases such as CF (31). Neutrophil elastase
also can directly cleave and activate the epithelial sodium channel,
thus altering fluid and electrolyte transport across the pulmonary
epithelium, a process that results in mucous dehydration and con-
tributes to the pathogenesis of CF lung disease (32, 33).

In the current study, Le Gars and colleagues describe a novel
mechanismbywhich neutrophil elastase induces proteolytic cleavage
of CFTR (7). The authors demonstrate that the CFTR protein is
degraded in a neutrophil elastase–dependent manner. Unexpect-
edly, as opposed to direct degradation of CFTR by neutrophil elas-
tase, the authors describe a mechanism whereby neutrophil elastase
activates intracellular calpains that, in turn, are directly responsible
for the proteolytic degradation of CFTR. Notably, this proteolytic
degradation of CFTR abrogates the chloride transport function
of the CFTR protein, which has crucial pathophysiological
consequences for inflammatory lung diseases such as CF and COPD
as described above. Importantly, the authors demonstrate the im-
portance of this pathway in an animal model of bacterial lung in-
fection, underscoring the relevance of this pathway to more
complex model systems. These observations have important impli-
cations for the pathogenesis of CF as well as COPD. Hence, as
discussed above, further studies are warranted to determine if a de-
crease in functional membrane-CFTR (via genetic mutation or CS
exposure) and/or Pa infection (via neutrophil elastase and cal-
pains) is a critical step(s) in the initiation of chronic inflammatory
responses in the lung contributing to the pathogenesis of obstruc-
tive lung disease.
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The Elusive “Gold” Standard for Detecting
Mycobacterium tuberculosis Infection

When introduced in 2001, IFN-g release assays (IGRAs) were
seen as a potential breakthrough in tuberculosis (TB) control
because they could be completed with one patient visit and
because they might avoid the subjectivity and variability

associated with placing and reading the tuberculin skin test
(TST) (1). Variability of the TST has been well described
in both qualitative and quantitative terms during its long

history of use (2). However, increased test–retest reliability of

IGRAs compared with TST has been difficult to demonstrate.

Lack of a gold standard for diagnosing Mycobacterium tubercu-

losis infection, the potential for TST to boost subsequent TST

and IGRA results, the complexity of IGRAs, and the shortcom-

ings of statistical methods limit assessment and comparisons be-

tween the tests. IGRA variability has been assessed in relatively

few studies, and in most cases using different “yardsticks.”
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