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Abstract
Alcohol dependence (AD) is a common neuropsychiatric disorder with high heritability. A number
of studies have analyzed the association between the Taq1A polymorphism (located in the gene
cluster ANKK1/DRD2) and AD. In the present study, we conducted a large-scale meta-analysis to
confirm the association between the Taq1A polymorphism and the risk for AD in over 18,000
subjects included in 61 case-control studies that were published up to August 2012. Our meta-
analysis demonstrated both allelic and genotypic association between the Taq1A polymorphism
and AD susceptibility [allelic: P(Z)=1.1×10−5, OR=1.19; genotypic: P(Z)=3.2×10−5, OR=1.24].
The association remained significant after adjustment for publication bias using the trim and fill
method. Sensitivity analysis showed that the effect size of the Taq1A polymorphism on AD risk
was moderate and not influenced by any individual study. The pooled odds ratio from published
studies decreased with the year of publication but stabilized after the year 2001. Subgroup analysis
indicated that publication bias could be influenced by racial ancestry. In summary, this large-scale
meta-analysis confirmed the association between the Taq1A polymorphism and AD. Future
studies are required to investigate the functional significance of the ANKK1/DRD2 Taq1A
polymorphism in AD.
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Introduction
Dopamine plays a key role in alcohol dependence (AD) pathophysiology due to its
involvement in reward behavior (Wise and Rompre 1989). Dysfunction of dopaminergic
neurotransmission in the brain likely contributes to the pathophysiology of other
neuropsychiatric disorders as well (Hummel and Unterwald 2002; Kienast and Heinz 2006).
Family, twin, and adoption studies suggest that more than 50% of the population variance in
AD is due to genetic factors (Prescott and Kendler 1999). Variation in genes encoding
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proteins involved in dopaminergic neurotransmission has been found to contribute to the
risk for developing alcohol dependence, most likely through altered reward processing and
sensitivity to alcohol exposure (Bontempi et al. 2007; Fiorentini et al. 2002). The dopamine
receptor D2, encoded by the gene DRD2, is a presynaptic as well as postsynaptic G protein-
coupled receptor located on dopaminergic neurons. Both in vivo and in vitro experiments
have demonstrated that DRD2 is a susceptibility gene for AD (Kienast and Heinz 2006;
Wise and Rompre 1989).

The Taq1A polymorphism [also known as rs1800497 (C/T)] is located in the gene cluster
ANKK1/DRD2 on chromosome 11q23.2. The minor A1 allele of the Taq1A polymorphism
(or the T allele of rs1800497) was found to be associated with a reduced number of
dopamine binding sites in the brain (Pohjalainen et al. 1998). Altered D2 receptor expression
due to the Taq1A polymorphism may confer vulnerability to substance (alcohol or drug)
dependence and certain neuropsychiatric disorders. A number of studies have analyzed the
association between this polymorphism and AD. Blum et al. (1990) investigated the
association between the Taq1A polymorphism and AD in a sample of 35 alcoholics and 35
non-alcoholics and found an over eight-fold increased risk of AD in subjects carrying the A1
allele (or the T allele) of the Taq1A polymorphism. This finding was supported by several
follow-up studies (Amadeo et al. 1993; Berggren et al. 2006; Comings et al. 1991; Hietala et
al. 1997; Ovchinnikov et al. 1999; Parsian et al. 1991). Nevertheless, conflicting results have
also been reported (Anghelescu et al. 2001; Bolos et al. 1990; Cook et al. 1992; Gelernter et
al. 1991; Goldman et al. 1992; Sander et al. 1999). The above studies were mainly
conducted in European (and European American) populations. Additionally, the association
of the Taq1A polymorphism and AD was examined in Asian and other non-European
populations; however, the results were negative (Arinami et al. 1993; Chen et al. 1996; Lee
et al. 1997; Lu et al. 1996; Matsushita et al. 2001; Shaikh et al. 2001). As of 2006, over 40
studies had examined the potential role of the Taq1A polymorphism in AD, yielding
inconsistent results.

Subsequently, three relatively large meta-analyses examined the association between the
Taq1A polymorphism and AD by combing data from studies published between 1990 and
2006. Munafo et al. (2007) analyzed the data from 40 published studies including 4,962
alcoholic and 5,253 comparison controls, and found that the A1 allele of the Taq1A
polymorphism conferred a moderate risk for AD in both European (OR=1.19) and East
Asian (OR=1.17) populations. Smith et al. (2008) included over 9,000 participants from 44
published studies, and found that subjects with the presence of the A1 allele of the Taq1A
polymorphism (i.e., carrying genotype A1A1 or A1A2) had a significantly higher risk of AD
than those with absence of the A1 allele (i.e., carrying genotype A2A2). Le Foll et al. (2009)
re-analyzed the data from 5,395 patients and 4,304 controls recruited for 40 published
studies and observed similar results. The three meta-analyses provided further evidence of a
moderate effect of the Taq1A polymorphism on the risk for AD. They also demonstrated a
significant between-study heterogeneity and publication bias, which could possibly be
explained by different ethnic backgrounds or lacking of ethnic-matched controls.

Since 2006, 16 new studies evaluating the association of the Taq1A polymorphism with AD
have been published. These studies included 7,756 new subjects (3,807 cases and 3,949
controls). However, no further meta-analyses have been conducted to investigate whether
the association between the Taq1A polymorphism and AD remains significant. In the
present study, we performed a large-scale meta-analysis to validate the association between
the Taq1A polymorphism and AD by including data from studies that were published from
1990 until now (August 2012).
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Methods
Literature search and inclusion of eligible studies

Studies that investigated the association of the TaqA1 polymorphism with AD were selected
from the electronic database PubMed/MEDLINE (the US National Library of Medicine) and
included in the present meta-analysis. They were published from 1990 to August, 2012. The
search strategy was based on the following terms: “dopamine receptor D2”, “DRD2”,
“alcohol”, “alcoholics”, “alcohol dependence”, “association”, and “associated”. Abstracts of
studies retrieved from the primary search were then browsed to see whether these studies
analyzed the association between the Taq1A polymorphism and AD.

Once the published studies were selected, all reference papers (including reviewed papers)
that were cited in these studies were further examined to identify additional articles that
were not indexed by the PubMed/MEDLINE database. Duplications were discarded. Studies
were considered to be eligible for the present meta-analysis if the following information was
available: (1) a valid diagnostic tool (e.g., DSM-III-R, DSM-IV, and ICD-10) for AD; (2)
genotyping methods [e.g., the restriction fragment length polymorphism (RFLP) technique
or the TaqMan Method] were described; (3) genotyping data of the Taq1A polymorphism
were provided to calculate odds ratios (ORs) and 95% confidential intervals (95% CIs); and
(4) consent forms from study subjects and ethics approvals from local committees were
obtained. If two studies contained overlapping samples, the study with a larger sample size
was kept for this meta-analysis.

Data extraction
For each eligible study, the following data were extracted using standard forms: (1) authors
and publication year; (2) ancestry or race information; (3) diagnostic criteria for alcoholics
and comparison controls; (4) number of patients and comparison controls; (5) genotyping
data of the Taq1A polymorphism in case and control groups; (6) mean age and sex ratio in
case and control groups; and (7) statement of hardy-Weinberg equilibrium (HWE) test. In
our meta-analysis, ancestry or race was coded as European, Asian or Others (American
Indians, mixed population, or not stated).

Statistical analysis
Allelic and genotypic data from eligible studies were summarized in two by two tables for
meta-analyses. Odds ratios (ORs) and 95% confidential intervals (95% CIs) were calculated
for individual studies using Pearson’s Chi-squared test. Since previous studies found a
significant effect of the A1 allele of the Taq1A polymorphism on risk for AD, we carried out
both allelic [the A1 allele (or the T allele) vs. the A2 allele (or the C allele)] and genotypic
(dominant model: A1A1+A1A2 vs.A2A2) meta-analysis using data from all eligible studies.

We also performed subgroup analyses stratified by ancestry (i.e., European or Asian) or
diagnostic criteria (i.e., DSM-III-R, DSM-IV, or ICD-10). Heterogeneity between studies
was estimated using two methods (Kienast and Heinz 2006): the Cochran’s Q test and the I-
square (I2) test. Cochran’s Q test was calculated as the weighted sum of squared differences
between individual study effects and the pooled effect across studies, weighting the
contribution of each study by its inverse variance; the Q statistics followed a chi-square
distribution with n-1 degrees of freedom, where n was the number of studies. The I2 statistic
[I2 = 100% × (Q−df)/Q] described the percentage of variation across studies due to
heterogeneity rather than chance. It indicated an evidence of heterogeneity between studies
if I2 ≥40%.
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When between-study heterogeneity existed, the random effect model (or the DerSimonian
and Laird method) was applied (DerSimonian and Laird 1986); otherwise, the fixed model
(the Mantel-Haenszel method) was applied (DerSimonian and Laird 1986). The significance
of the pooled ORs was examined by the Z-test. In order to check whether the result was
excessively influenced by any individual study, sensitivity analyses were conducted by
repeating the meta-analysis with one study being omitted at a time. To assess publication
bias, the graphic method (or the funnel plot) (Egger et al. 1997; Galbraith 1988) was used. If
there was evidence of publication bias, the trim and fill method (Duval and Tweedie 2000)
was applied to adjust the meta-analysis results by imputing data from presumed missing
studies.

Results
Description of eligible studies

A total of 504 articles were retrieved. Sixty-seven studies met the inclusion criteria for this
meta-analysis. Three studies (Cruz et al. 1995; Karaoguz et al. 2004; Yang et al. 2007) were
excluded because genotyping data were not available. Three other studies (Comings 1998;
Konishi et al. 2004a; Noble et al. 1991) were also excluded because of sample overlapping
with previous studies. After filtration, 61 studies (refer to Supplementary Table S1) were
considered eligible for the present meta-analysis. Among these 61 studies, 36 analyzed the
association between the TaqA1 polymorphism and AD in the European population (Amadeo
et al. 1993; Amadeo et al. 2000; Anghelescu et al. 2001; Bau et al. 2000; Berggren et al.
2006; Bolos et al. 1990; Comings et al. 1991; Comings et al. 1994; Cook et al. 1992; Finckh
et al. 1996; Foley et al. 2004; Freire et al. 2006; Geijer et al. 1994; Gelernter and Kranzler
1999; Gelernter et al. 1991; Goldman et al. 1992; Gorwood et al. 2000a; Gorwood et al.
2000b; Heinz et al. 1996; Hietala et al. 1997; Kasiakogia-Worlley et al. 2011; Konishi et al.
2004b; Kovanen et al. 2010; Kraschewski et al. 2009; Landgren et al. 2011; Lawford et al.
1997; Limosin et al. 2002; Ovchinnikov et al. 1999; Parsian et al. 1991; Pastorelli et al.
2001; Ponce et al. 2008; Samochowiec et al. 2008; Samochowiec et al. 2000; Sander et al.
1995; Sander et al. 1999; Schellekens et al. 2012); 18 analyzed the association between the
TaqA1 polymorphism and AD in the Asian population (Arinami et al. 1993; Bhaskar et al.
2010; Chen et al. 1996; Chen et al. 1997; Huang et al. 2007; Ishiguro et al. 1998; Joe et al.
2008; Kono et al. 1997; Lee et al. 1997; Lu et al. 1996; Lu et al. 2010; Lu et al. 2001;
Matsushita et al. 2001; Namkoong et al. 2008; Prasad et al. 2010; Shaikh et al. 2001; Wang
et al. 2007; Wu et al. 2008); and seven analyzed the association between the TaqA1
polymorphism and AD in American Indians (Goldman et al. 1993; Goldman et al. 1997), a
mix population (Blum et al. 1991; Blum et al. 1990; Sakai et al. 2007), or other populations
that were not stated (Neiswanger et al. 1995; Noble et al. 1994).

A total of 9,590 alcoholic cases and 9,140 comparison controls recruited from the above 61
case-control studies were included in the present meta-analysis. The frequency of the minor
A1 allele of the Taq1A polymorphism varied substantially in different populations. In
European control subjects, the frequency of the A1 allele was about 19% (6% – 44%), which
was significantly lower than that in the Asian control subjects (about 38%, 22% – 47%; P
<0.001, data not show). Moreover, both European and Asian alcoholic subjects showed a
higher frequency of the A1 allele (European, 22%, 12–45%; Asian, 42%, 27–51%) when
compared with their respective ethnic control subjects. Additionally, in two American Indian
studies, the A1 allele was the major allele of the Taq1A polymorphism (cases, 58–66%;
controls, 61–67%).
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Meta-analysis results
The allelic and genotypic meta-analysis results are summarized in Table 1. Among the 61
studies included in this meta-analysis, five studies only had allelic data (A1 vs. A2) and five
studies only had genotypic data (A11+A12 vs. A12). Other 51 studies had both allelic and
genotypic data. Thus, 56 studies were included in allelic meta-analysis. The OR of
individual studies and the pooled OR are shown in a forest plot (Figure 1). There was strong
evidence of heterogeneity between studies [P(Q) < 0.0001, I2 = 46.6%]. The random effects
model was therefore applied in the data analysis. The A1 allele showed a significant
association with AD [Z = 4.41, P(Z) = 1.1 × 10−5, OR = 1.19] (Table 1). Similarly, 56
studies were included in genotypic meta-analysis. The OR of individual studies and the
pooled OR are shown in a forest plot (Figure 2). There was also strong evidence of
heterogeneity between studies [P(Q) < 0.0001, I2 = 45.9%]. Under the random effects
model, subjects carrying the A1 allele (or with genotype A1A1 or A1A2) showed a higher
risk for AD compared to subjects without the allele A1 (i.e., with genotype A2A2) [Z =
4.16, P(Z) = 3.2 × 10−5, OR = 1.24] (Table 1).

Subgroup analyses stratified by race and diagnostic criteria
When the meta-analysis was limited to subgroups according to ethnic (ancestral)
background (i.e., European or Asian), only the Asian population studies did not show
between-study heterogeneity [Allelic: P(Q) = 0.813, I2 = 0.0%; Genotypic: P(Q) = 0.186, I2

= 23.6%]. Allelic meta-analysis indicated that the association between the Taq1A
polymorphism and AD was positive in both European and Asian subgroups [European: Z =
2.93, P(Z) = 0.003, OR = 1.16; Asian: Z = 3.32, P(Z) = 9.0×10−4, OR = 1.17). Similar
results were obtained from genotypic meta-analysis in the European subgroup but not in the
Asian subgroup [European: Z = 3.42, P(Z) = 6×10−4; Asian: Z = 1.73, P(Z) = 0.083] (Table
1). When the meta-analysis was categorized in terms of clearly stated diagnostic criteria
(diagnosis 1) or the standard DSM-III-R, DSM-IV, or ICD-10 criteria (diagnosis 2),
between-study heterogeneity still existed in European studies [Allelic (diagnosis 1): P(Q) =
0.003 and I2 = 46.4%; Allelic (diagnosis 2): P(Q) = 0.003 and I2 = 47.8%; Genotypic
(diagnosis 1): P(Q) = 0.009 and I2 = 41.4%; Genotypic (diagnosis 2): P(Q) = 0.011 and I2 =
42.3%] but not in Asian studies [P(Q) > 0.05 for both allelic and genotypic studies with
either diagnosis 1 or diagnosis 2] (Table 1). Nevertheless, both allelic and genotypic meta-
analysis results remained significant when studies were stratified by either diagnosis 1 or
diagnosis 2 [P(Z) < 0.01], except genotypic analysis in Asian studies [diagnosis 1: Z = 1.83,
P(Z) = 0.067; diagnosis 2: Z = 1.93, P(Z) = 0.538] (Table 1).

Sensitivity and accumulative analysis
To examine whether the association between the TaqA1 polymorphism and AD was
influenced by individual studies, both allelic and genotypic meta-analyses were repeated
under the random effects model after omitting one individual study at a time. Sensitivity
analysis showed that our meta-analysis was stable and the results remained unchanged
(Supplementary Figure S1).

To test whether the pooled effect of the Taq1A polymorphism on the risk for AD varied by
the publication year, pooled ORs and 95% CIs from all studies were calculated along with
the year of publication. As shown in Figure 3, the pooled OR was high in early studies
published in 1990 and was then decreased substantially in later years. The OR became stable
after the year 1997. A similar cumulative curve was observed in genotypic meta-analyses.
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Identification of publication bias
Both graphic and statistical methods were applied to analyze the publication bias that
potentially existed in the global as well as the subgroup analyses (Supplementary Figure
S2). In the funnel plot, the effect size (OR) of each study was plotted against standard errors
of the effect size (OR). If publication bias exists, we would expect the funnel plot to be
asymmetrical. The Egger test (Egger et al. 1997) was also used to quantitatively estimate the
symmetry of the funnel plot by linear regression analysis. As shown in Table 1, publication
bias existed in both allelic and genotypic meta-analyses when all studies were included
[allelic: P(B) = 0.010; genotypic: P(B) = 0.014]. However, when the analysis was conducted
in studies grouped by racial ancestry, the publication bias disappeared in both European
[allelic: P(B) = 0.183; genotypic: P(B) = 0.316] and Asian [allelic: P(B) = 0.794; genotypic:
P(B) = 0.191] studies. Furthermore, diagnostic criteria were not found to cause significant
publication bias in either European or Asian studies [P(B) > 0.05, for both allelic and
genotypic analyses].

Since publication bias was shown in studies selected for this meta-analysis, the Trim and Fill
method was applied to adjust for the meta-analysis results by adding missing negative
results. In allelic meta-analysis, the association between the Taq1A polymorphism and AD
was still positive in all studies and studies with the two diagnostic criteria [All studies: Z =
2.78, P(Z) = 0.005, OR = 1.13; diagnostic 1: Z = 4.06, P(Z) = 5.0 × 10−5, OR = 1.20;
diagnostic 2: Z=3.69, P(Z) = 2.0 ×10−4, OR=1.19]. In genotypic meta-analysis, the
association between the Taq1A polymorphism and AD also remained significant [All
studies: Z = 2.83, P(Z) = 0.005, OR = 1.18; diagnostic 1: Z = 2.66, P(Z) =0.008, OR=1.18;
diagnostic 2: Z=2.67, P(Z) =0.007, OR=1.19].

Discussion
Since Blum et al. (1990) initially reported a large effect of the A1 allele of the Taq1A
polymorphism on risk for AD, a number of follow-up studies successfully validated this
finding, although negative results were also obtained in some studies. Moreover, three meta-
analyses of studies confirmed the association and demonstrated a moderate effect of the
Taq1A polymorphism on AD (Le Foll et al. 2009; Munafo et al. 2007; Smith et al. 2008).
However, the conclusion was far from certain because of inconsistent findings and the
limited sample size of previous studies. We performed the largest meta-analysis so far
concerning the association between the Taq1A polymorphism and AD. Sixty-one eligible
studies published up to 2012 were considered, gathering a total of 18,730 subjects including
9,590 cases and 9,140 comparison controls. Our results provide strong evidence of the
association between the Taq1A polymorphism and AD, especially in the European
population. The association between the Taq1A polymorphism and AD remains significant
after adjustment for publication bias using the trim and fill method. Sensitivity analysis
shows that the results from both allelic and genotypic meta-analyses are stable and not
influenced by any individual study. As the year of publication progressed, and more eligible
studies were included, pooled ORs decreased remarkably compared to the first positive
report in 1990 and become constant after the year 2001 (Figure 3). The trend curve showed
that the Taq1A polymorphism has a moderate impact on AD in the population, across all
studies.

Both our allelic and genotypic meta-analyses confirmed previous findings concerning the
significant association between the Taq1A polymorphism and AD, except the genotypic
meta-analysis in Asian studies (refer to Table 1). The reason for the negative finding
obtained in the genotypic subgroup meta-analysis in subjects with Asian ancestry is
unknown, but here we present some possible explanations. First, allelic and genotypic
analyses are two different but related methods used in genetic association studies. Allelic
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association studies are based on comparing allele frequencies while genotypic association
studies are based on comparing genotype distributions between cases and controls.
Moreover, genotypic analysis can examine the effect of polymorphisms on diseases under
different genetic models (e.g., dominant, recessive, or co-dominant). Second, the frequency
of the minor A1 allele of the Taq1A polymorphism varies substantially in different
populations and a higher frequency (over 40%) of the A1 allele was shown in the Asian
population, suggesting that the association between the Taq1A polymorphism and AD could
be race-specific. Third, the observed association between the Taq1A polymorphism and AD
may result from functional variants that are in tight linkage disequilibrium (LD) with the
TaqA1 polymorphism, which was originally considered to be the cause for the DRD2
restriction fragment length polymorphism (RFLP) (Blum et al. 1990; Bolos et al. 1990).

The exact location of the TaqA1 polymorphism was not specified until the ankyrin repeat
and kinase domain containing-1 gene (ANKK1) was identified (Neville et al. 2004). Now it
is known that the Taq1A polymorphism causes a missense mutation (Glu713Lys) in the
conserved 11th ankyrin repeat site. According to the ANKK1 and DRD2 gene cluster LD
information from the HapMap database, the Taq1A polymorphism is actually located in a
LD block that extends to the DRD2 gene region especially in the European population.
However, it was not found to be in close LD with other AD-associated variants in ANKK1
(Dick et al. 2007). Since the Taq1A polymorphism does not affect the DRD2 protein
sequence, Le Foll et al. (2009) proposed that the Taq1A polymorphism might simply be a
marker linked to a functional polymorphism for AD. Nevertheless, positron emission
tomography (PET) and high performance liquid chromatography (HPLC) studies showed
that the Taq1A polymorphism could affect DRD2 availability (Hirvonen et al. 2004) and the
dopamine metabolite homovanillic acid level (Ponce et al. 2004), suggesting a functional
role the Taq1A polymorphism in regulating DRD2 expression either directly or indirectly.
Moreover, functional variants in ANKK1 were found to influence expression levels of
nuclear factor-kappaB (NF-kB) (Huang et al. 2009), which can regulate the transcription of
DRD2 (Bontempi et al. 2007; Fiorentini et al. 2002). Additionally, the Taq1A
polymorphism was predicted to influence the aggregation of the ANKK1 protein (Ghosh et
al. 2012). Thus, the positive association between the Taq1A polymorphism and AD is likely
due to three possible reasons: (1) the Taq1A polymorphism is in tight LD with causative
variants for AD, as suggested by Le Foll et al. (2009); (2) the Taq1A polymorphism, which
is located in the downstream region of DRD2 (Yang et al. 2007), is potentially being
harbored in the regulatory region of DRD2 ; and (3) the Taq1A polymorphism, which is a
nonsynonymous variant in exon 8 of ANKK1 (Neville et al. 2004), may influence the
activity of ANKK1 which subsequently affects DRD2 expression. Additionally, besides
ANKK1 and DRD2, other genes grouped in the same chromosomal region harboring the
Taq1A polymorphism (such as TTC12 and NCAM1) might be involved in AD (Dick et al.
2007; Gelernter et al. 2006).

Publication bias in meta-analyses may be partially influenced by population admixture. In
the present meta-analysis, seven of sixty-one studies analyzed populations that were
classified as “Others” (American Indians, mixed population, or not stated). When the meta-
analysis was performed using all studies including different ethnic groups, publication bias
was shown to exist; however, publication bias disappeared when studies were limited to
European or Asian subgroup studies. Additionally, we did not observe a significant effect of
diagnostic criteria on publication bias.

To estimate the type II error, a retrospective statistical power analysis was calculated. For
allelic analysis, given the effect size of 1.19 and the type I error of 0.05, the minimal sample
size would be 3,201 subjects for the European population and 2,162 subjects for the Asian
population to achieve an expected statistical power of 80%. For genotypic analysis, given
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the effect size of 1.24 and the type I error of 0.05, the minimal sample size would be about
1,500 subjects for both European and Asian populations to achieve an expected statistical
power of 80%. The above results suggest that most studies included in this meta-analysis did
not have sufficient statistical power to detect the association between the TaqA1
polymorphism and AD because of a moderate effect size of the TaqA1 polymorphism. This
likely explains the inconsistent findings in previous studies.

Two limitations should be addressed in this meta-analysis. First, a large heterogeneity was
observed in European studies. This could be due to other potential differences between
studies, for example, sex, age, family history, severity of AD, or unscreened controls. Only a
few studies included in this meta-analysis provided information regarding these variables. It
is therefore difficult to investigate the influence of the above covariates in causing
heterogeneity between studies. Moreover, the potential interaction of ANKK1/DRD2 with
other genes may also lead to heterogeneity between studies. Recent studies demonstrated
that dopamine receptor D2 (coded by DRD2) and dopamine receptor D4 (coded by DRD4)
were able to form functional heteromers and the heteromerization process was modulated by
polymorphisms in DRD2 and DRD4 (Gonzalez et al. 2012; Mota et al. 2012). Interestingly,
the DRD2/DRD4 heteromers were found to influence genetic susceptibility to AD (Mota et
al. 2012). Second, publication bias is not the only explanation for the asymmetric funnel
plot. The aforementioned covariates could contribute to publication bias as well, resulting in
false positive findings. Additionally, selection bias could also have occurred because only
studies published in English were taken into consideration. Thus, to have a better
understanding of the association between the Taq1A polymorphism and AD, an improved
meta-analysis could be conducted using more sophisticated analysis methods for controlling
of between-study heterogeneity and publication bias.

Conclusions
In summary, our meta-analysis provides further evidence supporting a moderate effect size
of the Taq1A polymorphism on AD across populations. Some of the heterogeneity between
studies and publication bias might be due to differences in the racial ancestry of the different
populations studied. Retrospective statistical power analysis suggested that the sample size
for future studies of the association between the Taq1A polymorphism and AD should be at
least 1,500 subjects in order to have sufficient statistical power. Moreover, findings from
previous studies and this large meta-analysis suggest that, in future studies, we need to (1)
explore the molecular mechanism by which the TaqA1 polymorphism influences risk for
AD, (2) examine the biological function of those variants which are located in the ANKK1/
DRD2 gene cluster region and in tight LD with the TaqA1 polymorphism, and (3) deep-
sequence the ANKK1/DRD2 gene region to identify novel functional variants which are
potentially linked to the TaqA1 polymorphism.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Forest plot of allelic meta-analysis results across all studies
The counts of the A1 allele and total alleles of the Taq1A polymorphism in alcohol
dependence (AD) and control groups from eligible studies were presented by rows. The bars
with squares in the middle represent 95% confidence intervals (CIs) and odds ratios (ORs).
The central vertical solid line indicates the ORs (equal to 1) for the null hypothesis. The
estimated pooled effect size (represented by the diamond symbol) underneath the plot was
calculated under the fixed effects model and the random effects model.
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Fig. 2. Forest plot of genotypic meta-analysis results across all studies
The counts of genotypes A1A1+A1A2 and all genotypes of the Taq1A polymorphism in
alcohol dependence (AD) and control groups from eligible studies were presented by rows.
The bars with squares in the middle represent 95% confidence intervals (CIs) and odds
ratios (ORs). The central vertical solid line represents ORs (equal to 1) for the null
hypothesis. The estimated pooled effect size (represented by the diamond symbol)
underneath the plot was calculated under the fixed effects model and the random effects
model.
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Fig. 3. Plots of pooled effect size with the publication year
The pooled effect size [Ln(OR)] of theTaq1A polymorphism for risk of alcohol dependence
was plotted against the publication year in allelic (Fig. 3a) and genotypic (Fig. 3b) meta
analyses. The X-axis represents the year when all studies were included to calculate the
pooled effect size. Each vertical line with a diamond symbol represents the 95% confidential
interval and the pooled effect size.
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