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Abstract
Pulmonary surfactant protein A (SP-A) plays a key role in innate lung host defense, in surfactant-
related functions, and in parturition. In the course of evolution, the genetic complexity of SP-A
has increased, particularly in the regulatory regions (i.e. promoter, untranslated regions). Although
most species have a single SP-A gene, two genes encode SP-A in humans and primates
(SFTPA1and SFTPA2). This may account for the multiple functions attributed to human SP-A, as
well as the regulatory complexity of its expression by a relatively diverse set of protein and non-
protein cellular factors. The interplay between enhancer cis-acting DNA sequences and trans-
acting proteins that recognize these DNA elements is essential for gene regulation, primarily at the
transcription initiation level. Furthermore, regulation at the mRNA level is essential to ensure
proper physiological levels of SP-A under different conditions. To date, numerous studies have
shown significant complexity of the regulation of SP-A expression at different levels, including
transcription, splicing, mRNA decay, and translation. A number of trans-acting factors have also
been described to play a role in the control of SP-A expression. The aim of this report is to
describe the genetic complexity of the SFTPA1 and SFTPA2 genes, as well as to review
regulatory mechanisms that control SP-A expression in humans and other animal species.
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1. Introduction
Pulmonary surfactant is a lipoprotein complex essential for life, as it prevents alveolar
collapse at low lung volumes. In addition to maintaining alveolar integrity, surfactant plays
an important role in lung host defense, and the control of inflammation, primarily by
specific functions of the protein component (i.e. surfactant proteins). The genetic variability
of surfactant proteins has been extensively studied, and variants have been associated with
acute and chronic lung disease throughout life in a variety of population studies. The roles of
the hydrophilic surfactant proteins (SP-A and SP-D) as innate immunity molecules and
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inflammatory mediators have also been extensively reported. We have recently reviewed the
current knowledge of SP-A and SP-D genetic variations in pulmonary disease and
pathogenesis (Silveyra and Floros, 2012b). In the present review, we focus on the human
SP-A genes, their variants, and regulatory regions. We present an overview of the known
regulatory mechanisms involved in SP-A gene expression at the genetic and epigenetic
level, as well as the experimental models used to study this regulation. Moreover, we discuss
evolutionary aspects of this regulation by comparing SP-A regulatory regions in humans and
other animal species.

2. Pulmonary Surfactant
In the lung alveolar epithelium, type II pneumocytes synthesize and secrete a lipoprotein
complex essential for life known as pulmonary surfactant. The main function of this
complex is to reduce surface tension at the alveolar air-liquid interface, and consequently
prevent alveolar collapse at low lung volumes. The composition of surfactant is
approximately 90–92% lipids, and 8–10% proteins (Postle et al., 2001; Perez-Gil and
Weaver, 2010). The lipid fraction is primarily phospholipids, the key components of the
surface tension lowering function. The protein component participates in surfactant
functions, as well as in the modulation of the innate immune response, and the regulation of
inflammatory processes (Crouch, 1998; Crouch et al., 2000; Phelps, 2001). Surfactant
homeostasis is not only critical for breathing (and thus survival) in the prematurely born
infant, but also for maintaining lung health, and normal lung function throughout life, as
quantitative and/or qualitative derangement in surfactant composition and/or function are
associated with respiratory diseases (Floros and Phelps, 1997; Floros and Kala, 1998; Floros
and Wang, 2001; Whitsett et al., 2010).

3. Surfactant proteins
Approximately 8–10% of pulmonary surfactant is composed by proteins. Surfactant-
associated proteins are classified into two groups, based on their hydrophobicity properties.
The hydrophobic, surfactant proteins B (SP-B), and C (SP-C) are primarily involved in the
prevention of alveolar collapse. SP-B expression is altered in a number of acute and chronic
lung diseases and absence of SP-B is not compatible with life, whereas SP-C stabilizes
surfactant at low lung volumes, and plays a role in innate immunity (Wang et al., 1996;
deMello and Lin, 2001; Glasser et al., 2001; Augusto et al., 2003; Nogee, 2004; Whitsett et
al., 2010). The remaining two proteins, SP-A and SP-D, are hydrophilic proteins that belong
to the C-type lectin family (collectins), and are primarily host defense proteins (Crouch and
Wright, 2001; Hawgood and Poulain, 2001; Phelps, 2001; Floros et al., 2009). Members of
the collectin family are characterized by an N-terminal collagen-like domain and a C-
terminal carbohydrate recognition domain (CRD) that allows binding to various types of
macromolecules, pathogens and allergens (Crouch and Wright, 2001). SP-A and SP-D are
found in large oligomeric structures that have the ability to bind and opsonize several
pathogens and allergens (Kishore et al., 2005; Kishore et al., 2006). SP-A and SP-D also
play a role in surfactant homeostasis (Botas et al., 1998; Ikegami et al., 2000; LeVine et al.,
2000; Hawgood and Poulain, 2001), and alterations of the levels of these two proteins have
been reported in several pulmonary pathologies (Silveyra and Floros, 2012b).

3.1. Surfactant protein A
3.1.1. Function and structure—SP-A, the most abundant protein of surfactant, is
involved in both host defense and surfactant-related functions. The role of SP-A in innate
immunity is primarily mediated by its ability to bind several pathogens, enhance
phagocytosis and chemotaxis of alveolar macrophages, induce proliferation of immune cells,
and stimulate proinflammatory cytokine production, as well as to modulate the generation of
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reactive oxygen species (reviewed in (Phelps, 2001; Wright, 2005; Wang and Reid, 2007)).
Furthermore, SP-A participates in several other functions that involve secretion of
surfactant, signaling the initiation of parturition, as well as maintaining the structure of the
extracellular form of surfactant tubular myelin (Williams et al., 1991; Condon et al., 2004;
Wang et al., 2010; Snegovskikh et al., 2011; Yadav et al., 2011). Moreover, the expression
and function of SP-A is not restricted to alveolar epithelial cells. Several studies have
reported SP-A expression in the lower and higher airway epithelial cells, as well as
extrapulmonary tissues including the lacrimal system (Bräuer et al., 2007), parotid glands
(Bräuer et al., 2009), gingiva (Bräuer et al., 2012), epithelial cells of small and large
intestine (Rubio et al., 1995) and Eustachian tube epithelium (Paananen et al., 2001), and
vagina (MacNeill et al., 2004).

The structure of SP-A consists of four domains: an N-terminal, a collagen-like domain, a
neck region, and a carbohydrate recognition domain (CRD) (Floros, 2001; Floros et al.,
2009). The most conserved domains are the neck and N-terminal. The CRD consists of 115
amino acids, including four cysteine residues that are conserved across species. These form
two pairs of disulfide bonds within the CRD that play a critical role in the stability of the
SP-A structure (Floros et al., 2009). A cysteine residue located near the N-terminal (position
6 of the mature protein) has been proposed to participate in the supratrimeric assembly of
SP-A (Sánchez-Barbero et al., 2007). Furthermore, the human and baboon SP-A1 gene
contain an extra cysteine (Cys85) that may generate additional intermolecular disulfide
bonds that affect SP-A1 structure, function, and biochemical properties (Wang et al., 2007a).

3.1.2. Human SFTPA1 and SFTPA2—The majority of species studied to date have a
single SP-A gene. However, in primates and humans there are two functional genes
(SFTPA1 and SFTPA2). In humans, the mature SP-A monomer is a 35kDa protein
composed by 248 amino acids, and the two gene products (SP-A1 and SP-A2) differ in four
amino acids at the coding region (Floros and Hoover, 1998; DiAngelo et al., 1999). The
amino acid differences that distinguish between SP-A1 and SP-A2 genes and among their
corresponding variants are located in the collagen-like domain. These are Met66, Asp 73,
Ile81 and Cys85 for SP-A1, and Thr66, Asn73, Val81, and Arg85 for SP-A2. One of these
has shown to affect its structure and function (Wang et al., 2007a). Furthermore, nucleotide
differences that do or do not change the encoded amino acid among SFTPA1 or SFTPA2
variants are located within the sequence for the signal peptide, collagen-like region, and
CRD (Floros, 2005; Floros et al., 2009). Several studies have identified functional
differences between SP-A1 and SP-A2 in a variety of innate immunity and surfactant related
functions including cytokine production (Wang et al., 2000; Wang et al., 2002; Huang et al.,
2004), modulation of surfactant secretion (Wang et al., 2004), phagocytosis by alveolar
macrophages (Mikerov et al., 2005; Mikerov et al., 2007; Mikerov et al., 2008a), as well as
other structural characteristics (Garcia-Verdugo et al., 2002; Oberley and Snyder, 2003;
Wang et al., 2007a; Wang et al., 2007b). However, no differences were found between SP-
A1 and SP-A2 in the inhibition of hemagglutination activity of influenza A virus (Mikerov
et al., 2008a). Moreover, functional divergence between SP-A1 and SP-A2 has been shown
for an extracellular form of surfactant, the tubular myelin (Wang et al., 2010). Whether
further functional divergence exists among SP-A1 and SP-A2 variants remains to be
determined. Differences in structure, and posttranslational modifications have been also
described between SP-A1 and SP-A2 (Floros et al., 2009), and some of the structural
differences between SP-A1 and SP-A2 may be responsible for functional differences (Wang
et al., 2007a). Moreover, differences in the expression of SFTPA1 and SFTPA2, as assessed
by the protein ratio of SP-A1 to total SP-A, have been observed in human bronchoalveolar
lavage samples as a function of age and lung health status (e.g. healthy vs. cystic fibrosis,
culture positive vs. negative; asthmatic vs. control) (Tagaram et al., 2007; Wang et al.,
2011).
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SP-A is found in a variety of oligomeric structures. A 630 kDa hexameric bouquet-like
structure contains a total of eighteen SP-A1 and SP-A2 monomers composed of six trimeric
structural subunits of 105kDa. Both hetero-oligomers (i.e. consisting of both SP-A1, and SP-
A2 monomers), and homo-oligomers (i.e. consisting of SP-A1 or SP-A2 monomers) are
functional, and both gene products are required for tubular myelin formation (Voss et al.,
1991; Wang et al., 2002; Mikerov et al., 2005; Mikerov et al., 2007; Wang et al., 2007a;
Mikerov et al., 2008a; Wang et al., 2010). Differences between SP-A1 and SP-A2 in
oligomerization properties, aggregation, structural stability, sugar-binding capacity, and
ability to form phospholipids monolayers and tubular myelin have also been observed
(Wang et al., 2000; Garcia-Verdugo et al., 2002; Wang et al., 2002; Oberley and Snyder,
2003; Wang et al., 2004; Mikerov et al., 2007; Sánchez-Barbero et al., 2007; Wang et al.,
2007a; Wang et al., 2007b; Wang et al., 2010).

3.1.3. SP-A variants—More than 30 variants or intragenic haplotypes have been
identified and characterized for SFTPA1 and SFTPA2 based on various combinations of
single nucleotide polymorphisms (SNPs) within the coding region that may or may not
change the encoded amino acids (Karinch and Floros, 1995a; DiAngelo et al., 1999; Floros,
2001; Floros and Wang, 2001; Floros et al., 2009). Among SFTPA1 variants, SNPs are
found in the codons of amino acids 19, 50, 62, 133, and 219. Two of these polymorphisms
are silent (amino acids 62 and 133), and the rest result in amino acid substitutions. Similarly,
among SFTPA2 variants, SNPs are found in four codons: three silent (amino acids 9, 91,
and 223) and one synonymous (amino acid 140) (DiAngelo et al., 1999). Of the variants
identified, four SFTPA1 (6A, 6A2, 6A3, 6A4), and six SFTPA2 (1A, 1A0, 1A1, 1A2, 1A3,
1A5) variants have been observed in higher frequency in the general population (DiAngelo
et al., 1999; Floros, 2001; Silveyra and Floros, 2012b). Furthermore, the frequency of these
variants has been found to be variable in the population (DiAngelo et al., 1999; Floros,
2001; Liu et al., 2003).

3.1.4. SP-A receptors
As a critical component of innate immunity, SP-A helps combat infections caused by
bacteria, viruses, fungi, and other pathogens by mechanisms that involve binding,
aggregation, agglutination, inhibition of growth, and promotion of phagocytosis by
activation of alveolar macrophages, an important cellular component of the lung first line of
defense (McNeely and Coonrod, 1994; Schagat et al., 2001; Wu et al., 2003; Ding et al.,
2004; Mikerov et al., 2007; Mikerov et al., 2008b; Mikerov et al., 2008c). SP-A can either
bind pathogens to promote their destruction (opsonization), and/or activate immune cells by
direct binding (Haagsman, 1998; LeVine and Whitsett, 2001; Wright, 2005), and/or
stimulate the production of pro- and anti-inflammatory cytokines (Wang and Reid, 2007).
Soluble receptors, as well as membrane receptors in the surface of alveolar macrophages
have been shown to interact with SP-A. These include: CD35 (CR1), C1qR (CD93), CD14,
CD91/calreticulin, SIRPα, SP-R210, gp-340, P63, TLR-2 and TLR-4, and others (reviewed
in (Kishore et al., 2006; Bates, 2010; Silveyra and Floros, 2012b)). Some of these have been
identified in the cell surface of alveolar type II pneumocytes, but not in alveolar
macrophages, indicating that they may play a role in surfactant function, whereas others
have been found to be ubiquitous.

3.2. Human SP-A Gene structure
The genomic locus of the human SP-A genes is located in the long arm of chromosome 10
(Bruns et al., 1987; Floros and Hoover, 1998), and it consists of the two functional genes,
SFTPA1 and SFTPA2, and a pseudogene (SFTPA3P) (Hoover and Floros, 1998). The two
functional genes are located in opposite transcriptional orientation in 10q22.3 (GenBank,
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NC_000010.10) as shown in Figure 1, and are in linkage disequilibrium (Liu et al., 2003).
According to GenBank, the SFTPA1 genomic sequence (Gene ID: 653509) is located
between positions 81370695-81375199 of the positive strand, whereas the SFTPA2 (Gene
ID: 729238) is located in the complement strand, positions 81315608-81320163. The
SFTPA3P pseudogene (Gene ID: 100288405) is also located in the complement strand,
between positions 81353703-81355415. Similarly, the Ensembl database locates SFTPA1
between positions 81370701 81375202 of the positive strand (ENSG00000225827), and the
pseudogene between positions 81355416-81355050 of the complement strand
(ENSG00000225827). The SFTPA2 gene location is the same for both GenBank and
Ensembl (ENSG00000185303). While both human SFTPA1 and SFTPA2 genes are
approximately 4.5kb in length, and share approximately 94% nucleotide identity, their
protein products share approximately 96% amino acid sequence identity. The structure of
the two human genes is similar and consists of four coding exons (I–IV), and several
untranslated exons (A, B, B′, C, C′,D, D′) (Karinch and Floros, 1995a) at 5′UTR as
illustrated in Figure 1 (reviewed in (Floros, 2001; Floros and Wang, 2001; Floros, 2005;
Floros et al., 2009)).

In general, the genetic complexity of SP-A has been shown to increase as one ascends the
mammalian evolutionary ladder. Almost all mammalian species have been shown to contain
a single SP-A gene, except from baboons and humans that have two. A gene duplication
event occurred more than 26.5 million years ago (Gao et al., 1996), resulting in the
generation of SFTPA1 and SFTPA2. Additional SP-A sequences have been reported in
some species, e.g. three genes in opossum (SP-A1, SP-A2, and SP-A3) and two variants in
chicken (SP-A and an SP-A-like gene) (Gao et al., 1996; Hogenkamp et al., 2006; Hughes,
2007). All SP-A genes of various species are about 5 Kb in length, with the basic exon-
intron structure being conserved in all species studied so far. The sequence similarity among
species is higher in exons than in introns. The human and baboon genes contain additional
exons/introns at the 5′ untranslated region that are alternatively spliced generating mRNA
splice variants (Karinch and Floros, 1995a; Gao et al., 1996). Furthermore, in humans, splice
and sequence differences between the functional genes and/or their variants give rise to a
number of variable transcripts, that have been shown to differentially affect SP-A gene
expression (Karinch and Floros, 1995a; Karinch et al., 1998; Wang et al., 2003; Wang et al.,
2005; Wang et al., 2009; Silveyra et al., 2010; Silveyra et al., 2011). This increase in genetic
complexity, in particular at the regulatory regions, may reflect the functional importance of
SP-A during evolution, and the necessity to control protein levels in specific physiological
or pathological situations (Mendelson et al., 1998; Floros, 2005; Tagaram et al., 2007; Bruce
et al., 2009; Vlachaki et al., 2010; Wang et al., 2011; Silveyra and Floros, 2012b).

3.3. SP-A promoter and control of transcription
To date, several regulatory regions have been identified within the 5′ flanking regions and
the human SFTPA1 and SFTPA2 gene sequences and in particular in the first 300 base pairs
of the proximal promoter, immediately upstream of the transcription start site. These
include, cAMP response elements (CRE), and GT-boxes important for high basal and c-
AMP mediated regulation of SFTPA2 in alveolar epithelial cells (Young and Mendelson,
1996; Young and Mendelson, 1997), as well as TTF-1 binding elements (TBE), important
for hormonal regulation of lung development, as well as temporal and spatial control of SP-
A gene expression (Yi et al., 2002; Liu et al., 2008). Some of these elements are conserved
among species. A number of lung cell-specific transcription factors and small molecules
have been shown to interact with regulatory sequences present at the human SP-A
promoters, in particular during the late stages of development, where the expression of SP-A
transitions from practically silent to dramatically upregulated (Gao et al., 2003; Alcorn et al.,
2004; Liu et al., 2008). Some of the molecules shown to affect SP-A expression include:
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estrogen receptor alpha (Liu et al., 2006), dexamethasone (Hoover et al., 1999; Alcorn et al.,
2004; Islam and Mendelson, 2008), NfkB (Islam and Mendelson, 2002; Wu et al., 2011), C/
EBP (Rosenberg et al., 2002), phorbol esters (Hoover et al., 2000), c-AMP (Young and
Mendelson, 1996; Young and Mendelson, 1997; Liu et al., 2009), TTF-1 (Li et al., 1998;
Alcorn et al., 2004; Liu et al., 2008), and others (Karinch et al., 1998; Kumar and Snyder,
998). Several of these factors, in addition to modulating the expression of SP-A in humans,
affect the expression of rabbit, murine, and baboon SP-A genes (Lacaze-Masmonteil et al.,
1992; Alcorn et al., 1993; Kouretas et al., 1993; Bruno et al., 1995; Rosenberg et al., 1999;
Bruno et al., 2000; Rosenberg et al., 2002).

In addition to these sequence-specific interacting factors at the SP-A promoters, another
level of complexity appears to play a role in the control of expression of human SP-A genes,
known as epigenetic modifications. Epigenetic modifications have been shown to affect the
expression of SP-A1 and SP-A2 mRNAs in a variety of physiological and pathological
conditions. Recent unpublished data from our group identified significant differences in the
methylation status of specific cytosines of the SFTPA2 5′ flanking region between normal
and adenocarcinoma human paired samples. The hypermethylated DNA in cancerous tissue
correlated with decreased SP-A2 mRNA expression. These findings may hold promise for
future use of SP-A2 as a biomarker for the diagnosis and/or therapies of lung cancer.
Moreover, previous studies from our group reported associations of altered methylation
patterns of CpG sites in the human SFTPA1 promoter with lung cancer (Lin et al., 2007).
Furthermore, histone acetylation and methylation at regulatory regions of the SP-A gene
promoters have been shown to affect SP-A expression in lung cells during development and
during hypoxia (Islam and Mendelson, 2006; Lin et al., 2007; Islam and Mendelson, 2008;
Vaid and Floros, 2009; Benlhabib and Mendelson, 2011; Silveyra and Floros, 2012a).

In summary, gene regulation is a dynamic and complex process. The promoter region of SP-
A may serve as an enhanceosome (Benlhabib and Mendelson, 2011) through which SP-A
expression is modulated via the interaction of several transcription factors with specific
sequence elements, some of which are subject to epigenetic regulation, and may be
modulated by pathological conditions (e.g. cancer) and environmental insults (Silveyra and
Floros, 2012a). Given the functional differences between SFTPA1 and SFTPA2 and their
genetic complexity, differences in the regulation of expression among SP-A variants may
underlie individual susceptibility in response to different insults such as oxidative stress and
disease (Mendelson et al., 1998; Tagaram et al., 2007; Floros et al., 2009; Wang et al.,
2011).

3.4. SP-A mRNA
Transcription of SFTPA1 and SFTPA2 genes results in a variety of mRNA transcripts. The
source of this variability involves differences in the transcription start sites, as well as
alternative splicing of exons (A, B, B′, C, C′, D, D′) at the 5′UTR. The formation of SP-A
5′UTR splice variants is not a random process as there are major, minor, and rare splice-
variants for SP-A1 and SP-A2 transcripts (Karinch and Floros, 1995a). Furthermore,
alternative transcription start sites have been observed for SFTPA1 and SFTPA2 by primer
extension in two independent studies (McCormick et al., 1994; Karinch and Floros, 1995a);
these identified three transcription start sites for SFTPA1, and one common transcript start
site for SFTPA2, although some minor discrepancies observed between the two studies were
attributed to variations in the individual lung RNA samples, and/or the limited number of
clones tested (Floros et al., 2009).

The predominant human SP-A transcript splice variants and the frequencies with which they
are found differ between the two genes. Similarly, frequency differences may also exist
among individuals for these mRNAs (Karinch and Floros, 1995b). For SP-A1, the major
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splice variant is AD′ (81%), followed by ACD′ and AB′D′ (7%), and for SP-A2 the major
variants are ABD′ (49%), and ABD (44%) (Karinch and Floros, 1995a). Although more than
30 variants for human SFTPA1and SFTPA2 have been identified in the population, the
sequence for those found in the population with higher frequencies is available in GenBank
under the accession numbers indicated in Table 1.

SP-A1 and SP-A2 mRNA variants also show sequence differences at the 3′UTRs (Krizkova
et al., 1994; Hoover and Floros, 1999; Wang et al., 2003; Silveyra et al., 2010). These,
together with several other mRNA elements, such as the 5′CAP, poly(A) tail, secondary
structures, and other structural elements, may modulate mRNA translation and thus
differentially control SP-A1 and SP-A2 protein levels.

3.4.1 Role of SP-A UTRs in the control of transcription and translation—Several
studies from our laboratory have reported that SP-A 5′UTR splice variants affect gene
expression with variable efficiency, and that variants containing the untranslated exon B
have an increased rate of transcription, and translation in both in vitro (Silveyra et al., 2010)
and in lung epithelial cell culture systems (Wang et al., 2005; Silveyra et al., 2010). When
compared to SP-A1 5′UTR variants ACD′, AD′, and AB′D′, the SP-A2 5′UTR variant ABD
displayed a significantly lower rate of mRNA decay and a higher translation efficiency
(Wang et al., 2005), and postulated that alternative splicing at the SP-A 5′UTR is a major
regulatory mechanism for differential SP-A1 and/or SP-A2 variant expression (Wang et al.,
2005; Silveyra et al., 2010; Silveyra et al., 2011). In support of this, our preliminary studies
in which lung cells were exposed to diesel exhaust particulate matter showed that the
splicing pattern of SP-A 5′UTRs is altered (our unpublished data), and the efficiency of SP-
A translation is increased in variants containing exon B (Wang et al., 2009). Furthermore,
the SP-A2 5′UTRs that contain exon B (absent in SP-A1 variants) has been shown, via a
specific double-loop secondary structure, to form an internal ribosomal entry site (IRES) and
mediate cap-independent translation, a process that often occurs under cellular stress,
hypoxia, and other insults (Wang et al., 2009; Komar and Hatzoglou, 2011). Moreover,
infectious agents such as respiratory syncytial virus also affect the rate of SP-A translation
in pulmonary epithelial cells, although the mechanisms involved in this inhibition are still
unknown (Bruce et al., 2009).

A recent study identified potential regulatory sequence elements in the 30 nucleotide SP-A2
untranslated exon B that may modulate gene expression via interaction with trans-acting
factors. The exon B DNA sequence was shown to exhibit characteristics of a transcriptional
enhancer (Silveyra et al., 2011), and at the mRNA level, exon B enhanced translation when
placed in its natural sequence environment (ABD) or within orthologous sequences
(Silveyra et al., 2011). The enhancing effect of exon B in SP-A expression may involve
sequence motifs and/or secondary structures that potentially interact with specific RNA-
binding factors and modulate a variety of post-transcriptional events. Preliminary results
from our group using RNA gel shift assays identified several exon B binding proteins, and
mapped specific nucleotides of exon B important for these interactions (our unpublished
data). Moreover, the splice variant ACD′, found in SP-A1 transcripts (but not in SP-A2
transcripts), contains two upstream AUG codons (uAUGs) at its unique untranslated exon C
that may affect translational efficiency. One of these is in frame with the main start codon
(Karinch and Floros, 1995b), and shown to be functional (our preliminary data).

Variant-specific sequences located in the SP-A 3′UTRs may differentially regulate SP-A
expression at the translational level. A pyrimidine-rich domain of 37 nucleotides is present
in the 3′UTRs of SP-A1 and SP-A2 variants, but 7 of the nucleotides in this region differ
between SP-A1 and SP-A2. Moreover, the 3′-UTRs of SP-A2 variants contain two AU-rich
elements (AUUUA), whereas the SP-A1 sequences contain only one. The published
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literature indicates that these elements may influence mRNA stability, as well as the
regulation of SP-A1 and SP-A2 variants by glucocorticoids (Hoover and Floros, 1999;
Wang et al., 2003). An 11-nt element, present in the 3′UTR of all the SP-A2 variants and the
SP-A1 variant 6A2 has been shown to negatively affect translation efficiency, by
mechanisms that involve formation of secondary structures with different stabilities, as well
as differences in predicted miRNA binding to this element (Silveyra et al., 2010).
Interestingly, the effects observed were more evident when the transcripts were
polyadenylated, indicating a potential role of the poly(A) tail in the control of translation of
SP-A transcripts (Silveyra et al., 2010; Silveyra et al., 2011). Given the nucleotide
differences among SP-A variants at the 3′UTR, it is highly likely that differences observed
in their translational regulation are mediated by miRNAs. Our preliminary studies in cell
lines expressing different SP-A variants indicate a role of specific miRNAs in the control of
SP-A translation (our unpublished data).

In summary, the UTRs of SP-A mRNA transcripts are implicated in the control of SP-A
expression. Several gene-specific, and variant-specific elements have been described and
studied in these regions. It is possible that the ability of the variants to bind regulatory
factors at the UTRs differs, and that this may account for differential protein expression of
SP-A1 and SP-A2 variants under normal or compromised conditions (i.e. lung disease).

4. Genetic associations of SP-A variants with lung disease
The influence of genetic variants in acute and chronic lung disease susceptibility have been
studied within different biological contexts, and correlated with environmental factors, and/
or other conditions including prematurity, concurrent diseases, or need for mechanical
ventilation (Leikauf et al., 2002; Hallman and Haataja, 2003; Villar et al., 2003; Christie,
2004; Grigoryev et al., 2004; Kishore et al., 2005; Nonas et al., 2005; Meyer and Garcia,
2007; Lam and dos Santos, 2008; Reddy and Kleeberger, 2009; Meyers, 2010). Numerous
associations between SFTPA1 and SFTPA2 genetic variants and acute and chronic lung
disease have been identified in several populations and study groups including neonates,
children, and adults. For example, the SFTPA2 1A3 variant has been associated with
susceptibility to tuberculosis in both Mexican and Ethiopians (Floros et al., 2000; Malik et
al., 2006). In neonates, a specific SFTPA1/SFTPA2 haplotype, 6A2/1A0, has been shown to
associate with risk for respiratory distress syndrome (RDS) in Finnish and non-Finnish
Caucasians (Rämet et al., 2000; Floros et al., 2001). RDS is a condition where insufficient
amounts of surfactant proteins have been observed, as well as absence of the extracellular
form of surfactant, the tubular myelin, where SP-A is an essential component. The SFTPA1
and SFTPA2 genetic associations have been reviewed elsewhere (Floros and Kala, 1998;
Floros and Pavlovic, 2003; Floros and Thomas, 2009; Silveyra and Floros, 2012b).

5. Concluding remarks
Human SP-A expression is controlled developmentally and by tissue specificity at both
transcriptional and translational levels. The SP-A 5′ and 3′UTRs contain several regulatory
elements implicated in the differential regulation of SP-A1 and SP-A2 expression, as well as
their genetic variants. Study of mechanisms involved in these processes may help explain
the altered ratio of SP-A1 and SP-A2 protein content in certain lung diseases or conditions
(Tagaram et al., 2007; Wang et al., 2011), as well as gain insight into the basis of individual
disease susceptibility.

Although there is considerable evidence that the human SP-A complexity is associated with
various pulmonary diseases, and that differences in the function and structure of SP-A1 and
SP-A2 exist as well as differences in the relative levels of SP-A1 to total SP-A in several
diseases, the underlying mechanisms are not yet entirely known. We postulate that given the
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functional differences between SP-A1 and SP-A2, the overall SP-A functional activity in the
lung depends on the relative levels of SP-A1 and SP-A2 rather than the total SP-A content
(i.e., without regard to the SP-A1 and SP-A2 proportions), and that an altered regulation of
SP-A1 or SP-A2 gene expression could result in an unfavorable SP-A1 to SP-A2 ratio for
normal host defense.
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Figure 1.
Upper panel Diagrammatic representation of the 10q22–23 locus of the human
chromosome 10. The two human SP-A genes SFTPA1 and SFTPA2 are located in opposite
transcriptional orientation, flanking a pseudogene (SFTPA3P). Lower panel. SP-A1 and
SP-A2 common gene structure. Coding exons are indicated with numbers, and untranslated
exons are indicated with letters. A* represents exons A, A′, and A″.
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