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Abstract
Previous investigations of feedback control of standing after spinal cord injury (SCI) using
functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study
assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback
control against postural disturbances using a bipedal, three-dimensional computer model of SCI
stance. Proportional-derivative feedback drove an artificial neural network trained to produce
muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral
stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper
extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case
of maximum constant muscle excitations used clinically, the controller reduced UE loading by
55% in resisting external force perturbations and by 84% during simulated one-arm functional
tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion
position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback
demonstrates potential to markedly improve FNS standing function. However, alternative control
structures capable of effective performance with fewer sensor-based feedback parameters may
better facilitate clinical usage.
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I. Introduction
The goal of this study was to develop and assess the potential of a control system employing
joint-feedback from the ankles, knees, hips, and trunk to continuously adjust stimulation to
muscles following spinal cord injury (SCI) and reduce the upper-extremity (UE) loading
required to maintain stable standing against postural perturbations. Neuroprostheses
employing functional neuromuscular stimulation (FNS) have been proven clinically
effective for restoring basic standing function following SCI [1]. Preprogrammed patterns of
stimulation can produce effective sit-to-stand maneuvers while continuous stimulation at
constant levels typically maintains upright posture. Under constant stimulation, the user is
required to maintain balance against postural perturbation with UE loading on a support
structure (e.g., walker, countertop). Sustained UE loading compromises the utility of
standing with FNS by limiting the functional use of the hands and arms and reducing
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standing time due to rapid upper body fatigue. Feedback control of stimulation is necessary
to provide automatic postural adjustments and reduce the onus of UE stabilization for
balance.

Functional movements involve joint kinematics and multi-articulate muscle actions acting in
three dimensions [2]. Consequently, any comprehensive control system for functional
standing balance should consider individual muscle effects across the entire system and
control trunk, hip, knee, and ankle joints simultaneously. Numerous groups have attempted
to introduce servo-type joint-feedback control for standing with FNS in isolation at
individual joints including the knees [3,4], hips [5,6], and ankles [7]. They restricted control
actions to a single joint or anatomical plane (either sagittal or coronal), omitted FNS
feedback control at the trunk, and held joints not under direct feedback control in extension
by constant stimulation or mechanical bracing. These limitations were justifiable given the
initial challenges of implementing these control systems on live SCI participants. However,
these studies produced only moderate improvements in disturbance response or applied
clinically unviable constraints. Consequently, current standing systems used clinically still
do not employ feedback control of FNS. The next step towards clinically accepted closed-
loop FNS standing include development of a feedback control system that simultaneously
coordinates actions at multiple joints to balance posture in three dimensions.

This simulation study developed a FNS control system using joint-feedback and investigated
its potential to comprehensively maintain standing posture against disturbances. The control
system was created and tested using a three-dimensional computer model of human bipedal
stance that includes realistic SCI musculature targeted for FNS control. A model-based
approach was employed to introduce optimal patterns of muscle excitation into the solution
process and thoroughly evaluate controller performance prior to online testing with SCI
subjects. Given the limitations in strength of paralyzed muscles and the importance of
considering volitional upper-body interactions during FNS standing [8], a model formulation
for UE loading was created to interact with the bipedal standing model and simulate the
stabilization forces that a user may exert. The complete model system included both UE
loading and a muscle-based control system that represents the joint-feedback FNS
controller. FNS controller performance was assessed according to the reduction in UE
loading required to stabilize against disturbances compared to constant muscle excitation.

The joint-feedback control system was designed for proportional-derivative (PD) feedback
to drive an artificial neural network (ANN) trained to relate changes in joint positions (ANN
inputs) to changes in muscle excitations (ANN outputs) across the lower extremities and
trunk. Previous studies have examined the performance of proportional-integral-derivative
(PID) control for FNS applications [9, 10, 11]. Results have been limited due to classical
PID control [12] being applied to highly nonlinear musculoskeletal systems [13]. Because of
their capability of identifying complicated, nonlinear relationships, ANNs are desirable for
neuroprosthetic control systems [14]. Blana et al. [15] have proposed a neuro-PID controller
for feedback error rejection. The PID controller determined the linear dynamic response but
the nonlinear, biomechanical system interactions between muscles and joints were
characterized by the black-box formulation of an ANN. The control system proposed for
bipedal standing in this study is a similarly structured neuro-controller composed of PD
joint-feedback driving an ANN trained according to static stiffness objectives.

The role of stiffness has been implicated in both quiet [16] and perturbed [17] standing. A
simple static stiffness model was able to characterize standing responses in both cases.
Stiffness has been targeted previously for automatic control of paralyzed ankles during
standing [18]. Actively-controlled ankle stiffness in conjunction with volitional upper body
activity was sufficient to maintain paraplegic standing and reject select disturbances.
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However, this investigation restricted disturbances and control action to only the ankles
while rigidly bracing the knees and lower torso. While such reductionist approaches to focus
on function at an isolated joint or single anatomical plane are important for exploring
preliminary control concepts, they rely on bracing or continuous stimulation to artificially
constrain the system. To provide more natural, unencumbered and functional standing to
individuals with SCI, clinically deployable systems need to be extended to encompass a
more comprehensive approach.

This simulation study investigates the feasibility of full (three-dimensional, un-braced, no
muscles held at constant stimulation) joint-feedback control of FNS standing. Using a
bipedal computer model of typical SCI standing, the potential of an ANN-PD controller
trained according to a static joint stiffness paradigm was explored. The model control
system was tuned using a global-search optimization to minimize upper-body loading
required to resist postural perturbations. Test performance was assessed by the reduction in
upper-body loading observed with the controller active compared to constant muscle
excitations across a variety of disturbances. These disturbances included force-pulse
perturbations analogous to discrete external disturbances used for balance assessment
[19,20] and sinusoidal loadings simulating internal disturbances occurring with functional
one-arm reaching [21].

II. Methods
The overall model system (Figure 1) included two parallel controllers (FNS muscle control,
UE loading) acting on a three-dimensional model of SCI bipedal standing. The FNS
controller utilizes PD joint-feedback to drive an ANN trained on synergistic muscle
excitation (ME) patterns. These patterns were optimized to minimize muscle stress while
attaining specified static joint stiffness values about an erect setpoint posture. This posture is
a single set of reference joint positions that the controller was designed to maintain. The
most erect (i.e., highest vertical COM position) posture located above the center of the BOS
was selected as the desired setpoint posture. An extensive set of static standing postures
were created about the setpoint to provide a rich space over which the controller was
expected to perform. An iterative regression scheme then determined a set of maximal joint
stiffness values that can be achieved across this space using typical SCI-affected muscles
targeted by FNS (Table I). The muscle excitation levels corresponding to the maximal
stiffness values were the outputs and the joint errors (angle magnitudes away from setpoint
posture) were the inputs for training an ANN. The trained ANN represented a synergy that
provided a static mapping between patterns of joint errors and muscle excitations. The same
ANN was then driven for dynamic performance using an optimally tuned PD controller for
standing balance. As with standard PD feedback [22], joint angle (proportional) and angular
velocity (derivative) errors were weighted according to feedback gains and subsequently
summed as the net joint input to the static ANN. Gain values were determined that optimize
dynamic performance in resisting postural disturbances with the objective of minimizing UE
loading required for stabilization. Volitional UE loading was represented by PID control of
shoulder position. The objective of both the FNS and UE control systems was to maintain
the standing model at the setpoint posture. The FNS controller was evaluated according to
the reduction in shoulder position controller output (i.e., reduction in UE loading) under
various postural disturbances.

A. Three-Dimensional Model of SCI Stance
A three-dimensional computer model of human bipedal stance was adapted from a
previously described representation of the lower extremities (LE) [23] and trunk [24]. This
model consisted of nine segments (two feet, two thighs, two shanks, pelvis-lumbar
component, and head-arm-trunk complex) with 15 anatomical degrees of freedom (DOFs)
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representing bilateral motions of ankle plantar/dorsiflexion (PF/DF), ankle inversion/
eversion (Inv/Ev), knee flexion/extension (F/E) , hip F/E internal/external rotation (Int/Ext),
and hip ab/adduction (Ab/Ad). Passive moment properties [25] due to SCI were included at
these DOFs. Both feet were in constant contact with the ground, defining a closed-chain
which effectively reduced the number of independent DOFs to six. The LEs were in series
with a single three-DOF (fore-aft pitch, roll, yaw) trunk joint at the lumbrosacral (L5-S1)
region. The muscle groups actively controlled in the model were consistent with those
targeted by an existing 16-channel implanted system [26]. Thus, joint-feedback was
employed for all DOFs except ankle Inv/Ev, hip Int/Ext, and trunk roll and yaw due to an
insufficient number of stimulus channels. Elements within each muscle group were
constrained to act synchronously at the same level of excitation as if co-activated by a single
stimulus output. Excitation is a normalized (0 to 1) command input to a muscle group that is
analogous to stimulation level. Muscles were represented as Hill-type actuators with
nonlinear force dynamics that includes excitation-activation coupling and conventional
length-tension and force-velocity properties [27]. The peak force parameter for each muscle
group (Table I) was scaled from normative values to produce the maximum isometric joint
moments generated by individuals with complete thoracic-level SCI in response to electrical
stimulation [28].

B. Creating Posture Space
The computer model facilitated creation of a broad posture space over which the ANN
learned to produce the desired input-output behavior. A posture was defined by a set of joint
positions (θ) that satisfied foot position constraints according to a closed-chain solver in the
model dynamic equations. Each posture served as an individual data point for subsequent
ANN training, testing, or validation. Relative to the desired setpoint posture defining the
reference joint positions (θR), the position errors (ΔθR = θR - θ) for each posture at the nine
joint DOFs targeted for feedback (trunk pitch, bilateral ankle PF/DF, knee F/E, hip F/E, hip
Ab/Ad) served as the ANN inputs. The optimal muscle excitation levels needed to statically
produce joint moments consistent with stiffness objectives (section II.C) served as the ANN
outputs. To encompass a training space pertinent to stable standing [29], postures were
created by incrementally adjusting the joint angle DOFs within specified limits (Table II)
and in combinations that ensured system center of mass (COM) remained over the base of
support (BOS) and above 90% of its nominal height at erect standing. The magnitude of
increment at each joint was minimized while allowing ANN training to converge with mean
squared error (MSE) < 0.001 within 1000 epochs. A total of 4672 postures were created
about the reference positions defined by the setpoint posture for subsequent determination of
maximal joint stiffness values and ANN training. The resultant COM space of the postures
spans 19, 29, and 7 cm in the anterior-posterior, medio-lateral, and inferior-superior
directions, respectively.

C. Determining Maximal Joint Stiffness Values
Given the limitations in SCI muscle strength, a nested optimization scheme (Figure 2) was
employed to determine a set of maximal joint stiffness values, in Newtonmeters/degree (N-
m/deg), that were concurrently achievable about the setpoint for all feedback joint DOFs
across the specified posture space. A static optimization routine [30] determined the optimal
muscle excitation levels that meet joint moment constraints for each posture. An outer loop
adjusted the joint stiffness and bias values defining the moment (M) constraint at each joint
DOF i with error in direction j (e.g., flexion or extension) relative to setpoint position as
follows:

(1)
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K is the stiffness value that multiplies the joint angle error magnitude, Δθ, away from the
desired setpoint position. K was determined in both directions (e.g., flexion and extension)
for each joint DOF to insure that agonists and antagonists were equally represented in the
analysis. B is a bias joint moment providing nominal basal support throughout the posture
space, but necessarily at the setpoint position where error equals zero. For each posture
serving as a single point for ANN training, the Δθ(ı) serve as the ANN inputs, and the
optimal muscle excitation levels necessary to meet all M(i) serve as the ANN outputs. If the
joint moment required to hold the posture statically against gravity was greater than the
stiffness moment (equation 1), then the optimizer must satisfy this “gravity” moment
instead. This condition insures the outer loop produces sufficient bias moment across the
entire posture space to maintain neutral (i.e., no joint error) joint positions and still resist the
effects of gravity and errors at other joints. Optimizer convergence upon a ‘feasible’ solution
for a posture was defined as every joint moment constraint being satisfied within a tolerance
of 0.001N-m. The set of muscle excitations (X) were optimized according to minimization
of the following objective criterion developed for locomotion [31]:

(2)

where σ = muscle stress, Force = muscle force, Area = muscle cross-sectional area.

The outer loop (Figure 2A) iteratively varied the stiffness and bias values at each joint so
that the optimizer could converge upon feasible solutions for a maximum number of
postures. The optimizer calculated muscle excitation solutions for all postures according to
the joint moment constraints (target solutions) defined by the stiffness and bias values
assigned on a given iteration. If constraints could not be satisfied within tolerance due to
limitations in muscle strength, then the optimizer produced infeasible joint moment
solutions that saturated and deviated from the target solution line (Figure 2B). The stiffness
and bias values were modified for the following iteration of the outer loop according to a
linear regression applied to the entire solution space (feasible plus infeasible solutions) in
each joint DOF direction. The new stiffness and bias values were the slopes and intercepts
of the regressions, respectively. A linear regression is consistent with a static stiffness model
for standing maintenance [17], resulting in a single stiffness and bias value for each joint.
For bi-directional control of a DOF, a regression was done in each direction with the net bias
moment simply taken as the average of the two intercepts. The outer loop was repeated until
convergence where the mean of the absolute value of change in K across all joint directions
was < 0.005N-m/deg. The initial stiffness and bias values were 20N-m/deg and 0N-m for all
DOFs. The initial stiffness value was preselected as a higher value than could be achieved
by any joint at its largest deviation from the setpoint. The joint stiffness values were then
incrementally reduced to increase the number of feasible solutions. The ‘zero’ initial bias
moment was selected to allow for non-zero bias moments to emerge naturally from the
linear regression algorithm fitting the gravitational requirements near the neural setpoint
posture. The optimal muscle excitations corresponding to the joint moment constraints
defined by the final stiffness and bias values served as the outputs for ANN training.

D. Training ANN on Optimization Data
For each posture, the position joint errors away from the neutral posture were the inputs and
the corresponding optimal muscle excitation levels were the outputs for a single ANN
training point. Only feasible posture solutions of the optimization procedure were retained
and then randomly assigned for training (70%), testing (20%), and validation (10%) of the
ANN. The ANN was constructed with the Neural Network Toolbox in MATLAB
(Mathworks®, Natick, MA). The ANN had 16 OUTPUTS corresponding to the optimal
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excitation levels of the 16 targeted muscle groups. The ANN had nine INPUTS consisting of
bilateral ankle PF/DF, bilateral knee F/E, bilateral hip F/E, bilateral hip Ab/Ad, and trunk
fore-aft pitch joint position errors. A three-layer (input, hidden, output layers), feedforward
ANN structure was employed for its universal mapping capability of nonlinear functions
[32]. The number of hidden layer neurons was determined to be 22 by heuristically finding
the number of neurons providing the lowest MSE after 1000 training epochs. All input and
output data were normalized over [−1, +1] prior to training. The training function was the
Levenberg-Marquardt algorithm [33]. A maximum of 10000 epochs were specified for
training in lieu of an early-stopping criterion specified as 250 consecutive epochs of
increasing fitting error to the validation set. To ensure the ANN was sufficiently general and
not restricted to predicting synergies along the planes of increment for the created posture
space, a “random posture” set was created for additional testing. It consisted of 500 postures
within the same joint angle and COM limits for the posture space, but was created using a
random number generator to initially specify joint DOF positions prior to application of the
closed-chain solver.

E. Upper Extremity Controller
To approximate UE loading that a standing neuroprosthesis user may need to exert on an
assistive support to resist postural perturbations, three-dimensional stabilization forces were
applied to each shoulder position. PID controller output defined the shoulder force (SF) in
each dimension ‘j’ (anterior-posterior, medial-lateral, or inferior-superior defined in globally
fixed reference frame) according to input shoulder position errors (SE) relative to the
reference positions at the setpoint posture as follows:

(3)

UE controller output was in accordance with shoulder position since the current model does
not explicitly include dynamic representations of the arms, which would otherwise produce
reaction loads at the shoulders. The three PID gains (K’s) were determined according to
Ziegler-Nichols 2nd method tuning rules [22] against a 100 N, 200 msec forward test pulse
at the thorax COM. The same PID gains were used for all three dimensions since only a
single Ziegler-Nichols ultimate gain was observed for the single test perturbation. This test
pulse induced a model trunk acceleration of ~2.5 m/sec2 which is less than that induced by
“middle level” perturbations [19]. To approximate typical human operator response, 100
msec pure time-delays [34] and muscle force activation delays [2] were applied to the
shoulder force outputs. To simulate one-arm support conditions, as required to functionally
reach on the contralateral side, only support-side shoulder position controller forces were
active.

F. Determining Optimal and Maximal Sets of Constant Excitation Levels for Baseline
Performance

To provide a comparative baseline for controller performance across a range of sufficient
but constant excitation levels for stable standing, the “optimal” and “maximal” excitation
sets (Table I) were determined for the desired setpoint posture using the optimizer from [30].
The, “optimal” excitation levels represent the minimum constant excitation levels sufficient
to support stable standing, while the “maximal” excitation levels represent the largest
constant excitation levels supporting the same posture. The “optimal” hip (36.2N-m) and
knee (11.5N-m) extension moment constraints were selected as those minimally necessary
to support stable erect standing in energy-efficient postures without joint contractures as
reported in [35]. Joint moment constraints at the trunk (20.2N-m, E) and ankles (2.9N-m,
PF) were subsequently selected such that the static UE loading was zero when the model
was at the setpoint shoulder positions. For comparison to clinically relevant systems
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applying supramaximal stimulation, the “maximal” set of constant excitations were specified
as all muscles fully excited (excitation = 1.0) except the ankle plantarflexors, which were
adjusted to 0.262 to again minimize static UE loading at the setpoint. The “maximal” set
does drive the knees, hips, and trunk slightly (< 5deg) into hyper-extension, i.e., past the
setpoint position defining full extension. Clinically, this is desired and commonly observed.

G. Perturbation Simulations
In all, 978 perturbation simulations were specified to optimally tune and evaluate the
controller with respect to total UE loading. Total UE loading was the sum (left plus right
sides) of the “net” force applied at each shoulder position. For each simulation, the computer
model started at the desired erect setpoint, and UE loading was tracked during the
application of a perturbation and following recovery period (500 msec). This recovery
period was sufficient to sustain effective stabilization, defined as UE loading within 1%
body-weight (BW) of its final steady-state value, across all simulations. Each perturbation
simulation included a single pulse-force disturbance applied at a single point. The location,
direction, magnitude, and duration of the perturbation were varied with each simulation.
Perturbations were applied at the COM location of the thorax, pelvis, femur, or shank
segment in the forward, backward, left, or right directions relative to a globally fixed
reference frame. These force disturbances ranged from 5% to 15% BW in magnitude and 50
to 500 msec in duration. Perturbations were also repeated at the system COM, expressed in
global three-dimensional coordinates.

H. Tuning Joint-Feedback Controller
For dynamic controller action, each of the nine joint inputs (‘i’) to the ANN was the sum of
the joint angle position and velocity errors (θ’s) multiplied by proportional (KP) and
derivative (KD) gains, respectively. This standard formulation for PD control to the ANN
was as follows:

(4)

Integral control was omitted for joint-feedback since it was assumed that system windup
errors [22] would be sufficiently eliminated by UE integral control. The ANN was originally
trained statically (i.e., each joint input was equal to Δθ, the unweighted position error from
setpoint position). However, optimal dynamic control was executed with inclusion of
derivative joint-feedback to drive angular velocities to zero and optimizing both proportional
and derivative feedback gains. Gains were optimized to minimize the objective function
criterion of the total two-arm UE loading necessary for stabilization during perturbation and
recovery over all 978 simulations. The gains for every joint input were optimally tuned
using an asynchronous parallel pattern set global search algorithm implemented in the
APPSPACK [36] software package running on a FUSION A8 multi-processor computer
(Western Scientific, Inc., San Diego CA). Algorithm parameters were determined such that
solutions were found within 100 hours of computational time. These parameters include
gains bounded between 0 and 20, initial step size equal to 1, step tolerance equal to 0.01, and
step contraction factor equal to 0.985. The initial gain values were based on manual tuning.
This process included stepwise incrementing of the proportional gain then derivative gain of
each joint to minimize UE loading while holding feedback gains at all other joints to zero.
The test perturbation for manual tuning was again a100N, 200 msec force pulse at the
thorax.

I. Testing Controller Performance
EEEExternal Force Pulse PerturbationsU—All 978 perturbation simulations were
repeated with the feedback controller active and with constant baseline (optimal or maximal)
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excitation levels under two-arm and one-arm support conditions. The level of significance of
any reduction in UE loading with the controller active compared to baseline was determined
across perturbation direction, location, and magnitude by multiple analysis of variance
(MANOVA).

UFunctional Task Performance (FTP)—functional implications of the controller were
assessed in simulation with application of sinusoidal force loads at one shoulder to mimic
postural disturbances due to weighted, voluntary single arm movements [21]. Three-
dimensional, sinusoidal force loading was applied at the left shoulder while UE control was
applied only at the right shoulder (i.e., one-arm support). The applied sinusoid forces were
as follows: Anterior / Posterior: 1 Hz, 10 N amplitude, 0 N offset; Right / Left: 1 Hz, 20 N
amplitude, 0 N offset; Superior/Inferior: 0.5 Hz, 20 N amplitude, −50 N offset. These
amplitude and frequency specifications were consistent with those observed in loaded
(2.27kg) single arm voluntary movements described in [21].

Controller Sensitivity—The ANN output sensitivity was calculated as the mean slope for
ANN output excitation across all the muscles versus the joint error input at neutral stance.
Feedback performance sensitivity was assessed by adding random position or velocity error
to only one joint-feedback at a time and repeating perturbation simulations and tracking of
UE loading. The relative contribution to degradation in controller performance of either
position or velocity error at a specific joint was defined as the increase in mean UE loading
relative to the sum of increases in mean UE loading across all joints.

III. Results
A. Stiffness Optimization Results

Only 14 iterations of the outer loop applying the regression in batch to the specified posture
space were required to converge upon the final stiffness and bias moment values (Table III).
Despite using only 16 muscle groups adjusted to generate typical forces following SCI,
feasible solutions were found for over 95% of the posture space that comprehensively spans
the BOS. The sagittal-plane bias moments at the trunk, hips and knees were all directed
towards extension, which is consistent with clinical objectives in applying stimulation for
standing following SCI [1]. However, the bias moment magnitudes were all considerably
less than the reported maximums (Table I) since they have been adjusted according to
gravitational requirements about the setpoint posture. This allowed greater joint-moment
capacity (i.e., higher stiffness values) to be available for active joint-error corrections. The
maximal joint stiffness value is also a byproduct of joint moment capacity (Table I) relative
to the specified range of motion (Table II). The largest maximal stiffness values was at the
ankles (> 6N-m/deg), which were only varied over 12 deg.

B. Artificial Neural Network Training Results
The correlation fits between target and prediction for the training, validation, and testing
data sets were all exceptionally high (> 0.98, Table IV) indicating good accuracy in
predicting changes in muscle excitation levels with corresponding changes in posture. High
correlation across the “random” postures further suggests strong universal prediction
capability. The error in predicting de-normalized excitation outputs was consistently small
(~0.03) compared to the typical mean prediction values (~0.4) across all data sets. The
standard deviations in error were higher than the mean error in all cases. However, these
values were still small relative to the mean prediction values themselves.
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C. Controller Gain Tuning
The final PID gains determined for the UE controller were 327N/m, 37N/m-sec, and 719N-
sec/m. During forward simulations, these gains resulted in a maximum model UE loading of
25.4% BW during the test perturbations, which is similar to typical arm support (3 to 55%,
17% average) as reported in [37] for recipients of implanted FNS standing systems. The
global-search optimization determined a set of gains (Table III) for the ANN-PD controller
within the specified bounds that minimized the objective function of total UE loading across
all simulations by 55% compared to the initial, manually tuned gains. The relatively high KP
at the ankles and trunk indicate their significant contributions to sagittal-plane system
position in reducing UE loading relative to F/E at the hips or knees. KD at the trunk is the
highest, further indicating the importance of tracking dynamic changes at the trunk for
minimizing UE loading. While only hip Ab/Ad provides significant medio-lateral
stabilization, the intermediately low proportional KP and KD are explained by strong medio-
lateral stabilization from the upper extremities and wider base of support in that direction.

Since KP and KD for joint-feedback inputs from the knee and KP for hip F/E were driven to
zero, these measured changes were U inconsequential for reducing UE loading against
disturbances. Their effects were either small or redundantly compensated by measurements
at other DOFs. Across all simulations, the knees remained effectively locked (deviations < 2
deg) in extension with near maximal (>90%) stimulation of the vastii muscles. This outcome
results from knees typically remaining extended during perturbed standing [17] and
gravitational requirements to do so being met using SCI-affected vastii. For UE stabilization
in the sagittal plane, feedback gains for position measurements at the ankles and trunk were
much higher and obviated those at hip F/E. But hip F/E control remains viable dynamically
given non-zero KD.

D. Controller Performance, Sensitivity Results
Typical two-arm UE loading and muscle-induced joint moments for baseline (optimal and
maximal) and controller-active conditions are shown in Figure 3, where force pulses (15%
BW, 250 msec) were either anteriorly or laterally (right) directed at the model COM. Across
both directions, total UE loading was reduced during the perturbation plus recovery period
by 46% and 36% by the controller compared to optimal and maximal baseline, respectively.
The controller provided robust return to the setpoint posture with near-zero final UE
loading. The joint moments produced by the controller during steady-state before and after
the perturbation were similar (within 10N-m or 30% of maximum) to optimal baseline and
lower than maximal baseline across all joints. Consistent with anatomical function, ankle
plantar-flexion and hip extension were prominent in resisting a forward disturbance.
Correspondingly, right hip abduction and left hip adduction were strongly activated to reject
the rightward disturbance. Trunk extension was small even against a forward disturbance
since it was applied at the system COM, which is too low to produce significant trunk
flexion. Knee extension moments were small in all cases despite high vastii excitation
because the knees were generally held in hyper-extension where vastii length-tension
properties limited force output. The largest (>10N-m) controller mediated changes in joint
moments occurred at the ankles and hips, further validating ankle and hip strategies [20] for
stable standing.

Composite simulation results for one-arm and two-arm resistance to perturbations are shown
in Table V. Maximal constant excitation always resulted in lower UE loading than optimal,
but inclusion of the joint controller universally improved performance over either baseline
case. The conditions where the controller resulted in the smallest improvement in relative
performance were backward and thorax perturbations (only 23, 35% reductions in UE
loading versus maximal baseline). These results are likely due to a lack of available flexion
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musculature to be activated at the hips and trunk to effectively counter these disturbance
types. UE loading also increased as perturbations were applied to more superiorly located
segments. Perturbations applied to lower segments were more attenuated by muscle and
inertial effects before greater UE stabilization was required.

When comparing one-arm and two-arm support conditions, UE loading is significantly
greater (i.e., standing is more unstable) during one-arm support under optimal or maximal
baseline stimulation. Optimal baseline stimulation was further ineffective in one-arm
support as the model COM occasionally failed to return to within 0.1m of its original
position following disturbances. With the ANN controller active, similar UE loading was
expended in resisting perturbations with either one-arm (32N) or two-arm (38N) support,
demonstrating the consistency and value of controller feedback. The mean reduction in UE
loading with the controller active compared to maximal baseline across all force pulse
perturbations over both one-arm and two-arm conditions was 55%. Additionally, MANOVA
indicated significant reduction in UE loading with rejection of the null hypothesis of equal
means at p = 0.05 across all perturbation variables (direction, location, amplitude) using the
controller compared to baseline. During one-arm FTP, the controller kept the model erect
and reduced UE loading by 84% compared to maximal baseline excitation.

Feedback error analyses for individual joints (Table III) suggest rise in UE loading was most
sensitive to position error at ankle PF/DF (53%) and velocity error at hip Ab/Ad (71%).
Sensitivity of ANN excitation output to the same joint inputs was correspondingly high.
While excitation output sensitivities about erect stance were desirably low (< 0.1) indicating
stable performance, ankle PF/DF and hip Ab/Ad sensitivities were notably higher than those
at the trunk or hip F/E. Modulation of knee F/E elicits the greatest mean change across all
excitation outputs. This was due to knee extension being critical to preventing outright
collapse and the ANN being trained on a space including knee-flexed postures. But during
dynamic forward simulations, knee position and velocity changes were inconsequential to
UE stabilization and resulted in optimal feedback gains of KP = KD = 0 at the knees.
Accordingly, the reduction in controller performance due to feedback error at the knees was
also zero.

IV. Discussion
Previous studies [3-7] have demonstrated measurable benefit using joint-feedback control
for FNS standing, but under limited conditions (e.g., ankles only, knees only, hips only,
sagittal-plane only). Our simulation results demonstrate that a neuroprosthesis concurrently
regulating ankles, knees, hips, and trunk in three dimensions may also be realizable. These
results suggest potentially substantial benefit despite limitations in the number of SCI-
atrophied muscles targeted for stimulation in current clinical FNS standing systems [1].
Specifically, an ANN-PD controller employing joint error feedback from the lower
extremities and trunk to drive ANN output of muscle excitation levels improved postural
disturbance response compared to constant excitation levels typically used clinically. Using
reduction in UE loading as the metric, the controller performed better than both optimal and
maximal baseline cases for constant excitation. The controller exhibited universal
improvement for both two-arm and one-arm support conditions when resisting perturbations
from either force pulses or simulated voluntary arm movements.

Muscle synergies consistent with static joint stiffness values provided viable data for
training an ANN employed to provide joint-feedback control about an erect setpoint posture.
Applying active stiffness by FNS has been previously investigated [7, 18] and minimal
ankle stiffness levels have been suggested for improved standing balance. This simulation
study demonstrated that concurrently maximizing stiffness at all joints subject to typical
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SCI-adjusted musculature can produce a mapping for comprehensive joint-feedback to
improve standing performance. The static objective of maximizing stiffness values and the
dynamic objective of driving the stiffness mapping to reduce UE loading were successfully
handled independently. This approach to determine maximal stiffness values relied on
regression fits across an entire static posture space to incrementally adjust stiffness and bias
values and allow the optimizer to produce solutions for a maximum number of postures.
Since the stiffness values themselves were only incrementally reduced from high initial
values and not varied according to strict optimization, the final set of stiffness values may
not necessarily be a global maximum. However, this procedure intuitively determined
stiffness and bias values from a static model of joint stiffness [17] while not requiring large
computational time in globally searching for stiffness values in addition to optimizing
muscle excitation solutions for 4000+ postures. Overall, the iterative regression procedure
produced a set of stiffness values that met moment constraints according to the strength of
musculature available and the posture space explored about the selected setpoint posture.

Higher stiffness values could be produced with either stronger muscle responses or a
reduced posture space that is more pertinent to FNS standing whereby smaller ranges of
motion or simplified (e.g., ankle-hip [20]) strategies may be observed. However, even with
the comprehensive space investigated, significant UE loading reductions could be achieved.
Variation in musculoskeletal parameters or selection of a different setpoint posture would
also change achievable stiffness values. While stiffness values were adjusted regardless of
which joints are most affected, this paradigm could be modified to accentuate higher
stiffness at particular joints if it improves dynamic standing performance.

A conventional PD feedback control law was successful in reducing UE loading by driving
an ANN that represents the nonlinear biomechanics of the system [14]. Only a feedforward
ANN structure was necessary given inclusion of derivative control and optimal gain tuning.
Derivative feedback to drive the ANN suggests a damping level response in addition to
stiffness is beneficial for standing performance. Optimal tuning of the PD feedback
parameters effectively compensated for muscle activation delays by substantially
minimizing UE loading from initial, manually-tuned gain values. The gain optimization
procedure employed a global search algorithm to produce a solution that synergistically
considers multiple joints and found a set of gains within the specified bounds. The solution
search is presumed sufficiently rigorous since the step tolerance (0.01) for termination was
small relative to the search space (0 to 20). The search was not repeated at other initial set
values since the manual tuning-procedure was intuitive in producing an initial set.
Ultimately, the search algorithm determined optimal gains that further reduced UE loading
using the fixed ANN structure.

A dynamic (time-delayed) ANN structure [14, 15] was not required for this FNS application
since it has no dynamic open-loop element, such as commanded trajectory control. Although
a dynamic ANN could be employed, tuning a PD controller to drive a static ANN is more
desirable for clinical implementation. First, the static ANN can produce a unique solution at
every static posture included or interpolated in its training space. A dynamic ANN employs
time-based data which then requires consideration of trajectory characteristics (e.g., speed,
path) for training. Second, while a dynamic ANN can be created to adapt to time-dependent
data observed online, it would require varying of not only the 18 feedback gains but all
ANN parameters (588 weights and biases in this study). Our formulation relies on a fixed-
parameter ANN structure only to provide a black-box representation of the nonlinear
biomechanical system and resolve basic anatomical constraints. These include closed-chain
dependencies, mass-inertia properties, and musculoskeletal parameters determining the
maximal stiffness values. This facilitates intuitive clinical tuning of gains at individual joints
to improve performance.
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Primary challenges to clinical implementation of a model-based control system include
employing user-specific parameters. The anatomical model can be scaled readily to user
length and mass parameters. Translating force generating characteristics of stimulated
muscles to model parameters is not direct, but a similar scaling procedure as the one
presented here could be performed for a specific user. Using a dynamometer, isometric joint
moments are measured at the ankles, knees, hips, and trunk in response to a range (e.g.,
threshold to maximal) of pulse-width modulated stimulation. To correspond to model
excitation levels, the stimulation range is normalized (0 to 1), and recruitment nonlinearities
are represented as an added transfer function in the muscle model.

Characterizing a user-specific UE control structure is also important for initial model-based
controller development. Integrating volitional control into LE FNS feedback systems has
been identified as an important consideration for future developments in FNS standing [8,
38]. In this study, ANN training was independent of UE control since the static formulation
intrinsically assumed hand-free maintenance of unperturbed standing. Subsequent reduction
in UE loading primarily relied upon system tuning. In this model-based study, optimal
tuning of FNS controller gains was contingent on the specific UE control structure itself
since gains were varied to reduce UE output. The UE controller presented in this study was
defined by only four parameters (one time-delay and three controller gains) and can
potentially be optimized to represent the behavior of a specific user. User UE loading
performance data can be collected using a walker with instrumented handles and a
perturbation system (e.g., mounted linear actuators) capable of systematically applying loads
upon a standing subject. Optimization techniques can then be applied to determine the UE
model parameters that replicate this performance loading in simulation for the same loading
conditions. This user-specific structure would be vital in constructing the best first-
approximation of a model-based controller for clinical deployment. However, a systematic
procedure for tuning an FNS controller online according to live user performance is still
necessary since the user may adapt their volitional responses accordingly. In the future, it
may be beneficial to investigate system tuning according to additional performance metrics
(e.g., minimizing COM, joint-angle excursions). But if upper-body loading is required for
stabilization, it is the primary SCI standing performance criterion to improve manual
function and ease of system use.

Although this simulation study demonstrates potential benefit for comprehensive joint-
feedback of FNS standing, a fundamental trade-off in clinical deployment must be
considered. Closed-loop control of FNS standing requires sufficient, high-fidelity sensor
measurements, but to facilitate clinical acceptance it is important to minimize the amount of
worn instrumentation. Without bracing to restrain any DOFs, an inertial sensor must be
placed on at least eight segments to attain the 18 position and velocity measurements
proposed, which would be clinically unviable. However, this study suggests that accurate
feedback measurements from certain joint DOFs (ankle PF/DF, hip Ab/Ad) are especially
critical to standing performance and should be carefully considered for sensor placement
and redundancy. The sensitivity to ankle position and hip Ab/Ad velocity is likely a result of
both natural system biomechanics and the musculoskeletal parameters used in our analysis.
In the coronal plane, the primary muscles available to make corrections are the hip ab/
adductors. In the sagittal plane, small changes in ankle angle result in significant shifts in
system COM when standing approximates an inverted pendulum [16]. Our results also
indicate certain joint feedback signals may not be as critical. Knee feedback was typically
negligible with sufficient vastii strength to damp knee buckling and facilitate ankle, hip, and
trunk strategies. Furthermore, interactions at the trunk and hip may be sufficiently coupled
to describe both joints with a reduced sensor set. Kim et al. [39] has suggested reduction of
DOFs for FNS feedback control given the closed-chain nature of bipedal standing. However,
even with systematic reduction of required feedback, further study is necessary to assess
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clinical viability of joint-based feedback control including performance assessment in the
presence of typical sources of feedback error (e.g., sensor measurement and placement
accuracy, insecure mounting on compliant tissue). The presented model system serves as an
appropriate test-bed for future study to systematically introduce feedback error and
quantitatively track performance degradation.

Upright maintenance of COM within the BOS is a fundamental goal of standing [29], and
comprehensive joint-feedback by nature controls COM. But reducing joint-feedback signals
can contaminate that representation of COM. Consequently, alternative feedback parameters
should also be explored to reduce the sensors required for effective neuroprosthetic standing
control. Desirable characteristics include being robust, faster acting than joint-feedback, and
focally sensitive to COM dynamics. Thus, control structures utilizing parameters such as
trunk acceleration, which is easily measured with a torso-mounted accelerometer and can be
used to characterize balance control [40], may be valuable. An acceleration-based controller
in isolation or in conjunction with minimal joint feedback may then extend functionality and
facilitate clinical acceptance of automatic FNS control systems for regulating standing
posture and balance.

While muscle fatigue is an important issue since it limits prolonged standing time with FNS
[8, 38], it was not directly addressed in this study. If sufficient musculature were accessible
to FNS for system redundancy, then similar ANN control structures could be devised for
distinct muscle sets. This would facilitate controller development that both coordinates
synergistic control action and reduces stimulation duty cycle to offset effects of fatigue.

V. Conclusions
Simulation results indicate that comprehensive three-dimensional joint-feedback control can
markedly improve performance of a FNS standing system against postural disturbances over
constant muscle excitation. The ANN approach presented in this study successfully
produced a control solution that synergistically distributes muscle excitations while
considering musculature that is multi-articulate, redundant, three-dimensional, and affected
by SCI. Upper extremity loading during either external perturbations or one-arm task
performance was reduced using the controller. While classic joint-feedback offers a
potentially effective mode of comprehensive FNS standing control, alternative feedback
signals that require fewer sensors and are focally sensitive to center of mass dynamics
should be investigated.
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Figure 1.
Overall model system. Two parallel controllers acting to maintain three-dimensional model
of bipedal SCI stance at setpoint position against postural perturbations: (1) FNS controller
modulates trunk, lower-extremity muscle excitations according to joint-feedback driving an
ANN trained to output muscle excitations consistent with producing specified joint stiffness
values, (2) Upper-extremity (UE) controller, representing user volitional loading, produces
three-dimensional point forces at shoulders according to shoulder position errors relative to
the set-point posture. Joint (angular) errors are defined with respect to the anatomical
reference frame local to each joint. Shoulder positional errors are expressed in globally-fixed
Cartesian coordinates (3-dimensions: anterior-posterior, medial-lateral, inferior-superior).
The gains for UE control are determined according to Ziegler-Nichols tuning rules [22].
FNS controller gains are optimized using global-search algorithm [36] to minimize UE
controller output (“loading”) against perturbations.
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Figure 2.
A: Diagram of iterative regression scheme to determine maximal stiffness (K) and
corresponding bias (B) moment values for each joint. For given set of K and B values for all
joints, optimization routine [30] applied to all postures. Due to limitation in SCI muscle
strength, all constraint moments, defined according to K and B, unlikely to be met by
optimizer solutions. Linear regression applied to entire moment versus error solution space
to re-adjust K and B (“outer loop”) according to fit for each joint DOF and in each direction.
Note: For a bi-directional (e.g., flexion and extension) joint DOF, Bnet = mean(Bflexion,
Bextension). Optimization routine [30] re-applied to all postures to determine solutions for
new constraint moment targets. Iteration scheme continues until convergence (mean ∣ΔK∣ <
0.005N/m-deg). The joint errors and muscle excitation solutions corresponding to the final
K, B values serve as the ANN inputs and outputs, respectively. B: Example of linear
regression applied to solution space for single joint DOF in one error direction. Optimizer
produces either feasible solution points adhering to target solution line, representing
constraint joint moments for given iteration, or infeasible solutions points deviating from
target solution line. Linear regression applied to entire solution (feasible and infeasible)
space to re-adjust K, B for next iteration.
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Figure 3.
Two-arm UE loading and muscle-induced joint moments to stabilize against perturbation
pulse (15% body-weight, 250 msec) applied at model COM in either forward or side (i.e.,
right) direction.
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TABLE I

STIMULATED MUSCLES AND CORRESPONDING SCI SCALING FACTORS AND BASELINE
EXCITATION LEVELS

Muscle Group
(stimulated by single channel) Select Joint Articulation(s) SCI Joint Moment

(N-m) from [28] SCI Scaling Factor Optimal, Maximal
Excitation Level

Soleus, Gastrocnemius Ankle Plantarflexion 55 0.37 0.049, 0.262

Tibialis Anterior Ankle Dorsiflexion 15 0.70 0.000, 1.000

Vastii (Medialis, Intermedius, Lateralis) Knee Extension 80 0.29 0.960, 1.000

Adductor Magnus Hip Extension, Hip Adduction 63, 30 0.34, 0.84 → 0.59* 0.767, 1.000

Gluteus Maximus Hip Extension 63 0.34 1.000, 1.000

Gluteus Medius Hip Abduction 44 0.78 0.281, 1.000

Semimembranosus Hip Extension, Hip Adduction 63, 30 0.34, 84 → 0.59* 0.467, 1.000

Erector Spinae Trunk Extension 70 0.53 0.645, 1.000

*
Note:. Scaling factor for muscle group taken to be average across two major joint articulations
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TABLE II

Joint DOF Angle Limits for Posture Space

Joint DOF Angle Limits
(deg)

Ankle PF/DF 4PF to 8DF

Knee F/E 30F to 0E

Hip Ab/Adduction 8Ab to 8Ad

Hip F/E 40F to 0E

Trunk F/E 50F to 0E
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TABLE III

CONTROLLER DEVELOPMENT RESULTS FOR EACH JOINT-FEEDBACK INPUT

Joint-feedback Input
Flexion
Stiffness

(N-m/deg)

Extension
Stiffness

(N-m/deg)

Bias
Moment

(N-m)

KP
(unitless)

KD
(sec)

Mean ANN
Output

Sensitivity

Position Error
Performance

Sensitivity

Velocity Error
Performance

Sensitivity

Ankle PF/DF 6.41 6.35 5.55 PF 6.49 0.52 0.031 53% 21%

Knee F/E 1.57 0.00 9.53 E 0.00 0.00 0.050 0% 0%

Hip Ab/Adduction 2.76 3.30 0.09 Ab 2.22 1.71 0.040 23% 71%

Hip F/E 1.18 0.00 8.52 E 0.00 1.08 0.017 0% 6%

Trunk F/E 0.94 0.00 29.95 E 7.78 13.64 0.016 24% 2%
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TABLE IV

ARTIFICIAL NEURAL NETWORK RESULTS

Data Set Mean Output Mean Error ± S.D. Correlation

Training 0.40 0.03 ± 0.04 0.991

Validation 0.41 0.03 ± 0.05 0.987

Testing 0.42 0.04 ± 0.05 0.985

Random 0.31 0.03 ± 0.05 0.984
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TABLE V

UPPER EXTREMITY (UE) LOADING FOR STABILIZATION AGAINST POSTURAL DISTURBANCES

Disturbance Condition Mean Baseline
UE Loading (N)

Mean Controller
UE Loading (N)

%Reduction
w/Controller

UDirection Optimal Maximal

Forward 131 94 38 60

Backward 64 44 34 23

Side (Left or Right) 102 71 33 54

Segment Location

Thorax 121 95 62 35

Pelvis 115 81 43 47

Thigh (Left or Right) 103 70 32 54

Shank (Left or Right) 77 43 12 72

Support Conditions

Two-Arm Support 64 56 38 32

One-Arm Support 146 88 32 64

One-Arm FTP 126 108 17 84
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