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Abstract

Background:
Glucose meter performance is commonly measured in several different ways, including the relative bias and 
coefficient of variation (CV), the total error, the mean absolute relative deviation (MARD), and the size of the 
interval around the reference value that would be necessary to contain a meter measurement at a specified 
probability. This fourth measure is commonly expressed as a proportion of the reference value and will be 
referred to as the necessary relative deviation. A deeper understanding of the relationships between these 
measures may aid health care providers, patients, and regulators in comparing meter performances when 
different measures are used.

Methods:
The relationships between common measures of glucose meter performance were derived mathematically.

Results:
Equations are presented for calculating the total error, MARD, and necessary relative deviation using the 
reference value, relative bias, and CV when glucose meter measurements are normally distributed. When 
measurements are also unbiased, the CV, total error, MARD, and necessary relative deviation are linearly 
related and are therefore equivalent measures of meter performance.

Conclusions:
The relative bias and CV provide more information about meter performance than the other measures 
considered but may be difficult for some audiences to interpret. Reporting meter performance in multiple ways 
may facilitate the informed selection of blood glucose meters.
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Introduction

Glucose meters are often used by diabetes patients 
in controlling their blood glucose levels.1 The use of 
meters that produce misleading measurements can harm 
blood glucose control and increase the risk of diabetes 
complications such as retinopathy, nephropathy, and 
neuropathy.2,3 The veracity of meters is commonly 
measured in several different ways,4–7 making comparisons 
of meter performances difficult. A deeper understanding 
of the relationships between different performance 
measures may aid health care providers, patients, and 
regulators in evaluating meters and thereby improve 
typical meter performance.

The relationships between four common methods of 
measuring performance will be analyzed. The first method 
for indicating meter performance that will be considered 
is to report the relative bias and coefficient of variation (CV). 
The second method is to use a linear combination of the 
standard deviation and the absolute value of the bias to 
create a single measure of performance called the total 
error. The third method is to report the mean absolute 
relative deviation (MARD) from the reference value, also 
sometimes called the mean absolute relative error or 
mean absolute error. The fourth method is to report the 
size of the interval around the reference value necessary 
to contain a meter measurement with a specified probability. 
Typically, this size is reported as a proportion of the 
reference value, and, therefore, this measure of meter 
performance will be referred to as the necessary relative 
deviation. For example, the International Organization 
for Standardization performance standard for glucose 
metersstipulates that, for blood glucose levels ≥75 mg/dl  
(4.2 mmol/liter), 95% of meter measurements should be 
within 20% of the reference value.8 In that case, the necessary 
relative deviation must therefore be less than 20%.

Under common assumptions about the distribution of 
meter measurements,5,6,9 the relationships between these 
various performance measures can be determined and are 
described here. Knowledge of these relationships may 
facilitate comparison of meter performances and illuminate 
the strengths and weaknesses of the different measures.

Methods
Equations relating common measures of meter 
performance were derived mathematically for glucose 
meter measurements that are normally distributed.  

The normal distribution arises naturally in a wide variety 
of settings and has been used previously to model 
glucose meter performance.5,6,9

Results
Let r denote the reference blood glucose value. Meter 
measurements will be modeled using the random 
variable M, and a realized value of that random variable 
will be denoted by m. Suppose that, given r, meter 
measurements are normally distributed with mean mr 
and standard deviation sr. In this statistical model, the 
standard deviation captures all sources of variation, 
including variation due to random interferences.10 Let

f(m; mr, sr) = 1
sr√2p

 e
–(m – mr)2

2sr
2  denote the probability density

function of M, and let F(m; mr, sr) = ∫
m

–∞
 

1
sr√2p

 e
–(x – mr)2

2sr
2 dx

denote the cumulative density function of M. The relative

bias of M given reference value r is relbias = mr – r
r  and

CV = 
sr
mr

.

Let F–1 be the inverse function of the cumulative density

function F. Let zp = 
F–1 (p; mr, sr) – mr

sr
.

Total error TEp is defined by

TEp = |mr – r| + zpsr.                  (1)

Rewriting Equation (1) in terms of r, relative bias, and 
CV yields

TEp = |r · relbias| + zpCV(r · relbias + r).     (2)

In the special case of mr = r, so that meter measurements 
are unbiased, Equation (2) simplifies to

TEp = zpr · CV                       (3)

As demonstrated by Equation (2), different combinations 
of reference value, relative bias, and CV may correspond 
to the same total error. Figure 1 shows six different 
glucose meter measurement distributions, each with  
TE0.975 = 20 mg/dl (1.1 mmol/liter).
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Different distributions with the same total error may differ 
substantially in the proportion of glucose measurements  
that are clinically accurate. Clarke’s error grid11 is 
sometimes used to categorize meter measurements 
according to the clinical significance of measurement 
error. Measurements that are clinically accurate fall 
into zone A of the error grid. Shaded areas under the 
distributions in Figure 1 correspond to measurements 
that would fall outside of zone A. The proportion of 
the area under each distribution that is shaded is the 
proportion of measurements that would fall outside of zone 
A. For the distributions in Figure 1, those proportions 
range from nearly zero to approximately 0.14.

The MARD can also be calculated using the reference 
value, relative bias, and CV. The MARD is defined by

MARD = E
⎛
⎜
⎝

⎞
⎟
⎠

M – r
r                     (4)

Under the current assumptions,

E
⎛
⎜
⎝

⎞
⎟
⎠

M – r
r  = – ∫

r

–∞

m – r
r

 f(m; mr, sr)dm

+ ∫
∞

 r

m – r
r  f(m; mr, sr)dm   (5)

Using the earlier definitions, it can be shown that

E
⎛
⎜
⎝

⎞
⎟
⎠

M – r
r  = (1 – 2F(r; mr, sr))

⎛
⎜
⎝

⎞
⎟
⎠

mr – r
r

 + 
sr√2p
pr  e 2

⎛
⎜
⎝

⎞
⎟
⎠

r – mr
sr

2

–

(6)

Substituting the expression on the right-hand side of 
Equation (6) into Equation (4) and rewriting the equation  
in terms of r, relative bias, and CV yields

Figure 1. Six meter measurement distributions with TE0.975 = 20 mg/dl (1.1 mmol/liter). The reference value, relative bias, and CV corresponding 
to each distribution appear above the distribution. The reference value for each distribution is also labeled in bold on the horizontal axis. The CVs 
have been rounded to three decimal places. The shaded area under each curve corresponds to meter measurements falling outside of zone A in 
Clarke’s error grid.11 The proportion of the area under each curve that is shaded is the proportion of meter measurements that would fall outside 
of zone A.
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MARD = (1 – 2F(r; r · relbias

        + r, CV(r · relbias + r))) r · relbias
r

⎛
⎜
⎝

⎞
⎟
⎠

+ 
(1 + relbias)CV√2p

p  e 2

relbias
CV(1 + relbias)

⎛
⎜
⎝

⎞
⎟
⎠

–
2

      (7)

In the special case of mr = r, so that meter measurements 
are unbiased, this simplifies to

MARD = 
√2p
p

 · CV                    (8)

As with the total error, different combinations of 
reference value, relative bias, and CV may correspond 
to the same MARD. Figure 2 shows six different 

glucose meter measurement distributions, each with  
MARD = 0.08.

Shaded areas under the distributions in Figure 2 
correspond to measurements that would fall outside of 
zone A in Clarke’s error grid.11 The proportion of the area 
under each distribution that is shaded is the proportion 
of measurements that would fall outside of zone A.  
For the distributions in Figure 2, those proportions range 
from approximately 0.025 to approximately 0.046.

As with the total error and MARD, the necessary relative 
deviation can be determined using the reference value, 
relative bias, and CV. Let reldevp denote the relative 
deviation from the reference value necessary to create 
an interval that has specified probability p of containing 
a meter measurement. Under the current assumptions, 

Figure 2. Six meter measurement distributions with MARD = 0.08. The reference value, relative bias, and CV corresponding to each distribution 
appear above the distribution. The reference value for each distribution is also labeled in bold on the horizontal axis. The CVs have been rounded 
to three decimal places. The shaded area under each curve corresponds to meter measurements falling outside of zone A in Clarke’s error grid.11 
The proportion of the area under each curve that is shaded is the proportion of meter measurements that would fall outside of zone A.
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the probability that a realized value m will be between  
r – r · reldevp and r + r · reldevp is given by

∫
r + r · reldevp

r – r · reldevp

 1
sr√2p

 e
–(x – mr)2

2sr
2 dx

= F(r + r · reldevp; mr, sr) – F(r – r · reldevp; mr, sr)  (9)

Rewriting the right-hand side of Equation (9) in terms of  
r, relative bias, and CV and setting it equal to p yields 
the following equation, which can be solved numerically 
for reldevp:

F(r(1 + reldevp); r · relbias + r, CV(r · relbias + r))

– F(r(1 – reldevp); r · relbias + r, CV(r · relbias + r)) = p (10)

The relationship between the total error and the necessary 
relative deviation differs according to the magnitude 
of the relative bias. If the relative bias is positive and 
large relative to the CV, then the distribution of meter 
measurements will be concentrated above r, and, therefore, 
F(r(1 – reldevp); mr, sr) will be near zero. In that case, by 
Equation (10),

F(r(1 + reldevp); mr, sr) ≈ p              (11)

Similarly, if the relative bias is negative and large in 
magnitude relative to the CV, then the distribution of 
meter measurements will be concentrated below r, and, 
therefore, F(r(1 + reldevp); mr, sr) will be near one. In that 
case, by Equation (10),

F(r(1 – reldevp); mr, sr) ≈ 1 – p            (12)

By symmetry of the normal distribution, z1 – p = –zp.  
Using this fact and the earlier definitions, it can be shown 
through applying F–1 that Equations (11) and (12) both 
imply that, if the relative bias is large in magnitude 
relative to the CV, then

TEp ≈ r · reldevp                     (13)

Boyd and Bruns6 described the total error as a means of 
relating performance as measured by the relative bias 
and CV to performance as measured by the necessary 
relative deviation.9 This analysis demonstrates that the 
relationship is generally approximate.

In the special case of unbiased meter measurements, so 
that mr = r, a simplification of Equation (10) is possible. 
Using the symmetry of the normal distribution around r 

and applying F–1, it can be shown that

reldevp = z1 + p
2

 · CV                   (14)

As with the total error and MARD, different combinations 
of reference value, relative bias, and CV may correspond 
to the same necessary relative deviation. Figure 3 shows 
six different glucose meter measurement distributions, 
each with reldev0.95 = 0.20.

Shaded areas under the distributions in Figure 3 
correspond to measurements that would fall outside 
of zone A in Clarke’s error grid.11 The proportion of 
the area under each distribution that is shaded is the 
proportion of measurements that would fall outside of 
zone A. For reference values of greater than 70 mg/dl 
(3.9 mmol/liter), glucose measurements fall outside of 
zone A if they deviate from the reference value by more 
than 20% of the reference value. Because reldev0.95 = 0.20 
for each distribution in Figure 3, meter measurements for 
each distribution deviate from the reference value by 
less than 20% of the reference value with a probability of 
0.95. Therefore, for all six distributions in Figure 3, the 
proportion of measurements outside of zone A is 0.05.

If glucose meter measurements are normally distributed 
and unbiased, then the total error, MARD, and necessary 
relative deviation are all linear functions of the CV. 
Those measures of meter performance are therefore 
equivalent, and Equations (3), (8), and (14) can be used 
to convert between them. Combining Equations (3) and 
(14) yields a relationship that differs slightly from the 
approximation in Equation (13) for when the relative 
bias is large in magnitude relative to the CV,

TEp = r 
zp

z1 + p
2

 · reldevp                  (15)

Combining Equations (8) and (14) yields

MARD = 
√2p
pz1 + p

2

 · reldevp                (16)

Breton and Kovatchev5 simulated the relationship between 
the MARD and the necessary relative deviation with a 
performance level of 95% when meter measurements 
were unbiased and normally distributed. In terms 
of Equation (16), z 1 + 0.95

2

 ≈ 1.96, and the equation

implies that the MARD is equal to the necessary relative 
deviation multiplied by approximately 0.4071. Therefore, 
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with a necessary relative deviation of 5%, the MARD 
would be approximately 2.0355%. This is very close to 
the 2.01% that Breton and Kovatchev5 reported from 
their simulations.

While the relative bias and CV can be used to determine 
the total error, MARD, or necessary relative deviation, 
the reverse is not true. Knowing any one of the total 
error, MARD, or necessary relative deviation would not 
provide enough information to uniquely identify both 
the relative bias and CV. Furthermore, knowing any one 
of the total error, MARD, or necessary relative deviation 
would be insufficient to determine the other two.

Discussion
The assumption of a normal distribution of meter 
measurements is both common and reasonable. The 

normal distribution is also tractable analytically, which 
permits the mathematical derivations presented here. 
Actual distributions may differ, however, and may vary 
across meters and patients. If actual distributions are not 
normal, then the relationships derived here can serve 
only as approximations.

A deeper understanding of the relationships between 
measures of glucose meter performance could be 
gained by extending the current analysis to other meter 
measurement distributions. Of particular interest would 
be distributions with higher probabilities of extreme 
values than the normal distribution. Large measurement 
errors could have dangerous consequences,11,12 and an 
exploration of the relationships between performance 
measures when meter measurements have such 
distributions may therefore be valuable.

Figure 3. Six meter measurement distributions with reldev0.95 = 0.20. The reference value, relative bias, and CV corresponding to each distribution 
appear above the distribution. The reference value for each distribution is also labeled in bold on the horizontal axis. The CVs have been rounded 
to three decimal places. The shaded area under each curve corresponds to meter measurements falling outside of zone A in Clarke’s error grid.11 
The proportion of the area under each curve that is shaded is the proportion of meter measurements that would fall outside of zone A.
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Another potentially valuable extension of the current 
analysis would be explicitly incorporating the 
relationships between individual characteristics and 
meter measurement distributions. Meter measurement 
distributions may vary across patients, and although 
the current analysis is consistent with such variation, 
that variation has not been explicitly modeled here. 
Incorporating differences in individual characteristics 
could aid health care providers and patients in 
understanding the implications of such differences.

If meter measurements are normally distributed, then 
reporting the reference value, relative bias, and CV 
provides more information than the other methods of 
describing meter performance discussed earlier. It is 
not surprising that separately reporting measures of the 
center and spread of the distribution would provide more 
information than reporting a single performance measure 
such as the total error, MARD, or necessary relative 
deviation. In the case of normally distributed meter 
measurements, the reference value, relative bias, and CV 
provide enough information to uniquely determine the 
other measures of performance. The special power of 
that method of describing performance arises because 
the normal distribution is completely characterized by 
the mean and standard deviation and it is possible to 
recover those parameters.

Conclusions
This analysis has implications for the reporting of meter 
performance. The relative bias and CV provide more 
information about meter performance than the other 
measures discussed earlier, and reporting the relative bias 
and CV may be beneficial. The relative bias and CV are, 
however, more difficult to interpret than a single number 
such as the total error, MARD, or necessary relative 
deviation and therefore may not be the best way of 
communicating performance to all audiences. Different 
methods of reporting performance may be optimal for 
different audiences, and reporting meter performance 
in multiple ways may facilitate the comparison and 
informed selection of blood glucose meters.
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