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Summary
Recent guidance from the Food and Drug Administration for the evaluation of new therapies in the
treatment of type 2 diabetes (T2DM) calls for a program-wide meta-analysis of cardiovascular
(CV) outcomes. In this context, we develop a new Bayesian meta-analysis approach using survival
regression models to assess whether the size of a clinical development program is adequate to
evaluate a particular safety endpoint. We propose a Bayesian sample size determination
methodology for meta-analysis clinical trial design with a focus on controlling the type I error and
power. We also propose the partial borrowing power prior to incorporate the historical survival
meta data into the statistical design. Various properties of the proposed methodology are examined
and an efficient Markov chain Monte Carlo sampling algorithm is developed to sample from the
posterior distributions. In addition, we develop a simulation-based algorithm for computing
various quantities, such as the power and the type I error in the Bayesian meta-analysis trial
design. The proposed methodology is applied to the design of a phase 2/3 development program
including a noninferiority clinical trial for CV risk assessment in T2DM studies.
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1. Introduction
The recent guidance document from the Food and Drug Administration (FDA) for the
evaluation of new therapies in the treatment of type 2 diabetes (T2DM) (www.fda.gov/
downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf),
calls for a program-wide meta-analysis of cardiovascular (CV) outcomes. This guidance
requires that before submission of a new drug application, one must show that the upper
bound of the two-sided 95% confidence interval (CI) for the estimated risk ratio for
comparing the incidence of important CV events occurring in the investigational agent to
that of the control group is less than 1.8. This can be demonstrated either by performing a
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meta-analysis of the randomized phase 2 and phase 3 studies or by conducting an additional
single, large postmarketing safety trial. If the premarketing application contains clinical data
from completed studies showing that the upper bound of the 95% CI for the estimated risk
ratio is between 1.3 and 1.8 and the overall risk-benefit profile supports approval, a
postmarketing trial generally will be necessary to definitively show that the upper bound of
the 95% CI is less than 1.3. On the other hand, if the premarketing clinical data show that
the upper bound of the 95% CI is less than 1.3, then a postmarketing CV trial generally may
not be necessary. This requirement will most likely necessitate the performance of a specific
CV outcomes study for any new therapy, but would also almost certainly include integrating
data across randomized phase 2 and phase 3 studies. This particular guidance document
establishes, for the first time, that the FDA accepts prospectively designed, formal meta-
analysis in the regulatory approval path.

In 2009, the Safety Planning, Evaluation and Reporting Team (Crowe et al., 2009), formed
in 2006 by the Pharmaceutical Research and Manufacturers of America with FDA
participation, gave detailed recommendations for a well-planned and systematic approach to
proactively plan for meta-analysis of the program-level safety data. In particular, Safety
Planning, Evaluation and Reporting Team recommended that when it is not feasible at the
individual study level, power for a particular safety outcome should be considered at the
program level using the integrated safety database across clinical trials for a particular
product.

A typical drug development program may consist of multiple clinical studies with different
study objectives, endpoints, and possibly different patient populations. Recent literature for
single trial Bayesian sample size determination includes Wang and Gelfand (2002),
Spiegelhalter, Abrams, and Myles (2004), Inoue, Berry, and Parmigiani (2005), De Santis
(2007), M’Lan, Joseph, and Wolfson (2008), and Chen et al. (2011). However, there has
been no published work for sample size determination and power at a drug development
program level by taking into account between-study heterogeneity within a meta-analysis
framework. Sutton et al. (2007) proposed a hybrid frequentist-Bayesian approach for sample
size determination for a future randomized clinical trial using the results of meta-analyses
reported in the literature. Sutton et al. (2007) suggested that the power can be highly
dependent on the statistical model used for meta-analysis and even very large studies may
have little impact on a meta-analysis when there is considerable between-study
heterogeneity. This raises a critical issue regarding how to account for between-study
heterogeneity appropriately in the statistical model for meta-analysis.

In this article, we develop a new Bayesian meta-analysis approach using survival models to
assess whether the size of a clinical development program is adequate to evaluate a
particular safety endpoint. We extend the fitting and sampling priors of Wang and Gelfand
(2002) to Bayesian meta-analysis clinical trial design with a focus on controlling the type I
error and power. The historical survival data are incorporated via the power priors of
Ibrahim and Chen (2000). Various properties of the proposed methodology are examined
and an efficient Markov chain Monte Carlo sampling algorithm is developed to sample from
the posterior distributions. In addition, we develop a novel simulation-based algorithm for
computing various quantities, such as the power and the type I error, involved in the
Bayesian meta-analysis trial design. The proposed methodology is applied to the design of a
phase 2/3 development program, including a noninferiority clinical trial for CV risk
assessment in T2DM studies.

The rest of the article is organized as follows. Section 2 describes a motivating example for
designing a phase 2/3 development program of a new T2DM therapy and historical data
used in formulating priors for the background rate. In Section 3, we present both log-linear
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random effects and fixed effects regression models for meta-survival data. In Section 4, we
propose a general Bayesian methodology for the meta-analysis clinical trial design. Section
5 provides a detailed development of the incorporation of historical meta-survival data
through the partial borrowing power prior formulation. The posterior computation and
simulation-based computational algorithm for computing the type I error and power are
developed in Section 6. In Section 7, we apply the proposed methodology to the design of
meta-studies for evaluating the CV risk discussed in Section 2 and the results from our
simulation studies are reported and discussed. We conclude the article with some discussion
and extensions of the proposed method in Section 8.

2. Motivating Example
We assume there is a desire to develop an experimental drug that has different formulations
and dosing frequencies for either mono or add-on therapy in treating T2DM. Based on the
FDA guideline mentioned previously, one could consider various product development
plans containing multiple phase 2 and 3 studies. In this article, we assume a development
plan with an objective of using phase 2 and 3 studies to evaluate if the upper bound of 95%
CI of the hazard ratio (HR) of the experimental drug to the control group is below 1.3. A
composite endpoint is considered: time to CV deaths, stroke, or myocardial infarction (MI),
whichever occurs first. Under this setting, the power is the probability that the upper 95% CI
of the HR < 1.3, when the true HR = 1. Following Spiegelhalter et al. (2004), we first
consider empirically pooling sample sizes from all studies and calculate the power by using
the following theory:

(1)

Assuming the development plan will contain studies in two categories, Table 1 summarizes
the initial power calculations.

Category 1: Traditional diabetes HbA1c superiority studies to demonstrate efficacy
We assumed there are seven phase 2 and 3 studies in this category. Those studies are
randomized controlled studies with the primary efficacy endpoint defined as the change
from baseline of HbA1c at 6 months. These studies include multiple dose groups for
experimental drug and either active control or placebo as comparator(s). For the analysis of
evaluating CV risk, the placebo and active controls are combined into one “control group,”
and all active dose arms are combined as the “experimental drug.” Thus, the sample sizes
are not same between the control group and the experimental drug group. The enrolled
subjects in those studies are generally at low or moderate CV risk. Assuming the annualized
event rate is 1.2%, this category is expected to have a total of 17 endpoints with a power of
7.8%. Such low power implies that a large scale CV outcome study is needed.

Category 2: CV outcome in noninferiority studies
In this category, we consider a large scale CV outcome study that has the primary objective
of evaluating the CV risk of the experimental drug. This randomized controlled study has
two treatment arms (experimental drug and control group) with 5000 subjects in each arm.
The study is assumed to have steady enrollment for 2 years and the last patient enrolled has
a minimum of 2 years of follow-up. The target population includes subjects with high CV
risk. Thus, an annualized event rate of 1.5% is assumed (The Action to Control
Cardiovascular Risk in Diabetes (ACCORD) Study Group, 2008; The ADVANCE
Collaborative Group, 2008; Home et al., 2009). As a result, this category is expected to have
a total of 452 endpoints with power of 79.6%.
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By combining categories 1 and 2, it is expected to have a total of 469 endpoints with power
of 81.1%. These power calculations are based on pooling sample sizes across studies using
(1), but they do not account for the between-study variability in the meta-analytic
framework, and do not allow for different baseline event rates and therefore are susceptible
to issues related to the Simpson/Yule paradox. Moreover, certain historical information from
other similar drugs for underlying CV risk is not incorporated. This motivates the idea of
using a Bayesian meta-analysis design approach in this article. Under the Bayesian
framework, the prior information for the underlying risk in the control population is based
on the briefing documents from the FDA advisory meetings for Saxagliptin and Liraglutide
in April 2009. The available historical data are summarized in Table 2. In Table 2, for
Saxagliptin and Liraglutide, the events are the major adverse cardiac events defined in the
FDA briefing document; for ACCORD, the events are CV death, nonfatal MI, or stroke, and
the total patient years is approximated by the authors based on Table 4 in the original
publication; and for ADVANCE, the total patient years is approximated as N times the
median follow-up (5 years). In Section 5, we develop a novel method to elicit the priors
using these five historical datasets.

3. The Meta-survival Data and Meta-analysis Models
Suppose we consider K randomized trials where each trial has two treatment arms
(“Control” or “Inv Drug”). Let yijk denote the subject level time to event (failure time) and
let νijk denote the censoring indicator such that νijk = 1 if yijk is a failure time and νijk = 0 if
yijk is right censored for the ith subject in the jth treatment arm and the kth trial for i = 1, …,

njk, j = 1, 2, and k = 1, …, K. We write , which denotes the total subject year

duration, and , which denotes the total number of events, for j = 1, 2 and k = 1,
…, K. We also let xjk denote a binary covariate, where xjk = 1 if the kth trial recruits
subjects with low or moderate CV risk for the jth treatment and xjk = 0 if the kth trial
recruits subjects with high CV risk for the jth treatment. In addition, let trtjk = 1 if j = 2
(treatment) and 0 if j = 1 (control/placebo). Write DK = {(yijk, νijk, trtjk, xjk), i = 1, …, njk, j
= 1, 2, k = 1, …, K}.

Assume the individual level failure time follows the exponential distribution, yijk ~
Exp(λjk), where λjk > 0 is the hazard rate. We consider both random effects and fixed
effects models for λjk. The log-linear random effects model for λjk assumes

(2)

where trtjk = 1 if j = 2 (treatment) and 0 if j = 1 (control/placebo) for k = 1, …, K. In (2), σ2

captures the between-trial variability and ξk also captures the trial dependence between y1k
and y2k. Note that under the exponential model, the design parameter exp (γ1) is precisely
the HR of the treatment, and θ quantifies the CV risk effect (low or moderate CV risk versus
high CV risk). Let ξ = (ξ1, …, ξK)′ and γ = (γ0, γ1)′. Then, under the random effects
model, the complete data likelihood function based on the meta-survival data DK is given by

(3)

We see from (3) that under the exponential model, the likelihood function based on the
individual level meta-survival data DK reduces to the likelihood function based on the
treatment-level meta-survival data {(yjk, νjk, trtjk, xjk), j = 1, 2, k = 1, …, K}. The log-linear
fixed effects model for λjk assumes
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(4)

for k = 1, 2, …, K. To ensure identifiability in (4), we assume that . For

simplicity, we take . Unlike the random effects model, the θk’s in (4) capture
the differences among the trials. Because the θk’s are unknown, a necessary condition for
existence of the maximum likelihood estimates of the θk’s is that there is at least one event,
i.e., ν1k + ν2k ≥ 1, for each trial. Let θ = (θ1, …, θK)′. Then, similar to (3), under the fixed
effects model, the likelihood function based on the meta-survival data DK is given by

(5)

4. Bayesian Meta-design
In this section, we present a novel general methodology for Bayesian meta-design only for
the log-linear random effects regression model. The method for the fixed effects model is
very similar and therefore omitted here for brevity. We assume that the hypotheses for
“noninferiority” testing can be formulated as follows:

(6)

The meta-trials are successful if H1 is accepted. Following Wang and Gelfand (2002), let
π(s)(γ, θ, σ2) denote the sampling prior, which captures a certain specified portion of the
parameter space in achieving a certain level of performance in the Bayesian meta-design,
and also let π(f)(γ, θ, σ2) denote the fitting prior, which is used to fit the model once the
data are obtained. Under the fitting prior, the posterior of γ, θ, and σ2 given the data DK

takes the form . We
note that π(f)(γ, θ, σ2) may be improper as long as the resulting posterior, π(f)(γ, θ, σ2 |
DK), is proper.

We use the sampling prior, π(s)(γ, θ, σ2), to generate the predictive data DK. In other words,
we view the distribution of DK as the prior predictive marginal distribution of the data. The
prior predictive data-generation algorithm is given as follows. For i = 1, …, njk, j = 1, 2, and
k = 1, …, K, (i) set njk and xjk; (ii) generate (γ, θ, σ2) ~ π(s)(γ, θ, σ2); (iii) generate ξk ~
N(0, σ2) independently; (iv) compute λjk = exp{γ0 + γ1trtjk + θxjk + ξk}; (v) generate

 independently; (vi) specify the censoring time Cijk or generate Cijk ~ gjk (cijk)
independently, where gjk (cijk) is a prespecified distribution for the censored random

variable; and (vii) compute , where the indicator
function 1{A} is 1 if A is true and 0 otherwise.

From the above algorithm, it is easy to see that we do need to specify a proper sampling
prior π(s)(θ). To make the design using the meta-analysis models more feasible, we assume
njk = ϕjk nk for j = 1, …, q and nk = κk n for k = 1, …, K, where both ϕjk and κk are
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prespecified nonnegative constants such that . Under this setting,
the total sample size based on the entire meta-analytic model is n. This sample size
allocation is quite general and flexible, which allows ϕjk = 0 for certain treatment arms,
which allows an unbalanced design for certain trials. In practice, the njk’s are often
determined by the design analyst based on certain constraints in the studies/trials. An
example of such a meta-design is shown in Table 1.

To complete the Bayesian meta-analytic design, we need to specify two sampling priors,

denoted by,  are two
proper priors, which are defined on the subsets of the parameter spaces induced by
hypotheses H0 and H1. Following Chen et al. (2011), we define the key quantity

(7)

where the posterior probability P(exp (γ1) < δ| DK, π(f)) is computed with respect to the
posterior distribution of γ1 given the data DK under the fitting prior π(f)(γ, θ, σ2), and the
expectation Esl is taken with respect to the predictive marginal distribution of DK under the

sampling prior  for ℓ = 0, 1.

For given α0 > 0 and α1 > 0, we compute

(8)

where  are given in (7). Then, the Bayesian meta-analysis sample size is given

by nB = max{nα0, nα1}. We note that the quantities  in (8) correspond to the
Bayesian Type I error and power, respectively. Common choices of α0 and α1 are α0 = 0.05
and α1 = 0.20. We choose τ0 to be sufficiently large, say τ0 > 0.95, so that the Bayesian
meta-analysis sample size nB ensures that the type I error rate is at most α0 = 0.05 and the
power is at least 1 − α1 = 0.80.

5. Specification of the Fitting and Sampling Priors using Historical Data
Suppose that the historical data are available only for the control arm from K0 previous

datasets. Let  denote the total subject year duration and also let 
denote the total number of events for k = 1, …, K0. In addition, we let x0k denote a binary
covariate, where x0k = 1 if the subjects had a low or moderate CV risk and x0k = 0 if the
subjects had a high CV risk in the kth historical dataset. Suppose that only the trial-level
data D0K0 = {(y0k, ν0k, x0k), k = 1, …, K0} are available from the K0 previous datasets.
Assume the individual level failure time follows an exponential distribution, y0ik ~
Exp(λ0k), where λ0k > 0 is the hazard rate. Under the random effects model, we assume the
following log-linear model for λ0k:

(9)

for k = 1, 2, …, K0. Let ξ0 = (ξ01, ξ02, …, ξ0K0)′. Then, the complete data likelihood
function based on the meta-survival data D0K0 is given by

(10)
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Under the fixed effects model, we assume

(11)

for k = 1, 2, …, K0, where . Again, for simplicity, we assume .
Let θ0 = (θ01, …, θ0K0)′. Then, the likelihood function based on the meta-survival data
D0K0 is given by

(12)

Under the random effects model, comparing (9) to (2), we see that the models for the
historical data and the current data share the common parameters γ0 and σ2. However, the
CV risk effect parameters θ and θ0 are different in these two models. Thus, the historical
data are borrowed through common parameters γ0 and σ2 and having different parameters θ
and θ0 provides us with greater flexibility in accommodating different CV risk effects in the
current and historical data. For example, from Table 1, the design value of θ is log{ − log (1
− 1.2%)} − log{ − log (1 − 1.5%)} = −0.225. Based on the historical data given in Table 2,
an estimated value of θ0, namely, E[θ0 | D0K0], is −0.641. This difference in CV risk effects
can be automatically accounted for by our proposed models. Thus, the proposed models help
us to maximize the similarity between the current data and the historical data, thereby
allowing us to borrow more information from the historical data for the analysis of the
current data. Under the fixed effects model, comparing (11) to (4), the models for the
historical data and the current data share only one common parameter, namely, γ0.

We now discuss how to specify the sampling prior and the fitting prior. Under the random

effects model, for the sampling prior, , ℓ = 0, 1, we take

. In the sampling prior, we first specify a point

mass prior for  for ℓ = 0 and Δ{γ1= 0} for ℓ = 1, where
Δ{γ1 =γ10} denotes a degenerate distribution at γ1 = γ10, i.e., P(γ1 = γ10) = 1. We then
specify a point mass prior π(s)(γ0) at the design value of γ0. For example, for the meta-
design given in Table 1, we take Δ{γ0=log[−log(1−1.5%)]}. In addition, we specify a point mass
prior for each of π(s)(θ) and π(s)(σ2). For the meta-design given in Table 1, we take π(s)(θ)
= Δ{θ=−0.225} and π(s)(σ2) = Δ{σ2=σ̃2}, where σ̃2 is an estimate of σ2 from the historical

data. Under the fixed effects model, for the sampling prior, , we assume

. We take a similar sampling prior as the one for the random effects

model for . Again, we specify a point mass sampling prior for π(s)(θ). For the meta-
design given in Table 1, we take π(s)(γ0) = Δ{γ0=−4.389}, π(s)(θk) = Δ{θk =−0.028} for k = 1,
…, K − 1, and π(s)(θk) = Δ{θK =0.197}.

For the fitting prior, using (10), we extend the power prior of Ibrahim and Chen (2000) to
propose the following fitting prior for (γ, θ, σ2) under the random effects model:

(13)
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where 0 ≤ a0 ≤ 1,  are initial priors. In (13), we further specify

independent initial priors for (γ0, γ1, θ, θ0, σ2) as follows: (a) a normal prior  is

assumed for each of γ0, γ1, θ, and θ0, where  is a prespecified hyperparameter; and
(b) we specify an inverse gamma prior for σ2, which is given by

, where d0f1 > 0 and d0f2 > 0 are prespecified
hyperparameters. Under the fixed effects model, we propose the following fitting prior for
(γ, θ):

(14)

where 0 ≤ a0 ≤ 1,  are initial priors. In (14), independent initial normal

priors, , are assumed for γ0, γ1, θk, and θ0k.

In our informative prior specification, we consider a fixed a0. When a0 is fixed, we know
exactly how much historical meta data are incorporated in the new-meta trial, and also how
the type I error and power are related to a0. As shown in our simulation study in Section 7, a
fixed a0 provides us additional flexibility in controlling the type I error. In addition, our
informative prior specification only allows us to borrow historical meta data for the control
arm. Thus, the historical meta data have the most influence on γ0 but not on γ1. However,
the historical meta data does have certain influence on the new treatment through σ2 under
the random effects model, but not under the fixed effects model. Under both types of meta
log-linear regression models, when analyzing the current data, the historical data can be
borrowed only through the common parameters, namely (γ0, σ2) or γ0. For this reason, the
power priors given in (13) and (14) are called partial borrowing power priors. Other
additional properties of the informative prior specification are discussed in details in the
Web Appendix.

6. Computational Development
We discuss how to compute type I error and power under the random effects model. The
computation of the type I error and power for the fixed effects model is quite similar and
even more straightforward. Let ξ = (ξ1, …, ξK)′. Using (3) and (13), the posterior
distribution of (γ, θ, σ2, ξ, θ0, ξ0) is given by

. We use the Gibbs sampling algorithm to sample (γ, θ, σ2, ξ, θ0, ξ0) from the above
posterior distribution. The Gibbs sampling algorithm requires sampling from the following
conditional posterior distributions in turn: (i) [γ | θ, ξ, θ0, ξ0, DK, D0K0]; (ii) [θ | γ, ξ, DK];
(iii) [ξ | γ, θ, σ2, DK]; (iv) [θ0 | γ0, σ2, D0K0]; (v) [ξ0 | γ0, θ0, σ2, D0K0]; and (vi) [σ2 | ξ,
ξ0]. It can be shown that the conditional posterior distributions in (i) to (v) are log-concave
in each of these parameters and [σ2 | ξ, ξ0] is an inverse gamma distribution. Thus, sampling
(γ, θ, σ2, ξ, θ0, ξ0) is straightforward.
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Let  denote a Gibbs sample of γ1 from the posterior distribution π(f)(γ, θ,
σ2, ξ, θ0, ξ0 | DK, D0K0, a0). Using this Gibbs sample, a Monte Carlo estimate of P(exp(γ1)

< δ | DK, D0K0, π(f)) is given by . To compute  in (7), we
propose the following computational algorithm: (i) Set njk, xjk, τ0, and N; (ii) Generate

; (iii) Generate DK via the predictive data-generation algorithm in

Section 4; (iv) Run the Gibbs sampler to generate a Gibbs sample  of size

M from the fitting posterior distribution ; (v) Compute P̂f; (vi) Repeat Steps 1–5 N times;
and (vii) Compute the proportion of {P̂f ≥ τ0} in these N runs, which gives an estimate of

.

7. Applications to a Design of Meta-studies for Evaluating the CV Risk
We consider a meta-design discussed in Section 2. From Table 1, we have K = 8. Using the
historical data shown in Table 2, we have K0 = 5. The noninferiority margin was set to δ =
1.3. To ensure that the type I error is controlled under 5%, we chose τ0 = 0.96. The choice of
τ0 = 0.96 was discussed in Chen et al. (2011) and recommended in the FDA Guidance,
“Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials,” released on
February 5, 2010 (www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/
GuidanceDocuments/ucm071072.htm). In the fitting prior (13), we chose an initial prior
N(0, 10) for each of γ0, γ1, θ, and θ0 and d0f 1 = 2.001 and d0f 2 = 0.1 for the initial prior for
σ2 under the random effects model. Note that this choice of (d0f 1, d0f 2) leads to a prior
variance of 9.98 (about 10) for σ2. Similarly, in the fitting prior (14), we chose an initial
prior N(0, 10) for each of γ0, γ1, θk, and θ0k under the fixed effects model. Thus, we
specify relatively vague initial priors for all the parameters. Under this setting, the prior
estimates, including prior standard deviations (SDs) and 95% highest prior density intervals
of γ0, θ0, and σ2 under the random effects model as well as γ0 and θ0 = (θ01, …, θ04)′ for
the fixed effects model are given in Table 3 based on 20,000 Gibbs iterations.

We generated the data under the random effects model using the predictive data-generation
algorithm presented in Section 3. We specified the point mass sampling priors at the design
values for (γ0, γ1, θ) and a point mass sampling prior at the estimate of σ2 from the
historical data. From Table 1, we take γ0 = log[− log (1 − 1.5%)] = −4.192 and θ = −0.225
under the random effects model. The estimate of σ2 from the prior data was 0.054. The
above point mass sampling priors implicitly imply that the “equivalent” design values of γ0
and θ under the fixed effects model are γ0 = −4.389 and θk = −0.028 for k = 1, 2, …, 7.
From Table 3, we see that the prior mean of γ0 is more similar to the design value of γ0
under the fixed effects model than the random effects model. In addition to n18 = n28 = 5000
in Table 1, we also consider several other values of n18 = n28. Our design strategy is to find
a minimum size of n18 = n28 and a value of a0 so that the power is at least 80% and the type
I error is controlled at 5% when the njk for j = 1, 2 and k = 1, 2, …, 7 are fixed in Table 1.
The powers and type I errors for various values of a0 and n18 = n28 are shown in Table 4 and
plotted in Figure 1. In all computations of the type I errors and powers, N = 10,000
simulations and M = 10, 000 with 1000 burn-in iterations within each simulation were used.

From Table 4, we see that the type I errors and powers with no incorporation of historical
meta-survival data are 0.043 and 0.765 when n18 = n28 = 4000, 0.040 and 0.811 when n18 =
n28 = 4500, and 0.038 and 0.850 when n18 = n28 = 5000 under the random effects model.
Similarly, without incorporation of historical meta-survival data, the type I errors and
powers are 0.044 and 0.768 when n18 = n28 = 4000, 0.042 and 0.817 when n18 = n28 = 4500,
and 0.039 and 0.853 when n18 = n28 = 5000 under the fixed effects model. Thus, without
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incorporation of historical meta-survival data, the 80% power is obtained when n18 = n28 =
4500. However, the sample size n18 = n28 = 4000 is not large enough to yield 80% power.
With incorporation of historical meta-survival data and controlling the 5% type I error rate,
the powers are 0.801 when a0 = 0.0125 and n18 = n28 = 4000, 0.855 when a0 = 0.025 and n18
= n28 = 4500, and 0.887 when a0 = 0.0375 and n18 = n28 = 4500 under the random effects
model; and these powers become 0.799 when a0 = 0.15 and n18 = n28 = 4000, 0.853 when a0
= 0.15 and n18 = n28 = 4500, and 0.884 when a0 = 0.25 and n18 = n28 = 4500 under the fixed
effects model. These results imply that (i) the gain in power is about 3.6% to 4.4% with
incorporation of 1.25%, 2.5%, and 2.5% of the historical data for n18 = n28 = 4000, 4500,
and 5000 under the random effects model and the gain in power is about 3.1% to 3.6% with
incorporation of 15%, 20%, and 25% of the historical data for n18 = n28 = 4000, 4500, and
5000 under the fixed effect model. Thus, under both random and fixed effects models, the
sample size n18 = n28 = 4000 is sufficient to yield 80% power. As discussed earlier, the
historical meta data can be partially borrowed through the two common parameters γ0 and
σ2 under the random effects model but through only one common parameter γ0 for the fixed
effects model. This implies that under the same value of a0, i.e., the same amount of
incorporation of the historical meta data, the power is higher under the random effects model
than under the fixed effects model. On the other hand, the design value of γ0 in the current
meta-studies is more comparable to the value of γ0 in the historical meta data under the
fixed effects model than under the random effects model, which explains why more
historical meta data can be allowed to be borrowed under the fixed effects model than the
random effects model. From Figure 1, it is interesting to see that (i) both the power and type
I error increase in a0; (ii) the power and type I error are roughly quadratic in a0 under the
random effects model and roughly linear in a0 under the fixed effects model; and (iii) the
powers increase in n18 = n28 as expected.

Although not reported in Table 4, we also computed the powers and the type I errors for
various values of a0 for n18 = n28 = 3500. We obtained that without incorporation of the
historical meta-survival data, the powers and type I errors are 0.720 and 0.036 under the
random effects model and 0.726 and 0.039 under the fixed effects model. The powers and
type I errors are 0.797 and 0.056 when a0 = 0.10 under the random effects model and 0.796
and 0.052 when a0 = 0.3 under the fixed effects model. Thus, the sample size of n18 = n28 =
3500 is too small to achieve 80% power under a 5% type I error. In simulation studies, we
have also examined the power and type I error rates when τ0 = 0.95. When n18 = n28 = 5000,
with no incorporation of the historical meta data, the power and type I error are 0.871 and
0.047, respectively, under the random effects model and 0.873 and 0.049 under the fixed
effects model. However, when n18 = n28 = 4000, with no incorporation of the historical meta
data, the power and type I error are 0.796 and 0.053 under the random effects model and
0.798 and 0.054 under the fixed effects model. Thus, when τ0 = 0.95, the type I error is not
always controlled at 5% even without incorporation of historical meta data. Finally, we
mention that we further examined the powers and the type I errors when the data were
generated from the fixed effects model using the design values of the model parameters γ0
and θ specified in Table 1. When n18 = n28 = 5000, the powers and type I errors are 0.853
and 0.037 when a0 = 0 and 0.896 and 0.052 when a0 = 0.1 under the random effects model;
and 0.855 and 0.038 when a0 = 0 and 0.883 and 0.045 when a0 = 0.20 under the fixed effects
model. These results are very similar to those given in Table 4 with slightly higher powers
than those when the data were generated from the random effects model.

8. Discussion
In this article, we have extended the Bayesian sample size determination methods of Wang
and Gelfand (2002) and Chen et al. (2011) to develop a new Bayesian method for the design
of meta noninferiority clinical trials for survival data. The proposed Bayesian method not
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only allows for planning sample size for a phase 2/3 development program in the meta-
analytic framework by accounting for between-study heterogeneity, but also allows for
incorporating prior information for the underlying risk in the control population. We have
also proposed the partial borrowing power prior with the fixed a0 to incorporate the
historical meta-survival data. The fixed a0 approach greatly eases the computational
implementation and also provides greater flexibility in controlling the type I error rates as
empirically shown in Section 7.

Although “pure” Bayesian approaches do not necessarily emphasize on the notion of
controlling type I error and power as traditional frequentist approaches, there have been
some literature proposing that Bayesian methods should be “calibrated” to have good
frequentist properties due to the inherent flexibility in the Bayesian design (Box, 1980;
Rubin, 1984). Moreover, from the regulatory standpoint in medical product development, it
is prudent in the design stage to understand the risk of erroneously approving an unsafe or
ineffective product (type 1 error rate) and the probability of appropriately approving a safe
and effective product (power). Therefore, as the current regulatory practice, the FDA in its
guidance to medical device industry (www.fda.gov/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/ucm071072.htm) recommends that
sponsors assess the operating characteristics (in terms of type 1 error and power) of a
Bayesian design via simulations.

To account for heterogeneity among meta-studies, we have considered the log-linear random
effects and fixed effects regression models. As empirically shown in our simulation studies,
both types of regression models yield similar sample sizes of meta-studies to achieve a
prespecified power (80%) under a prespecified type I error (5%). A natural practical
question to ask is which model to use in the Bayesian meta-design: fixed or random effects
models. There are advantages and disadvantages to each one and one model is not uniformly
better than the other. The advantages of the random effects model is that it provides much
greater flexibility for borrowing historical data than the fixed effects model and it has more
parameters that control the borrowing over the fixed effects model. As a result, the random
effects model requires a smaller a0 than the fixed effects model for achieving a desired
power and type I error. One of the minor disadvantages of the random effects model is that it
is slightly more computationally intensive than the fixed effects model. Overall, we feel that
the random effects model is a bit more natural and general to use in this setting, and thus if
we were to recommend an approach, it would be the random effects model. In our
simulation studies, we have observed zero events for several small trials. Thus, under the
fixed effects regression model, the frequentist approach for the sample size calculation does
not work when there are zero events for small trials. In the Bayesian approach that we adopt
here, we use a proper prior for θk or θ0k to get around this zero event problem, yielding
reasonable sample sizes.

In this article, we considered the exponential regression model. One of the nice features of
the exponential model is that the individual patient level survival data easily reduces to the
study level survival data in the modeling development so that one does not need any
individual level historical data for the Bayesian meta-design. Our proposed methodology
can be extended to other survival regression models such as Weibull regression models and
cure rate regression models (Ibrahim, Chen, and Sinha, 2001). However, under these
regression models, the proposed method requires individual patient level survival data. In
Section 5, we have proposed the partial borrowing power priors in (13) and (14). In our
formulation, we did not discount each historical dataset by a power parameter a0 because the
meta-survival historical data have been accounted for by the random effects ξ0k under the
random effects model and the fixed effects θ0k under the fixed effects model. The model
becomes nonidentifiable if we do discount each historical dataset in this formulation.
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However, instead of (13) and (14), other forms of partial borrowing power priors can be
considered. For example, under the fixed effects model, instead of (14), the following fitting
prior for (γ, θ) can be considered:

. This version of the partial
borrowing power is computationally less attractive than (14); however, it does have different
theoretical properties than (14). The computational development and theoretical properties
of this type of power prior along with the extensions to other survival regression models for
Bayesian design of meta-survival trials are currently under investigation. We have
implemented our methodology using the FORTRAN 95 software and our programs are
available upon request.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Plots of type I error and power versus a0 for n18 = n28 = 4000, 4500, 5000 under the random
effects model ((a) and (b)) and under the fixed effects model ((c) and (d)).
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Table 1

A design of meta studies with two categories for evaluating the CV risk.

Control group Experimental drug Total

Category 1: randomized efficacy superiority studies

Individual study

    Phase 2a—4 weeks (five doses, placebo) 25 125 150

    Phase 2b—24 weeks (three doses, active control, placebo) 140 210 350

    Phase 3—24 weeks (three doses, placebo) 100 300 400

    Phase 3—24 weeks (four doses, placebo) 75 300 375

    Phase 3 add on therapy—24 weeks (three doses, placebo) 185 555 740

    Phase 3 add on therapy—24 weeks (two doses, placebo) 250 500 750

    Phase 3 add on therapy—24 weeks (two doses, placebo) 188 376 564

Aggregated level

    Total sample size of the above seven studies 963 2366 3329

    Assumed annualized event rate of death/MI/stroke 1.2% 1.2% 1.2%

    Expected endpoints 5   12 17

Probability of upper 95% CI on HR < 1.3 7.8%

Category 2: Randomized CV outcome study (2 year equal enrollment, minimal of 2 years follow-up)

    Sample size 5000 5000 10,000

    Assumed annualized event rate of death/MI/stroke 1.5% 1.5% 1.5%

    Expected endpoints 226 226 452

Probability of upper 95% CI on HR < 1.3 79.6%

Combined categories 1 and 2

Expected endpoints 231 238 469

Probability of upper 95% CI on HR < 1.3 81.1%
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Table 3

Prior estimates of parameters based on the meta historical data in Table 2

Model Parameter
prior

estimate
Prior

SD

95%
Highest Prior
density interval

Random effects γ0 −3.799 0.153 (−4.106, −3.500)

θ0 −0.641 0.269 (−1.182, −0.112)

σ2 0.054 0.048   (0.009, 0.131)

Fixed effects γ0 −4.241 0.128 (−4.492, −3.994)

θ01 −0.133 0.231 (−0.596, 0.311)

θ02 −0.544 0.420 (−1.398, 0.236)

θ03 −0.186 0.250 (−0.684, 0.305)

θ04 0.477 0.134   (0.222, 0.745)
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