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Few studies have evaluated genetic susceptibility related to diabetes and obesity as a risk factor for neural

tube defects (NTDs). The authors investigated 23 single nucleotide polymorphisms among 9 genes (ADRB3,
ENPP1, FTO, LEP, PPARG, PPARGC1A, SLC2A2, TCF7L2, and UCP2) associated with type 2 diabetes or

obesity. Samples were obtained from 737 NTD case-parent triads included in the National Birth Defects Preven-

tion Study during 1999–2007. Log-linear models were used to evaluate maternal and offspring genetic effects.

After application of the false discovery rate, there were 5 significant maternal genetic effects. The less common

alleles at the 4 FTO single nucleotide polymorphisms showed a reduction of NTD risk (for rs1421085, relative

risk (RR) = 0.73 (95% confidence interval (CI): 0.62, 0.87); for rs8050136, RR = 0.79 (95% CI: 0.67, 0.93); for

rs9939609, RR = 0.79 (95% CI: 0.67, 0.94); and for rs17187449, RR = 0.80 (95% CI: 0.68, 0.95)). Additionally,

maternal LEP rs2071045 (RR = 1.31, 95% CI: 1.08, 1.60) and offspring UCP2 rs660339 (RR = 1.32, 95% CI:

1.06, 1.64) were associated with NTD risk. Furthermore, the maternal genotype for TCF7L2 rs3814573 suggest-

ed an increased NTD risk among obese women. These findings indicate that maternal genetic variants associat-

ed with glucose homeostasis may modify the risk of having an NTD-affected pregnancy.

case-parent triads; diabetes; genetics; neural tube defects; obesity

Abbreviations: CI, confidence interval; NBDPS, National Birth Defects Prevention Study; NTDs, neural tube defects; RR, relative

risk; SNP, single nucleotide polymorphism.

Neural tube defects (NTDs) are among the most
common, most costly, and most deadly of all human con-
genital anomalies whose etiologies remain largely
unknown (1, 2). NTDs include a range of malformations
(e.g., spina bifida, anencephaly), which further complicates
the identification of risk factors. Two well-established risk
factors for NTDs are maternal pregestational diabetes and
prepregnancy obesity (3–12). Although mechanisms under-
lying these risks remain unclear, there is evidence that
infants born to obese mothers and infants born to diabetic
mothers may share some common underlying pathogenic
exposures, including alteration of glucose homeostasis and
hyperglycemia (13–18).

Glucose is monitored and regulated by the pancreas and
is an essential fuel for oxidative metabolism. During early

organogenesis, there is high demand for glucose, since the
embryo is dependent on uninterrupted anaerobic glycolysis
before the chorioallantoic placenta is developed. Evidence
suggests that the early embryo does not have pancreatic
function until the development of β cells, which occurs
after the seventh week of gestation (19). Thus, at the time
of neural tube closure (approximately the fourth week of
gestation), mothers with poorly regulated glucose levels are
likely to have an altered in utero environment, which
cannot be managed by the developing embryo, leading to
abnormal organogenesis (20–22).

Several genes related to glucose homeostasis have been
previously identified in human and animal studies. Further-
more, genes related to glucose homeostasis have been asso-
ciated with type 2 diabetes and obesity risk in genome-wide
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association studies (23, 24). A few studies have investigated
some of these genes in relation to NTD risk, with positive
findings (25, 26); however, these analyses have been
limited to a small number of single nucleotide polymor-
phisms (SNPs) or have not assessed the role of maternal
genetic effects. Therefore, our objective in this study was to
investigate the roles of several maternal and offspring genes
related to glucose homeostasis in the risk of NTDs.

MATERIALS AND METHODS

Study population

The study population included NTD case-parent triads
(n = 737) from the National Birth Defects Prevention Study
(NBDPS), with estimated dates of delivery between
January 1, 1999, and December 31, 2007. Details on the
NBDPS have been published elsewhere (27). In brief, the
NBDPS is a population-based case-control study of major
structural birth defects. For the period 1999–2007, case
infants with one or more congenital anomalies were ascer-
tained through 10 birth defects surveillance systems
throughout the United States (Arkansas, California,
Georgia, Iowa, Massachusetts, New Jersey, New York,
North Carolina, Texas, and Utah) and included livebirths,
stillbirths, and induced abortions (pregnancy terminations).
NTDs included in the NBDPS had British Pediatric Associ-
ation codes for the diagnoses anencephaly (740.0), cranio-
rachischisis (740.1), spina bifida (741.0), and encephalocele
(742.0). Abstracted data for all NTD case infants were re-
viewed by clinical geneticists using specific criteria, includ-
ing standardized case definitions and confirmatory
diagnostic procedures (28). Infants/fetuses with known
single gene disorders or chromosomal abnormalities were
excluded from the NBDPS. Mothers completed a 1-hour
computer-assisted telephone interview in English or
Spanish between 6 weeks and 2 years after the estimated
date of delivery. The interview included sections on mater-
nal conditions and illnesses, lifestyle and behavioral factors,
and multivitamin use.

Candidate genes and SNPs

Candidate genes and SNPs were selected if 1) they were
identified as being associated with type 2 diabetes or
obesity in multiple genome-wide association studies (i.e.,
TCF7L2 and FTO) (23, 29) or 2) there was evidence from
candidate gene studies coupled with biologic plausibility
supported by studies using animal models (e.g., ADRB3,
ENPP1, UCP2, LEP, SLC2A2, PPARG, and PPARGC1A)
(30–35). The selection criteria for each candidate gene and
SNP are presented in Web Table 1, which appears on the
Journal’s website (http://aje.oxfordjournals.org/).

DNA samples and genotyping analysis

Buccal swabs were collected from mothers, fathers, and
infants as part of the NBDPS (36). DNA was extracted
from buccal cells. A standard quality control procedure was
applied to each sample before it was submitted to the

NBDPS sample repository (36). To assure genotyping pro-
ficiency, high quality, and high concordance among all
NBDPS laboratories, annual evaluations are conducted to
confirm the performance of each laboratory (see Web Ap-
pendix). Our laboratory at the Dell Pediatric Research Insti-
tute (University of Texas at Austin) has passed all of these
evaluations with a score of 100%. SNPs were assayed
using TaqMan (Life Technologies Corporation, Carlsbad,
California), and genotypes were read and distinguished on

Table 1. Characteristics of Neural Tube Defect Case-Parent Triads

(n = 737), National Birth Defects Prevention Study, 1999–2007

Characteristic No. of Triads %

Phenotype

Spina bifida 449 60.9

Anencephaly 217 29.4

Encephalocele 71 9.6

Infant sex

Male 337 47.9

Female 366 52.1

Maternal age, years

<20 83 11.3

20–34 556 75.4

≥35 98 13.3

Race/ethnicity

Non-Hispanic white 439 59.8

Non-Hispanic black 34 4.6

Hispanic 221 30.1

Other 40 5.5

Education, years

<12 142 19.3

12 184 25.0

13–15 226 30.7

>15 185 25.0

Folic acid supplementationa

No 351 47.6

Yes 386 52.4

Body mass indexb category

Underweight (<18.5) 28 4.1

Normal weight (18.5–24.9) 336 48.6

Overweight (25.0–29.9) 152 21.9

Obese (≥30) 176 25.4

Prepregnancy diabetes

No 724 98.2

Yes 13 1.8

Gestational diabetes

No 667 95.8

Yes 29 4.2

a Use of folic acid supplements from 3 months before conception

through the first month of pregnancy.
b Weight (kg)/height (m)2.
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the ABI PRISM 7900HT Sequence Detection System (Life
Technologies Corporation).

Statistical analysis

The characteristics of case subjects and their parents
were summarized using counts and proportions. For each
analyzed variant, samples for which a genotype could not
be assigned and triads with genotype combinations incom-
patible with Mendelian inheritance were determined. For
each sample, the number of genotyping failures (i.e., geno-
types that could not be assigned) was determined. These
analyses were performed using Intercooled Stata, version
10.1 (StataCorp LP, College Station, Texas).

Log-linear models were used to assess the association
between NTDs and both the offspring and maternal geno-
types for each variant (37, 38). To more fully adjust for the
effect not being directly assessed, a log-additive model of
inheritance was assumed for the genotype being assessed
(e.g., the maternal genotype) and an unrestricted model of
inheritance was used for the other genotype (e.g., the off-
spring genotype). This approach provides a 1-degree-
of-freedom test for the effect under study. Genotype relative
risks and 95% confidence intervals were estimated. In addi-
tion, P values for offspring and maternal genetic effects
were determined using likelihood ratio tests to compare the
log-linear model including terms for both the offspring and
maternal genotypes with reduced models that included
terms for only the offspring genotype or only the maternal
genotype. These analyses were carried out using the LEM
program, which allows for the inclusion of incompletely
genotyped triads (39, 40).

Analyses were conducted using data from all complete
and incomplete triads (i.e., the full group) and stratified ac-
cording to maternal prepregnancy obesity status (i.e., body
mass index (weight (kg)/height (m)2) ≥30 vs. <30), as
several of these variants have been associated with obesity.
We did not formally assess statistical interactions because
of sample size considerations. Additionally, analyses were
conducted in 3 subgroups: 1) triads with spina bifida only;
2) triads in which mothers did not have pregestational dia-
betes; and 3) triads in which mothers did not have pregesta-
tional or gestational diabetes. These subgroups were
assessed to determine whether the results obtained using
data from all triads were influenced by heterogeneity within
the full group. We did not stratify on maternal pregestation-
al and gestational diabetes due to small numbers. Because
of concerns about population stratification bias when as-
sessing maternal genetic effects, the analyses of the full
NTD group were repeated among non-Hispanic whites
(37). Finally, due to the number of comparisons, the
Benjamini and Hochberg method (the false discovery rate)
was used to calculate a “corrected” P value (Q value) ac-
counting for multiple tests in the full group (41).

RESULTS

Participation in the NBDPS for the period 1999–2007
was 74% among NTD case mothers, yielding 1,553 fami-
lies available for analysis. Among those, 759 (49%)

provided buccal swabs (1,787 individuals). Genotyping
was performed on DNA samples derived from these 759
families. Based on quality control checks, 18 families (2%
of families) were excluded for being inconsistent with Men-
delian inheritance at more than 2 genotypes. Additionally,
47 subjects were excluded for failure at more than 11 geno-
types (>50%), resulting in 4 more triads’ being excluded
and leaving a total of 737 case-parent triads (97% of the
original sample). Of those, 317 were complete triads, 313
were dyads, and 107 were monads with only 1 person in
the family. After these quality control measures were
applied, at least 95% of the samples for each variant were
available for analyses; therefore, the genotypes were con-
sidered of sufficiently high quality.

The distributions of key characteristics among NTD
case-parent triads are presented in Table 1. Spina bifida
was the most common phenotype among case subjects
(n = 449; 60.9%). Furthermore, a majority of case mothers
were non-Hispanic white (n = 439; 59.8%). Among case
mothers, 176 were obese (25.4%), 13 had prepregnancy di-
abetes (1.8%), and 29 had gestational diabetes (4.2%). The
only characteristics presented in Table 1 that were signifi-
cantly different between interviewed case mothers who pro-
vided buccal swabs and those who did not were race/
ethnicity and education (data not shown).

Table 2 shows estimated relative risks (heterozygote vs.
common homozygote) and 95% confidence intervals for
the association between offspring and maternal genotypes
and NTDs, as well as the likelihood ratio test P values and
false discovery rate Q values for the model comparisons for
each variant. Offspring genotypes for ADRB3, ENPP1,
FTO, LEP, PPARG, PPARGC1A, SLC2A2, or TCF7L2
were not associated with NTD risk. However, the offspring
genotype for UCP2 rs660339 was associated with NTD
risk (relative risk (RR) = 1.32, 95% confidence interval
(CI): 1.06, 1.64).

There was no statistical evidence of associations between
maternal genotypes for ADRB3, ENPP1, PPARG,
PPARGC1A, SLC2A2, or UCP2 and the risk of NTDs in
offspring (Table 2). However, the less common alleles of
all FTO genotypes (rs1421085, rs8050136, rs9939609, and
rs17817449) were negatively associated with NTD risk
among mothers. In contrast, the less common alleles for
LEP rs2071045 and TCF7L2 rs3814573 were associated
with an elevated risk among mothers (RR = 1.31 (95% CI:
1.08, 1.60) and RR = 1.22 (95% CI: 1.04, 1.44), respective-
ly). Results were similar (e.g., the estimated relative risks
were similar) when analyses were restricted to 1) spina
bifida cases only, 2) mothers without pregestational diabe-
tes, 3) mothers without pregestational or gestational diabe-
tes, and 4) non-Hispanic whites; therefore, only results for
the full group are presented.

When analyses were stratified on the basis of maternal
body mass index (Tables 3 and 4), the effect of TCF7L2
rs3814573 was stronger among obese women (RR = 1.64,
95% CI: 1.15, 2.33) than among nonobese women
(RR = 1.11, 95% CI: 0.92, 1.35). Additionally, none of the
FTO genotypes were significantly associated with NTD
risk in obese women, whereas these variants were associat-
ed with NTD risk in nonobese women. Offspring genetic
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effects also appeared to differ by maternal prepregnancy
obesity (Tables 3 and 4). For instance, the association
between NTD risk and UCP2 rs660339 was stronger for
the offspring of obese women (RR = 1.74, 95% CI: 1.14,
2.64) than for the offspring of nonobese women
(RR = 1.19, 95% CI: 0.91, 1.55). The offspring genetic
effect of LEP rs3828942 also differed on the basis of ma-
ternal prepregnancy obesity, whereby the less common
allele was associated with a reduced risk in offspring of
obese women (RR = 0.66, 95% CI: 0.44, 0.98) and an in-
creased risk in offspring of nonobese women (RR = 1.31,
95% CI: 1.00, 1.72). This was also true for LEP
rs12706831, whereby the less common allele was associat-
ed with a reduced risk in offspring of obese women
(RR = 0.69, 95% CI: 0.45, 1.06) and an increased risk in

offspring of nonobese women (RR = 1.31, 95% CI: 1.01,
1.69).
Because of the number of comparisons, we applied the

false discovery rate in the full group. Although none of the
offspring genetic effects remained statistically significant, 5
of the 6 significant maternal genetic effects in Table 2 (the
4 FTO genotypes and LEP rs2071045) remained significant
at P < 0.05.

DISCUSSION

We evaluated the risk of NTDs associated with maternal
and offspring genetic effects of 23 SNPs for 9 diabetes and
obesity-related genes. There were significant associations
between maternal variants in FTO, TCF7L2, and LEP

Table 2. Log-Linear Results for the Association Between Diabetes and Obesity-Related Genes and the Risk of Neural Tube Defects, National

Birth Defects Prevention Study, 1999–2007

Variant
No. of
Triads

No. of
Dyads

No. of
Monads

Offspring Genetic Effect Maternal Genetic Effect

RRa 95% CI
LRT P
Value

LRT Q
Value

RRa 95% CI
LRT P
Value

LRT Q
Value

ADRB3 rs4994 312 316 108 1.16 0.86, 1.57 0.33 0.71 0.88 0.68, 1.14 0.34 0.78

ENPP1
rs1044498

312 304 120 0.93 0.70, 1.24 0.62 0.79 1.11 0.91, 1.35 0.30 0.76

FTO

rs1421085 278 309 126 0.86 0.68, 1.10 0.24 0.69 0.73 0.62, 0.87 0.0003 0.007

rs8050136 300 317 112 0.84 0.67, 1.05 0.13 0.55 0.79 0.67, 0.93 0.0048 0.03

rs9939609 302 298 125 0.81 0.64, 1.01 0.06 0.55 0.79 0.67, 0.94 0.0054 0.03

rs17817449 292 324 116 0.82 0.66, 1.03 0.09 0.55 0.80 0.68, 0.95 0.0092 0.04

LEP

rs2071045 295 315 116 1.25 0.96, 1.63 0.10 0.55 1.31 1.08, 1.60 0.0064 0.03

rs2167270 299 317 120 0.95 0.77, 1.17 0.64 0.79 0.99 0.85, 1.17 0.94 0.99

rs3828942 303 315 119 1.07 0.87, 1.33 0.52 0.79 0.97 0.83, 1.13 0.70 0.99

rs11760956 296 311 121 0.94 0.76, 1.17 0.59 0.79 0.95 0.81, 1.11 0.52 0.99

rs12706831 307 314 112 1.12 0.91, 1.38 0.30 0.71 1.00 0.85, 1.17 0.98 0.99

PPARG
rs1801282

311 309 113 1.05 0.74, 1.49 0.78 0.85 1.04 0.80, 1.34 0.79 0.99

PPARGC1A

rs3736265 293 314 110 1.01 0.64, 1.60 0.97 0.97 1.18 0.87, 1.60 0.30 0.76

rs8192678 302 313 111 1.02 0.81, 1.28 0.88 0.92 1.01 0.86, 1.19 0.87 0.99

SLC2A2

rs5400 303 316 114 1.23 0.91, 1.67 0.17 0.55 1.00 0.80, 1.24 0.99 0.99

rs6785233 311 309 113 1.19 0.83, 1.72 0.34 0.71 0.92 0.70, 1.20 0.53 0.99

rs11924032 306 308 119 0.84 0.66, 1.07 0.16 0.55 1.00 0.84, 1.18 0.99 0.99

TCF7L2

rs290487 317 312 107 1.12 0.86, 1.47 0.40 0.76 1.03 0.84, 1.26 0.77 0.99

rs3814573 309 312 113 1.03 0.84, 1.28 0.75 0.85 1.22 1.04, 1.44 0.02 0.07

rs7903146 302 319 109 0.91 0.72, 1.15 0.43 0.76 0.96 0.80, 1.15 0.65 0.99

rs10885390 308 302 117 1.07 0.84, 1.38 0.58 0.79 0.99 0.83, 1.17 0.87 0.99

rs12255372 306 308 118 0.95 0.74, 1.21 0.66 0.79 0.88 0.73, 1.06 0.17 0.55

UCP2 rs660339 301 316 115 1.32 1.06, 1.64 0.01 0.23 0.97 0.83, 1.13 0.68 0.99

Abbreviations: CI, confidence interval; LRT, likelihood ratio test; RR, relative risk.
a Results are based on an additive model (i.e., the risk of being a heterozygote vs. the common homozygote).
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genes and the risk of NTDs in offspring after applying the
false discovery rate. Additionally, an offspring variant in
the UCP2 gene was associated with NTD risk, although
this association did not remain significant after applying the
false discovery rate.

The fat mass and obesity-associated gene (FTO) has
been identified as a risk factor for obesity through several
genome-wide association studies and has been confirmed
in multiple populations (29, 42–44). Minor alleles of 4
common intronic SNPs—rs1421085 (C), rs8050136 (A),
rs9939609 (A), and rs17817449 (G)—are associated with
increased body mass, increased obesity risk, and increased
FTO protein (α-ketoglutarate-dependent dioxygenase) ex-
pression (43, 45–49). The FTO protein is believed to play
a role in controlling feeding behavior and energy expen-
diture. However, biologic mechanisms by which FTO
contributes to common obesity remain unknown, partly

because of discrepancies between animal studies and obser-
vations in humans (50–52). Minor alleles in the maternal
genotypes of these 4 SNPs were significantly associated
with a decreased NTD risk in offspring. Three variants
(rs8050136, rs9939609, and rs17817449) are located in a
7-kilobase region in intron 1 of the FTO gene and are in
strong linkage disequilibrium (47); however, rs1421085 is
12.5 kilobases away from this region and is not in linkage
disequilibrium with the other variants. Because the minor
alleles of these SNPs were negatively associated with NTD
risk among nonobese mothers in our population, the FTO
genotypes may be associated with NTDs through mecha-
nisms other than maternal obesity (e.g., an ancestral surviv-
al advantage related to fat accumulation) (4, 9–12, 53).

The T-cell factor 7-like 2 gene (TCF7L2) harbors the
variants with the strongest association with type 2 diabetes
risk identified to date (23). In recent years, it has become

Table 3. Log-Linear Results Among Obese Mothers for the Association Between Diabetes and Obesity-Related Genes and the Risk of Neural

Tube Defects, National Birth Defects Prevention Study, 1999–2007

Variant
No. of
Triads

No. of
Dyads

No. of
Monads

Offspring Genetic Effect Maternal Genetic Effect

RRa 95% CI
LRT

P Value
RRa 95% CI

LRT
P Value

ADRB3 rs4994 91 63 23 1.29 0.73, 2.28 0.39 0.66 0.39, 1.14 0.13

ENPP1 rs1044498 90 62 25 0.84 0.49, 1.46 0.54 1.02 0.68, 1.52 0.94

FTO

rs1421085 76 64 32 0.78 0.49, 1.25 0.30 0.77 0.54, 1.09 0.14

rs8050136 83 69 23 0.77 0.49, 1.20 0.24 0.95 0.70, 1.29 0.73

rs9939609 85 62 28 0.83 0.53, 1.29 0.41 0.93 0.69, 1.27 0.66

rs17817449 87 66 24 0.79 0.52, 1.21 0.28 1.01 0.73, 1.39 0.95

LEP

rs2071045 78 68 29 1.19 0.65, 2.15 0.58 1.34 0.89, 2.03 0.15

rs2167270 89 59 29 1.48 0.98, 2.22 0.06 0.86 0.63, 1.17 0.34

rs3828942 85 69 23 0.66 0.44, 0.98 0.04 1.09 0.79, 1.52 0.60

rs11760956 85 64 25 1.49 0.98, 2.26 0.06 0.92 0.67, 1.25 0.59

rs12706831 85 67 23 0.69 0.45, 1.06 0.09 1.11 0.81, 1.51 0.52

PPARG rs1801282 88 64 23 0.91 0.48, 1.71 0.76 1.02 0.58, 1.78 0.95

PPARGC1

rs3736265 80 69 24 0.72 0.27, 1.93 0.51 1.40 0.73, 2.69 0.31

rs8192678 86 65 22 0.87 0.57, 1.34 0.54 1.18 0.82, 1.69 0.37

SLC2A2

rs5400 87 62 28 1.05 0.60, 1.83 0.86 1.03 0.65, 1.63 0.90

rs6785233 87 67 22 0.90 0.47, 1.74 0.75 0.78 0.43, 1.43 0.42

rs11924032 85 65 27 0.93 0.58, 1.48 0.76 0.86 0.59, 1.25 0.44

TCF7L2

rs290487 90 63 24 1.15 0.68, 1.95 0.59 1.13 0.75, 1.71 0.55

rs3814573 88 65 24 1.21 0.78, 1.86 0.40 1.64 1.15, 2.33 0.0044

rs7903146 83 70 23 1.01 0.63, 1.62 0.97 1.15 0.81, 1.63 0.45

rs10885390 88 64 21 1.11 0.71, 1.75 0.65 0.99 0.69, 1.43 0.96

rs12255372 88 62 25 0.94 0.59, 1.51 0.81 0.98 0.68, 1.42 0.91

UCP2 rs660339 82 66 27 1.74 1.14, 2.64 0.01 1.07 0.77, 1.49 0.70

Abbreviations: CI, confidence interval; LRT, likelihood ratio test; RR, relative risk.
a Results are based on an additive model (i.e., the risk of being a heterozygote vs. the common homozygote).
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clear that TCF7L2 is not only a key determinant of β-cell
mass in the pancreas but is also essential for maintaining
the secretory function in mature β cells and glucose homeo-
stasis (45, 54–57). SNP rs3814573 was found to be associ-
ated with both type 2 diabetes risk and age of onset in
Mexican Americans (58). In our study, we observed a ma-
ternal effect of the rs3814573 T allele and increased NTD
risk. When we stratified by maternal obesity status, the rela-
tive risk was higher among obese women than among non-
obese women. This finding suggests that the maternal
genetic effect of the TCF7L2 rs3814573 genotype on NTD
risk may be different between obese women and nonobese
women. The estimated relative risk remained the same
when the analysis was restricted to nondiabetic women
(data not shown).
Leptin is a hormone that is produced and secreted by

white adipose tissue and has profound effects on eating

behavior, metabolic rate, endocrine axes, and glucose ho-
meostasis. Leptin deficiency in both mice and humans
causes morbid obesity and diabetes, and replacement treat-
ment leads to decreased food intake, normalized glucose
homeostasis, and increased energy expenditure (59). In a
previous study, Shaw et al. (60) reported a modest increase
in spina bifida risk among infants carrying 2 genetic
markers adjacent to the LEP gene irrespective of maternal
body mass index. In this study, we observed a modest in-
crease in NTD risk among women who carried the risk
allele of SNP rs2071045. There appeared to be differences
in effect between obese and nonobese women for selected
LEP SNPs. For instance, we observed a positive association
between offspring genotypes of LEP rs3828942 and
rs12706831 and NTD risk among nonobese women,
whereas in obese women, the minor allele was protective.
Our findings add evidence in support of the hypothesis that

Table 4. Log-Linear Results Among Nonobese Mothers for the Association Between Diabetes and Obesity-Related Genes and the Risk of

Neural Tube Defects, National Birth Defects Prevention Study, 1999–2007

Variant
No. of
Triads

No. of
Dyads

No. of
Monads

Offspring Genetic Effect Maternal Genetic Effect

RRa 95% CI
LRT

P Value
RRa 95% CI

LRT
P Value

ADRB3 rs4994 206 234 76 1.38 0.93, 2.03 0.10 0.94 0.69, 1.28 0.72

ENPP1 rs1044498 206 223 87 0.96 0.67, 1.37 0.83 1.13 0.89, 1.43 0.31

FTO

rs1421085 184 230 85 0.91 0.68, 1.22 0.53 0.71 0.58, 0.88 0.0010

rs8050136 200 231 81 0.89 0.67, 1.17 0.39 0.74 0.60, 0.90 0.0030

rs9939609 201 218 88 0.83 0.63, 1.09 0.18 0.74 0.60, 0.90 0.0027

rs17817449 192 238 82 0.85 0.64, 1.12 0.24 0.74 0.60, 0.91 0.0032

LEP

rs2071045 201 229 81 1.19 0.88, 1.63 0.26 1.33 1.06, 1.68 0.01

rs2167270 193 241 82 0.77 0.59, 1.00 0.05 1.05 0.87, 1.28 0.61

rs3828942 200 230 87 1.31 1.00, 1.72 0.05 0.92 0.77, 1.11 0.38

rs11760956 196 227 88 0.77 0.59, 1.01 0.05 0.96 0.79, 1.16 0.65

rs12706831 205 229 82 1.31 1.01, 1.69 0.04 0.96 0.79, 1.16 0.67

PPARG rs1801282 205 229 81 1.05 0.68, 1.62 0.84 1.03 0.76, 1.40 0.86

PPARGC1A

rs3736265 193 232 77 1.01 0.59, 1.73 0.96 1.06 0.73, 1.54 0.75

rs8192678 198 231 81 1.11 0.84, 1.46 0.48 0.98 0.81, 1.18 0.83

SLC2A2

rs5400 200 235 78 1.36 0.93, 1.98 0.11 1.08 0.83, 1.41 0.57

rs6785233 206 227 81 1.42 0.89, 2.27 0.14 1.01 0.74, 1.39 0.94

rs11924032 204 226 83 0.79 0.59, 1.06 0.11 1.06 0.87, 1.30 0.55

TCF7L2

rs290487 209 232 75 1.16 0.84, 1.61 0.37 0.97 0.77, 1.23 0.82

rs3814573 203 231 80 0.94 0.72, 1.21 0.63 1.11 0.92, 1.35 0.27

rs7903146 200 234 77 0.84 0.64, 1.12 0.23 0.90 0.72, 1.13 0.36

rs10885390 203 220 88 1.07 0.78, 1.46 0.66 0.98 0.81, 1.20 0.85

rs12255372 201 228 86 0.88 0.65, 1.17 0.37 0.85 0.68, 1.07 0.17

UCP2 rs660339 203 232 79 1.19 0.91, 1.55 0.20 0.93 0.77, 1.12 0.42

Abbreviations: CI, confidence interval; LRT, likelihood ratio test; RR, relative risk.
a Results are based on an additive model (i.e., the risk of being a heterozygote vs. the common homozygote).
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leptin/leptin receptor signaling is involved in maternal
obesity-related NTD risk (25, 26, 60).

Uncoupling proteins are mitochondrial membrane trans-
porters that play an important role in the pathogenesis of
various metabolic disorders, including obesity and diabetes
(61, 62). The nonsynonymous variant of the uncoupling
protein 2 gene (UCP2), Ala55Val (rs660339), has been as-
sociated with body fat distribution and obesity (63, 64).
Our colleagues previously reported a 2-fold increase in
NTD risk among infants who carried the risk allele at
rs660339 in a California population (30). However, this as-
sociation was not observed in an Irish population (65). Our
current data revealed a modest increase in NTD risk among
infants who carried the risk allele, which is consistent with
our previous finding. Additionally, the offspring genetic
effect was greater among obese women than among non-
obese women.

An important strength of our study was the use of data
from the NBDPS, the largest population-based study of
birth defects to be conducted to date, which provided us
with a unique opportunity to examine both maternal and
offspring genetic effects on NTD risk. We employed a
case-parent triad design, which is immune to confounding
by race/ethnicity (i.e., population stratification) in the as-
sessment of offspring genotypes (37). Additionally, we re-
stricted our analyses to non-Hispanic whites to limit
population stratification in the assessment of maternal
genetic effects. The log-linear modeling approach to analy-
ses also allowed us to include data from incomplete triads
(i.e., genotype data were missing for one or two individu-
als) (40, 66). An additional strength of the NBDPS is the
extensive and standardized case review employed by clini-
cal geneticists, which maximizes homogeneity among case
groups. The main weakness of this study was the limited
proportion of families with biologic samples available
because of the generally low participation rates for contrib-
uting biologic samples (49%). Additionally, we did not
conduct haplotype association analyses, because the SNPs
selected for this study were primarily those identified as
being associated with diabetes and/or obesity risk or
because they were functional variants in these candidate
genes, rather than haplotype tagging SNPs. The low per-
centage of families on which the genetic findings were
based could limit our ability to generalize these results.
However, we do not think that the demographic differences
between persons who were included in this study and those
who were not included were associated with genotypes.

In conclusion, our findings suggest that genetic vari-
ants associated with glucose metabolism may modify a
woman’s risk of having an NTD-affected pregnancy. The
maternal effects of FTO, TCF7L2, and LEP genes may also
provide evidence regarding the molecular mechanisms un-
derlying the development NTDs. Replication of these find-
ings in other populations and investigation of additional
genes is warranted. Furthermore, since maternal obesity
and diabetes are also risk factors for other malformations
(5, 8, 67), assessing the association between these variants
and other birth defects will broaden our understanding of
diabetes and obesity-related teratogenicity.
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