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There has been a long-standing controversy in epidemiology with regard to an appropriate risk scale for

testing interactions between genes (G) and environmental exposure (E ). Although interaction tests based on the

logistic model—which approximates the multiplicative risk for rare diseases—have been more widely applied

because of its convenience in statistical modeling, interactions under additive risk models have been regarded

as closer to true biologic interactions and more useful in intervention-related decision-making processes in

public health. It has been well known that exploiting a natural assumption of G-E independence for the underly-

ing population can dramatically increase statistical power for detecting multiplicative interactions in case-control

studies. However, the implication of the independence assumption for tests for additive interaction has not been

previously investigated. In this article, the authors develop a likelihood ratio test for detecting additive interactions

for case-control studies that incorporates the G-E independence assumption. Numerical investigation of power

suggests that incorporation of the independence assumption can enhance the efficiency of the test for additive

interaction by 2- to 2.5-fold. The authors illustrate their method by applying it to data from a bladder cancer

study.

additive risk model; case-control studies; gene-environment independence; gene-environment interaction;

multiplicative risk model

Abbreviations: LRT, likelihood ratio test; MOR, marginal odds ratio; NCP, noncentrality parameter; RERI, relative excess risk

due to interaction; SNP, single nucleotide polymorphism.

Testing for gene-environment (G-E ) and gene-gene
(G-G) interactions has been of great interest in epidemiolo-
gy. Despite recent success in genome-wide association
studies for identification of susceptibility single nucleotide
polymorphism (SNPs) for complex traits, very few G-E or
G-G interactions have been reported so far. Interaction has
diverse meanings in the epidemiologic literature (1), and
there has been a long-standing controversy concerning its
definition and the selection of proper scales for measuring
the presence of interactions (2–4). Logistic regression
models are widely used for analyses of case-control data
with qualitative disease traits; a test for interaction under
the traditional logistic model corresponds to a test for

interaction on the odds ratio scale. For rare diseases—since
odds ratios approximate relative risks— a test for interac-
tion using a logistic model corresponds to a test for non-
multiplicative effects of underlying risk factors for a
disease.
In spite of the popularity of the tests for multiplicative

interaction, it is believed that methods for testing for the
presence of additive interaction may be more relevant for a
number of scientific objectives. A number of researchers
have shown that conceptual models for biologic interac-
tions translate to the presence of interaction on the additive
scale and not necessarily on the multiplicative scale (1).
Moreover, for evaluating certain public health decisions,
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such as whether it is beneficial to target individuals for in-
tervention for an exposure based on genetic susceptibility,
evaluation of risk differences and additive interactions is di-
rectly relevant (5, 6). Unfortunately, in spite of such rele-
vance, methods for testing for additive interaction have
received less attention.

In this report, we investigate the potential for improving
the statistical power of the test for additive interaction in
case-control studies exploiting the G-E independence as-
sumption, which has been previously shown to lead to
major gains in efficiency for tests for multiplicative interac-
tion. We formulate the test using a generalized logistic re-
gression model that embeds the additive model for disease
risk by imposing certain constraints on parameters. We
then develop a likelihood ratio test (LRT) applying the
framework proposed by Chatterjee and Carroll (7) that
permits the incorporation of the G-E independence assump-
tion for case-control studies under such a generalized logis-
tic model. We conduct a simulation study to compare the
performance of the proposed method with a method for
testing additive interaction that does not take into account
the independence information. We illustrate our method by
applying it to a test of interaction between smoking and a
recently discovered susceptibility SNP in the etiology of
bladder cancer. User-friendly software implemented in the
R language (R Foundation for Statistical Computing,
Vienna, Austria) is made available for general use.

MATERIALS AND METHODS

Models, a retrospective likelihood, and an LRT

We first describe a model for testing additive interaction
between 2 categorical covariates, say G and E, that have
J + 1 and K + 1 levels, respectively. Typically, for genetic
association studies, G will denote SNP genotype data
coded as 0, 1, or 2 depending on the number of minor
alleles that a subject carries on a pair of homologous chro-
mosomes. Sometimes, G may be coded as a binary variable
assuming a dominant or recessive effect of the SNP allele.

Let Gi, Ei, and Di be the genetic factor, the environmen-
tal exposure, and the disease indicator for the ith individual,
respectively, in a case-control study of N subjects. Let
ri = Pr(Di = 1|Gi, Ei) be disease risk in the underlying popu-
lation, and consider a saturated parameterization of joint
effects of Gi and Ei for disease risk on the additive scale:

ri ¼ PrðDi ¼ 1jGi;EiÞ ¼ b0 þ
X2
j¼1

bGjGij þ
XK
k¼1

bEkEik

þ
X2
j¼1

XK
k¼1

d jkGijEik; ð1Þ

where Gij is a dummy variable for indicating whether Gi

takes a value j and Eik is a dummy variable for indicating
whether Ei takes a value k. Alternatively, the saturated
model for ri = Pr(Di = 1|Gi, Ei) can be specified using a

traditional logistic regression of the form

log
ri

1� ri

� �
¼ b0 þ

X2
j¼1

bGjGij þ
XK
k¼1

bEkEik

þ
X2
j¼1

XK
k¼1

g jkGijEik: ð2Þ

Under equation 1, the null hypothesis for no additive inter-
action is given by H0: δjk = 0 for j = 1, 2 and k = 1, 2,… , K.

In the Appendix, we show that if we assume a rare
disease—so that relative risks can be approximated by odds
ratios—the null hypothesis of no additive interaction corre-
sponds to a set of constraints on the parameters of the lo-
gistic model in equation 2 of the form

H0: expðg jkÞ ¼ ½expðbGjÞ þ expðbEkÞ � 1�=expðbGj þ bEkÞ
ð3Þ

for j = 1, 2 and k = 1, 2, ..., K. Now, since the saturated
model for disease risk is the same under logistic and addi-
tive parameterization, the test for no additive interaction
against the alternative of the saturated model for joint risk
can be performed within the logistic regression framework,
by comparing the null hypothesis given by equation 3
against the alternative of the saturated model shown in
equation 2.

We consider LRTs for testing H0 as specified by equa-
tion 3 against the general alternative given in equation 2. A
standard LRT for interaction is typically based on a “pro-
spective likelihood” for case-control data that ignores the
retrospective nature of the sampling design. Although such
prospective treatment of case-control data is known to be
efficient (8) when no assumption is made about the distri-
bution of covariates, it is now well known that more effi-
cient inference is possible if an assumption of G-E
independence is invoked in the underlying population. In
particular, an approach using the case-only design has been
proposed for testing for multiplicative interaction under the
independence constraint (9). The case-only approach,
however, allows inference only on the interaction parameter
of a logistic model and is not suitable for the test for addi-
tive interaction, since the null hypothesis has constraints in-
volving both main effects and interaction parameters, as
shown in equation 3. Umbach and Weinberg (10) and
Chatterjee and Carroll (7) have defined alternative methods
for analyses of case-control data that can exploit the as-
sumption of G-E independence, utilizing both cases and
controls for efficient inference on all of the parameters of a
logistic regression model.

In this report, we use the profile-likelihood approach de-
veloped by Chatterjee and Carroll (7) to develop a retro-
spective LRT for additive interaction. The profile-
likelihood method has been extended to take into account
G-G or G-E dependence due to population stratification, by
conditioning the likelihood on appropriate variables (S)
such as self-reported ethnicity and/or principal components
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of population stratification markers (11). The profile-likeli-
hood derived by Chatterjee and Carroll under the model
(equation 2) is given by

L ¼
YN
i¼1

PrðDi ¼ d; Gi ¼ gjEi; Si ¼ s; R ¼ 1Þ:

R indicates the selection mechanism for the case-control
design, and Si is a stratifying variable. Under G-E indepen-
dence, the likelihood L can be derived as

L ¼
YN
i¼1

expðfiðd; gÞÞP
d;g

expðfiðd; gÞÞ
; ð4Þ

where

fiðd; gÞ ¼ d � b0 þ
X2
j¼1

bGjGij þ
XK
k¼1

bEkEik

"

þ
X2
j¼1

XK
k¼1

g jkGijEik

#
þ Iðg ¼ 1Þ log 2

þ g logð ps=1� psÞ;

and ps is the minor allele frequency of SNP Gi; that is,
Pr(Gi = 0|Si = s) = (1− ps)

2, Pr(Gi = 1|Si = s) = 2ps(1− ps), and
PrðGi ¼ 2jSi ¼ sÞ ¼ p2s in stratum s under Hardy-Weinberg
equilibrium. For continuous S, such as principal compo-
nents, Pr(Gi|Si) can be modeled in terms of a polytomous
regression model (12). In addition, under the above formu-
lation, it is easy to incorporate additional covariates, such as
age, that typically need to be adjusted for in the disease risk
model (equation 2). Under the saturated model shown
in equation 2 for joint risk of the disease, the profile like-
lihood (equation 4) can be maximized using freely available
CGEN software (http://dceg.cancer.gov/bb/tools/genetanal
casecontdata), which currently allows fitting of the standard
logistic regression model. For fitting of the model under the
null hypothesis, we expressed the interaction parameters of
the logistic model in terms of the main effects as specified
by equation 3 and then maximized the likelihood only with
respect to the reduced set of parameters under the given con-
straints. The corresponding LRT would asymptotically follow
a chi-square distribution with 2K degrees of freedom.

Bladder cancer data

As an illustrative application, we analyze case-control
data on bladder cancer to explore possible interactions
between a recently discovered susceptibility SNP
(rs2294008) for the disease in the prostate stem cell antigen
gene (PSCA) (13, 14) and smoking status (never, former, or
current smoker), a known risk factor for bladder cancer.
We use data from a National Cancer Institute-led genome-
wide association study that included 3,577 cases and 5,280
controls from 5 different study centers. More details about

the study can be found elsewhere (14). We conduct tests
for additive and multiplicative interactions under a domi-
nant model for the minor allele of rs2294008 (CC/
CT + TT) and smoking status, categorized as “never”
versus “ever.” We also perform these tests allowing for 3
nominal levels for the SNP (CC/CT/TT) and smoking
status (never/former/current). For each test, we apply both pro-
spective and retrospective LRTs under a logistic model that
adjusts for study center, age, sex, and DNA source (blood or
buccal cells). In the retrospective likelihood, the SNP and all
other covariates, including smoking status, are assumed to be
independent, conditional on study. That is, a stratifying
variable S in equation 4 in this case is the study variable.

Simulation methods

To evaluate the efficiency gain for the test of additive
interaction using the retrospective likelihood (LRTR) as
compared with the prospective likelihood (LRTP), we
conduct several sets of simulations. For simplicity, we use
a model where both G and E are binary with 2 levels of 0
and 1. We assume that these 2 factors are independently
distributed in the underlying population and the prevalenc-
es are given by Pr(E = 1) = 0.2 and Pr(G = 1) = 0.5, respec-
tively. We assume the disease is rare, so that disease-free
subjects approximately represent the underlying population.
In our simulation setting, the saturated models for

disease risk under the additive and multiplicative interac-
tion scales are given by

ri ¼ b0 þ bG1Gi1 þ bE1Ei1 þ d11Gi1Ei1

and

log
ri

1� ri

� �
¼ b0 þ bG1Gi1 þ bE1Ei1 þ g11Gi1Ei1; ð5Þ

respectively. We fix the marginal odds ratio (MOR) for G
(MOR(G)); that is, the disease odds ratio for G if E is
ignored in the analysis is fixed at 1.2, reflecting the modest
strength of genetic association that is typically observed in
genome-wide association studies. Simulation using a larger
genetic effect with MOR(G) = 1.5 is also conducted and is
shown in Web Figure 1 and Web Table 1, which are avail-
able on the Journal’s website (http://aje.oxfordjournals.org/).
We fix the MOR for E (MOR(E)) at 2.5 or 3.5. For each
fixed value of the MOR parameters, we vary the magnitude
of additive interactions by assigning 4 distinct values for the
relative excess risk due to interaction (RERI) (15) of 0.5, 1,
1.5, and 2, where RERI is defined as

d11
b0

¼ RR11 � RR01 � RR10 þ 1

¼ expðbG1 þ bE1 þ g11Þ � expðbG1Þ � expðbE1Þ þ 1

(see Appendix for definition of RRjk). We choose appropri-
ate parameter values for βG1, βE1, and γ11 in the logistic
model so that MOR(G), MOR(E), and RERI are fixed at
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given values (see Table 1). In each simulation, we generate
G and E data for 4,000 cases and 4,000 controls. For the
simulation of type I error rates, parameter values are chosen
to correspond to the null hypothesis of RERI = 0; specifi-
cally, βG1 = log(1.2), βE1 = log(3.58), and γ11 = log(0.87).

For each test in each model, power is calculated by
counting the fraction of replicate data sets with significant
P values using a significance level of α = 1.00 × 10−6.
Since relative differences of power between tests depend on
the significance level, we also calculate the noncentrality
parameter (NCP) for each LRT in order to compare perfor-
mances of tests regardless of significance levels. Using the
fact that NCP is the expected value of an LRT under the
alternative hypothesis, we take the average of LRT values
over replicate data sets. We estimate the relative efficiency
of LRTR with regard to LRTP by taking the ratio of the
NCP of LRTR to the NCP of LRTP. All simulations are
based on 5,000 replicates for evaluation of power and
based on 10,000 replicates for evaluation of type I error.

RESULTS

Bladder cancer data example

For the model with 2 categories of G and E, both the
prospective LRT and the retrospective LRT indicate evi-
dence of supra-additive effects, with statistical significance
appearing to be stronger under the retrospective method
(P = 0.001) than under the prospective method (P = 0.007).
Table 2 shows the joint effect of the SNP and smoking
status using the prospective and retrospective likelihoods.
For the model with 3 categories of G and E, the results

Table 1. Parameter Values for the Logistic Regression Model

(Equation 5) Used in the Simulation Studies

MOR Parameter
RERIa

0.5 1 1.5 2

MOR(G)b = 1.2 exp(βG1) 1.16 1.06 0.96 0.85

MOR(E)c = 2.5 exp(βE1) 2.45 2.21 1.98 1.74

exp(γ11) 1.09 1.39 1.80 2.42

MOR(G) = 1.2 exp(βG1) 1.20 1.10 0.99 0.87

MOR(E) = 3.5 exp(βE1) 3.58 3.18 2.79 2.38

exp(γ11) 0.99 1.22 1.55 2.05

Abbreviations: MOR, marginal odds ratio; RERI, relative excess

risk due to interaction.
a RERI is a measure of additive interaction defined as

ðd11=b0Þ ¼ expðbG1 þ bE1 þ g11Þ � expðbG1Þ � expðbE1Þ þ 1.
b MOR for the genetic factor G.
c MOR for the environmental factor E.

Figure 1. Power simulation results of the tests for additive interaction (4,000 cases and 4,000 controls). The 3 columns, from left to right, show
power, the noncentrality parameter (NCP), and the relative efficiency, respectively. For the top 3 panels, the marginal odds ratio (MOR) for the
genetic factor G, MOR(G), is 1.2 and the MOR for the environmental factor E, MOR(E ), is 2.5. For the bottom 3 panels, MOR(G) is 1.2 and
MOR(E ) is 3.5. The squares with solid lines in the first 2 columns represent results obtained using a likelihood ratio test (LRT) assuming gene-
environment (G-E ) independence (retrospective likelihood). The dots with dashed lines in the first 2 columns represent results obtained using a
likelihood ratio test without assuming G-E independence (prospective likelihood). The dots with dashed lines in the third column represent
relative efficiency, calculated as the retrospective likelihood divided by the prospective likelihood (LRTR /LRTP). The relative excess risk due to
interaction (RERI) is a measure of additive interaction defined as (δ11/b0) = exp(βG1 + βE1 + γ11)− exp(βG1)− exp(βE1) + 1.
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show increased significance using the retrospective likeli-
hood (P = 0.00038) but decreased significance for the pro-
spective likelihood (P = 0.153). None of the tests for
multiplicative interaction using 2 or 3 categories of expo-
sure detected any supra-multiplicative effects, although the
P value under the retrospective likelihood was consistently
reduced in comparison with the prospective likelihood.

Power simulation results

The estimated type I error rates are shown in Table 3,
which demonstrates correct error rates across different sig-
nificance levels. Power simulation results for additive inter-
actions (displayed in Figure 1) show that LRTR is more
powerful than LRTP across different values of RERI and
different values of MOR(E) (left column in Figure 1). NCP
values show correspondingly larger values for LRTR than
for LRTP (middle column in Figure 1), which yield a rela-
tive efficiency of LRTR to LRTP ranging from 2.1 to 2.4
(right column in Figure 1). Figure 2 displays the analogous
results for the multiplicative interaction, which show slight-
ly lower power levels in comparison with the additive inter-
action tests, since the true models are under the additive
interaction model. The relative efficiencies of the test using

the retrospective likelihood over the test using the prospec-
tive likelihood for multiplicative interaction ranged from
1.3 to 2.5, which shows a bit wider range in comparison
with the additive interaction tests.

DISCUSSION

In this article, we have proposed an LRT for additive
interaction that exploits G-E independence information by
incorporating the retrospective likelihood proposed by
Chatterjee and Carroll (7). To our knowledge, our method
is the first approach to exploit G-E or G-G independence
information for testing additive interaction. The general
framework we utilize can also be easily extended to test for
interactions in the “sufficient-component” framework (16),
which has been shown to correspond to specific constraints
on risk-difference parameters (17).
The simulation study showed that the proposed method

gains major power over the alternative, which does not take
into account the independence information; the relative effi-
ciency of LRTR to LRTP ranges from 2.1 to 2.4, depending
on the model parameters. The real-data example for testing
gene × smoking status interaction for bladder cancer also il-
lustrates the power advantage of the proposed method. We
generalized our method so it can be flexibly applied to a
setting where risk factors have any number of categories.
Our method employs a general logistic regression model

for testing additive interactions instead of fitting an additive
risk model directly. The approach enables us to utilize the
logistic regression-based profile likelihood approach (7),
which is computationally stable and is highly flexible in its
ability to account for very general types of covariates.
Within this framework, the assumption of rare disease,
which is partly required to invoke the G-E independence
assumption for the controls as opposed to the whole popu-
lation, can be relaxed if the disease rate for the underlying
population is known or is estimated from an underlying
cohort. Further, even if a disease is not rare but an inci-
dence sampling design is used in a case-control study, the
odds ratio parameters can be interpreted as rate ratios
instead of risk ratios (18).

Table 3. Type I Error Rates Estimated Using Simulations With

4,000 Cases and 4,000 Controls

α LRTR
a LRTP

b

0.1 0.0989 0.1011

0.05 0.0513 0.0503

0.01 0.0135 0.0107

0.005 0.0059 0.0062

0.001 0.0016 0.0012

Abbreviation: LRT, likelihood ratio test.
a LRT using the gene-environment independence assumption

(retrospective likelihood).
b LRT without the gene-environment independence assumption

(prospective likelihood).

Table 2. Odds Ratios for the Joint Association of Prostate Stem Cell Antigen Gene (PSCA) Polymorphism rs2294008 and Smoking Status

With Bladder Cancer Riska

Method
PSCA

Genotype

Smoking Status

RERIb 95% CI
Interaction
P Value

Never Smoker Ever Smoker

OR 95% CI OR 95% CI

No G-E independence assumption CC 1 Referent 2.53 2.03, 3.14b 0.53 0.17, 0.88 0.0076

(prospective likelihood) CT + TT 1.05 0.86, 1.30 3.11 2.54, 3.81

G-E independence assumption CC 1 Referent 2.55 2.10, 3.09 0.53 0.23, 0.83 0.0010

(retrospective likelihood) CT + TT 1.07 0.89, 1.28 3.15 2.59, 3.83

Abbreviations: CI, confidence interval; G-E, gene-environment; OR, odds ratio; RERI, relative excess risk due to interaction.
a Data were obtained from a National Cancer Institute-led genome-wide association study that included 3,577 cases and 5,280 controls from

5 different study centers (14).
b RERI is a measure of additive interaction defined as ðd11=b0Þ ¼ expðbG1 þ bE1 þ g11Þ � expðbG1Þ � expðbE1Þ þ 1.
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A limitation of methods which exploit the G-E or G-G
independence assumption to gain efficiency is that they can
produce substantial bias when the underlying assumptions
of independence are violated. Similar to results reported for
multiplicative interactions, we observed that violation of
the independence assumption can seriously bias the pro-
posed test for additive interaction (Web Table 2). A major
source of G-E association in large-scale studies could be
the existence of hidden population stratification along
which both the genotype distribution and the exposure dis-
tribution may vary. The proposed method can easily adjust
for such population stratification bias by taking into
account self-reported ethnicity, geographic regions, and/or
principal components of large numbers of markers in the
retrospective likelihood (12). Other approaches that may
protect against bias irrespective of the source of G-E asso-
ciation would be empirical Bayes (19, 20) or model averag-
ing (21) techniques that can data-adaptively relax the
independence assumption. In the future, further develop-
ment of these techniques for tests for additive interaction
would be desirable.
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APPENDIX

Null Hypothesis and a Likelihood Ratio Test

Let Rjk denote an absolute risk for a group of persons
with Gi = j and Ei = k (see Appendix Table 1), and let
RRjk = Rjk/R00 denote a relative risk (RR) for the group as
compared with a reference group with j = 0 and k = 0.
The null hypothesis for testing additive interaction is

H0: δjk = 0 for j = 1, 2 and k = 1, 2,… , K. Simple algebra
shows that this is equivalent to

Rjk � R00 ¼ ðRj0 � R00Þ þ ðR0k � R00Þ ðA1Þ

for j = 1, 2 and k = 1, 2,… , K—that is, increased risk due
to exposure to G with level j and E with level k is the same
as the sum of separate risk increments due solely to expo-
sure to G or E of the same levels. Dividing equation A1 by
R00 gives the following relative risk relations:

RRjk ¼ RRj0 � RR0k � 1; ðA2Þ

for j = 1, 2 and k = 1, 2, ..., K, where RRjk = Rjk/R00. Approx-
imating equation A2 through the use of odd ratios in Appendix
Table 2 gives exp(βGj + βEk + γjk) = exp(βGj) + exp(βEk)− 1
for j = 1, 2 and k = 1, 2,… , K. Hence, we can rewrite the
null hypothesis as

H0: expðg jkÞ ¼ ½expðbGjÞ þ expðbEkÞ � 1�= expðbGj þ bEkÞ

for j = 1, 2 and k = 1, 2,… , K. A likelihood ratio test (LRT)
is constructed by comparing a fit without any parameter re-
strictions to a fit with the contrasts in equation 3 (see main
text) imposed on the parameter space for testing an additive
interaction:

LRT ¼ 2 max lðuÞ
u[Q1

�max lðuÞ
u[Q0

 !
� x22�K ;

where θ = (β0, βGj, βEk, γjk) for j = 1, 2 and k = 1, 2,… , K;
Θ1 = {θ: θ∈ Rp}, where p is the total number of parameters
and Θ0 = {θ: exp(γjk) = [exp(βGj) + exp(βEk)− 1]/exp(βGj +
βEk) for j = 1, 2 and k = 1, 2,… , K}; and l(θ) is a log-likeli-
hood—for example, a typical log-likelihood for logistic re-
gression is a prospective likelihood given as

lðuÞ ¼
XN
i¼1

½yi log ri þ ð1� riÞ logð1� riÞ�:

(Appendix tables follow)
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Appendix Table 1. Absolute Risk for Each Combination of Different Levels of a Genetic Factor G (Row) and an

Environmental Exposure E (Column)a

j k = 0 k = 1 … k =K

0 b0 (=R00) b0 + bE1 (=R01) … b0 + bEK (=R0K)

1 b0 + bG1 (=R10) b0 + bG1 + bE1 + δ11 (=R11) … b0 + bG1 + bEK + δ1K (=R1K)

2 b0 + bG2 (=R20) b0 + bG2 + bE1 + δ21 (=R21) … b0 + bG2 + bEK + δ2K (=R2K)

a Constructed from the additive risk model in equation 1.

Appendix Table 2. Odds Ratio for Each Combination of Different Levels of a Genetic Factor G (Row) and an

Environmental Exposure E (Column)a

j k = 0 k = 1 k = 2 … k =K

0 1 exp(βE1) exp(βE2) … exp(βEK)

1 exp(βG1) exp(βG1 + βE1 + γ11) exp(βG1 + βE2 + γ12) … exp(βG1 + βEK + γ1K)

2 exp(βG2) exp(βG2 + βE1 + γ21) exp(βG2 + βE2 + γ22) … exp(βG2 + βEK + γ2K)

a Constructed from the multiplicative risk model in equation 2.
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