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In recent decades, epidemiology, public health, and medical sciences have been increasingly compartmen-

talized into narrower disciplines. The authors recognize the value of integration of divergent scientific fields in

order to create new methods, concepts, paradigms, and knowledge. Herein they describe the recent emergence

of molecular pathological epidemiology (MPE), which represents an integration of population and molecular bio-

logic science to gain insights into the etiologies, pathogenesis, evolution, and outcomes of complex multifactorial

diseases. Most human diseases, including common cancers (such as breast, lung, prostate, and colorectal

cancers, leukemia, and lymphoma) and other chronic diseases (such as diabetes mellitus, cardiovascular dis-

eases, hypertension, autoimmune diseases, psychiatric diseases, and some infectious diseases), are caused

by alterations in the genome, epigenome, transcriptome, proteome, metabolome, microbiome, and interactome

of all of the above components. In this era of personalized medicine and personalized prevention, we need

integrated science (such as MPE) which can decipher diseases at the molecular, genetic, cellular, and popula-

tion levels simultaneously. The authors believe that convergence and integration of multiple disciplines should

be commonplace in research and education. We need to be open-minded and flexible in designing integrated

education curricula and training programs for future students, clinicians, practitioners, and investigators.

education, public health professional; health care reform; individualized medicine; interdisciplinary

communication; molecular epidemiology; pathology

Abbreviations: MPE, molecular pathological epidemiology; STROBE, Strengthening the Reporting of Observational

Epidemiology.

Editor’s note: An invited commentary on this article
appears on page 668, and the authors’ response appears
on page 672.

Education is a crucial mission of the academic commu-
nity. Excellence in research and education requires the com-
bined efforts of many different disciplines (1, 2). As
fundamental disciplines of biomedical and public health
sciences, both pathology and epidemiology are fields of
study of the entire spectrum of human diseases—the former
focused on disease mechanisms in individual cases, the
latter on patterns of disease in populations. The importance
of these fields is well exemplified by the universal presence

of pathology in medical school curricula and that of epide-
miology in public health school curricula. Because of ad-
vances in both laboratory technologies and epidemiologic
methods, pathology and epidemiology have become com-
partmentalized in schools of medicine and public health, re-
spectively. By virtue of our training in both pathology and
epidemiology, we can appreciate that knowledge, skills,
and concepts from both fields can be integrated and syner-
gized to advance biomedical, public health, and population
sciences. In this era of personalized medicine (3), we need
integrated, convergent scientific disciplines, which will
enable us to decipher the characteristics of diseases simulta-
neously at both the individual and population levels (4–6).
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Table 1. Examples of Molecular Pathological Epidemiology Studies Which Have Shown Consistent Links Between Etiologic Factors and Cellular Molecular Changesa

First Author, Year
(Reference No.)

Disease (as in Traditional
Epidemiology)

Study Design
Sample Size

(No. of Participants)
Putative Etiologic Factor

Tumor Molecular
Changes (Subtypes)

Direction of Association

Chen, 2007 (31) Colorectal cancer Case-case 383 MLH1 rs1800734 SNP MLH1 methylation Positive

Chen, 2007 (31) Endometrial cancer Case-case 498 MLH1 rs1800734 SNP MLH1 methylation Positive

Raptis, 2007 (32) Colorectal cancer Case-control 766 cancer cases,
1,098 controls

MLH1 rs1800734 SNP MSI Positive

Samowitz, 2008
(33)

Colon cancer Case-control 795 cancer cases,
1,968 controls

MLH1 rs1800734 SNP MLH1 methylation,
CIMP, BRAF
mutation

Positive

Allan, 2008 (34) Colorectal cancer Case-case 1,392 MLH1 rs1800734 SNP MLH1 loss of
expression

Positive

Campbell, 2009
(35)

Colon cancer Case-control 1,211 cancer cases,
1,972 controls

MLH1 rs1800734 SNP MSI Positive

Oyama, 2004 (36) Colon cancer
(proximal)

Case-case 194 1-carbon metabolism
(MTHFR rs1801131
SNP)

CDKN2A (p16)
methylation

Positive

Curtin, 2007 (37) Colon cancer Case-control 916 cancer cases,
1,972 controls

1-carbon metabolism
(MTHFR rs1801131
SNP)

CIMP Positive

Jensen, 2008 (38) Colorectal cancer Case-case 130 1-carbon metabolism
(plasma
homocysteine)

MSI Positive

de Vogel, 2009
(39)

Colorectal cancer Case-cohort 373 cancer cases,
4,774 in
subcohort

1-carbon metabolism
(MTHFR rs1801131
SNP)

CIMP Null

Schernhammer,
2010 (40)

Colon cancer Prospective
cohort

609 incident cancer
cases, 136,056
participants

1-carbon nutrients
(folate, B vitamins),
alcohol

LINE-1
hypomethylation

Lack of folate and excess
alcohol are associated with
increased incidence of LINE-
1 hypomethylated cancer but
not that of LINE-1
methylation-high cancer.

Hazra, 2010 (41) Colorectal cancer Case-case (in
prospective
cohort studies)

182 1-carbon metabolism
(MTHFR rs1801131
SNP)

CIMP Positive

Van Guelpen,
2010 (42)

Colorectal cancer Nested case-
control (in
prospective
cohort study)

190 cancer cases,
380 controls

1-carbon metabolism
(MTHFR rs1801131
SNP)

CIMP Negative (inverse)

Curtin, 2011 (43) Rectal cancer Case-control 671 cancer cases,
1,205 controls

1-carbon metabolism
(MTHFR rs1801131
SNP and folate
intake)

CIMP MTHFR rs1801131 SNP and
folate intake interact to
modify an association with
CIMP-positive rectal cancer

Ogino, 2007 (44) Colorectal cancer Case-case (in
prospective
cohort studies)

182 MGMT rs16906252
SNP

MGMT methylation Positive

Table continues
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Table 1. Continued

First Author, Year
(Reference No.)

Disease (as in Traditional
Epidemiology)

Study Design
Sample Size

(No. of Participants)
Putative Etiologic Factor

Tumor Molecular
Changes (Subtypes)

Direction of Association

Hawkins, 2009
(45)

Colorectal cancer and
normal individuals
(colon mucosa)

Case-case 1,039 cancer cases,
97 normal
samples from
cancer patients,
20 normal
mucosa samples
from persons
without cancer

MGMT rs16906252
SNP

MGMT methylation in
cancer and normal
colon mucosa

Positive

Candiloro, 2009
(46)

Normal individuals
(peripheral blood
cells)

89 MGMT rs16906252
SNP

MGMT methylation
(in peripheral blood
cells)

Positive

Leng, 2011 (47) Lung adenocarcinoma Case-case 179 MGMT rs16906252
SNP

MGMT methylation Positive

Kristensen, 2011
(48)

Malignant pleural
mesothelioma

Case-case 95 MGMT rs16906252
SNP

MGMT methylation Positive

Pedroni, 1999
(49)

Colorectal cancer 78 (all synchronous
cancer patients
and 0 solitary
tumors)

Tumor synchronicity/
metachronicity

MSI Concordant pattern of MSI
status in synchronous/
metachronous tumor pairs

Velayos, 2005
(50)

Colorectal cancer 110 (all
synchronous/
metachronous
cancer patients
and 0 solitary
tumors)

Tumor synchronicity/
metachronicity

MSI Concordant pattern of MSI
status in synchronous/
metachronous tumor pairs

Nosho, 2009 (51) Colorectal cancer Case-case (in
prospective
cohort studies)

1,113 (29
synchronous
cancer patients)

Tumor synchronicity CIMP, MSI, BRAF
mutation, LINE-1
hypomethylation

Positive; concordant pattern of
LINE-1 hypomethylation in
synchronous tumor pairs

Konishi, 2009
(52)

Colorectal cancer Case-case 97 (28 synchronous
cancer patients)

Tumor synchronicity CIMP Positive

Gonzalo, 2010
(53)

Colorectal cancer Case-case 82 (37 synchronous
cancer patients)

Tumor synchronicity/
metachronicity

Methylation in
MGMT, RASSF1

Positive

Slattery, 2000
(54)

Colon cancer Case-control 1,510 cancer cases,
2,410 controls

BMI MSI Obesity is associated with MSS
cancer but not MSI-high
cancer

Satia, 2005 (55) Colon cancer Case-control 486 cancer cases,
1,048 controls

BMI MSI Obesity is associated with MSS
cancer but not MSI-high
cancer

Slattery, 2007
(56)

Colon cancer Case-control 1,154 cancer cases,
2,401 controls

BMI CIMP Obesity is associated with
CIMP-negative cancer but
not CIMP-high cancer

Campbell, 2010
(57)

Colorectal cancer Case-control 1,250 cancer cases,
1,880 controls

BMI MSI Obesity is associated with MSS
cancer but not MSI-high
cancer

Sinicrope, 2010
(58)

Colon cancer Case-case 2,222 BMI MSI Negative (inverse)
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Table 1. Continued

First Author, Year
(Reference No.)

Disease (as in Traditional
Epidemiology)

Study Design
Sample Size

(No. of Participants)
Putative Etiologic Factor

Tumor Molecular
Changes (Subtypes)

Direction of Association

Kuchiba, 2012
(59)

Colorectal cancer Prospective
cohort

536 cancer cases,
109,051
participants

BMI FASN expression Obesity is associated with
FASN-negative cancer but
not with FASN-positive
cancer

Slattery, 2000
(54)

Colon cancer Case-control 1,510 cancer cases,
2,410 controls

Smoking MSI Smoking is associated with
MSI-high cancer but not MSS
cancer

Wu, 2001 (60) Colon cancer Case-case 276 Smoking MSI Positive

Lüchtenborg,
2005 (61)

Colorectal cancer Case-cohort 650 cancer cases,
2,948 in
subcohort

Smoking APC mutation Negative (inverse)

Chia, 2006 (62) Colorectal cancer Case-control 1,792 cancer cases,
1,501 controls

Smoking MSI Smoking is associated with
MSI-high cancer but not MSS
cancer

Samowitz, 2006
(63)

Colon cancer Case-control 1,315 cancer cases,
2,392 controls

Smoking CIMP, BRAF
mutation

Smoking is associated with
CIMP-high cancer and
BRAF-mutated cancer but
not CIMP-negative or BRAF-
wild-type cancer

Poynter, 2009
(64)

Colorectal cancer Case-control 1,564 cancer cases,
4,486 controls

Smoking MSI Smoking is associated with
MSI-high cancer but not MSS
cancer

Rozek, 2010 (65) Colorectal cancer Case-control 1,297 cancer cases,
2,019 controls

Smoking BRAF mutation Positive

Limsui, 2010 (66) Colorectal cancer Prospective
cohort

540 cancer cases,
41,528
participants

Smoking MSI, CIMP, BRAF
mutation

Smoking is associated with
CIMP-high cancer, MSI-high
cancer, and BRAF-mutated
cancer but not CIMP-
negative, MSS, or BRAF-
wild-type cancer

Abbreviations: BMI, body mass index; CIMP, CpG island methylator phenotype; MSI, microsatellite instability; MSS, microsatellite stability; SNP, single nucleotide polymorphism.
a The official symbols approved by the Human Genome Organization’s Gene Nomenclature Committee are used for genes and gene products (APC, BRAF, CDKN2A, FASN, MGMT,

MLH1, and MTHFR).
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The importance of integration of divergent disciplines
has repeatedly been discussed (7–10). As an initial step
toward such integrated scientific disciplines, our discussion
is primarily focused on the integration of molecular pathol-
ogy and epidemiology—that is, molecular pathological epi-
demiology (MPE) (4–6). This integrated field improves
understanding of human diseases and may provide a model
for future integrations of other subspecialties. Thus, this
article will help foster an interdisciplinary integration of a
wide variety of other fields in biomedical, public health,
population, and social science and an establishment of
hybrid disciplines.

PATHOLOGY EDUCATION IN PUBLIC HEALTH

SCHOOLS

Epidemiology is a core component of public health
school curricula, reflecting its pivotal role in the health sci-
ences. However, in public health schools, most students get
little, if any, opportunity to study pathology, resulting in
limited understanding of disease pathogenesis. Recently, in-
tegration of pathology into epidemiologic studies has
become increasingly common (4, 6, 11), because many dis-
eases are being defined by molecular pathogenic mecha-
nisms. As current disease classification schemes become
more reflective of pathobiology (4, 6, 11), epidemiologists
must appreciate the rationale behind disease classifications
and subtyping in their study designs. Possibilities for pa-
thology training include: lectures by pathologists, rotations
at clinical pathology laboratories, and participation in MPE
research.

EPIDEMIOLOGY EDUCATION IN PATHOLOGY AND

MEDICAL SCHOOLS

Pathology is a core component of medical school curric-
ula, reflecting its central role in medical education. In addi-
tion, training in pathology as a medical specialty occurs as
a part of postgraduate medical education. Unfortunately,
most pathologists and other physicians have limited knowl-
edge of epidemiology. Education in epidemiology can
provide knowledge of proper study design, data interpreta-
tion, and statistical and causal inferences, which are neces-
sary in correlative pathology research. However, neither
epidemiology nor biostatistics is a common component of
pathology training (12). Only a minority of pathologists
and physicians have sufficient understanding of epidemiol-
ogy to apply relevant principles to their investigations. Epi-
demiology can provide ideas about potential etiologic
factors and can teach pathologists proper study design and
conduct in terms of population selection, sample size deter-
mination, statistical methods, causal inference, assessment
of generalizability, and validation of findings. In our
opinion, pathology training and medical school programs
should be encouraged to include formal epidemiology
courses or lectures, preferably as a mandatory requirement.

Substantial concerns have been raised about the validity
of much of published scientific research (13–17). Published
studies are often called into question for inappropriate
study design, biased sample selection, inadequate sample

size, inappropriate statistical methods, etc. Studies conduct-
ed by pathologists and other clinical investigators are com-
monly biased, because cases typically come from tertiary
referral medical centers. Those common problems in study
design and analysis should be considered, and the best
attempts to improve study design must be made.

MPE AS AN INTERDISCIPLINARY SCIENCE

MPE is a recently established interdisciplinary and trans-
disciplinary field (4–6). Traditional epidemiology (includ-
ing molecular epidemiology and genome-wide association
studies) has the substantial limitation of treating pathogeni-
cally heterogeneous diseases (e.g., hypertension, diabetes
mellitus, major depression, breast cancer) as a single entity.
In contrast, from the MPE viewpoint (4–6), any human
disease entity is fundamentally heterogeneous from person
to person (18), just as each individual is unique. Nonethe-
less, by classifying disease according to its pathogenic
mechanisms, we can better predict the course of a disease
in a given individual (6). In fact, there exists heterogeneity
of risk factors as well as heterogeneity of molecular patho-
genesis in any given disease (4–6).

A growing body of literature (see Web Appendix (http://
aje.oxfordjournals.org/)) supports this MPE paradigm (4–6),
with evidence suggesting that carcinogenic or protective
effects of lifestyle, dietary, environmental, and genetic
factors differ according to specific molecular characteristics
in neoplastic cells. The MPE concept is gaining widespread
adoption (19–30). As Table 1 shows, MPE studies have im-
proved our understanding of pathogenesis by demonstrating
consistent links between etiologic factors and molecular
subtypes of diseases (31–66). Furthermore, recent evidence
suggests that host factors can interact with tumor molecular
changes to modify cancer cell behavior (67–74). Thus, the
MPE approach, unlike the traditional epidemiologic research
design, allows insights into etiologic factors and pathogenic
mechanisms.

NECESSITY FOR MPE GUIDELINES AND

INTERDISCIPLINARY SCIENTISTS

MPE is a relatively new field of science, and no standard
research guidelines have yet been established, as they have
been for observational epidemiology (STROBE, which
stands for Strengthening the Reporting of Observational
Epidemiology) (16, 17, 75) and molecular epidemiology
(STROBE-ME) (76). For MPE, there are specific caveats in
addition to the typical limitations in observational epidemi-
ology (6). We plan to develop international guidelines for
MPE research (STROBE-MPE) as a logical extension of
STROBE. To develop and implement guidelines, we need
to produce more scientists with cross-disciplinary training
and expertise in molecular pathology and epidemiology.

INTEGRATED EDUCATIONAL PROGRAMS IN PUBLIC

HEALTH AND MEDICAL SCHOOLS

Pathology and epidemiology are inherently complemen-
tary disciplines. Both fields encompass the entire spectrum
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of human diseases, generate hypotheses from observations,
and attempt to elucidate disease etiologies. This shared
scientific framework is the foundation of the field of MPE
(4, 6) and should serve as the underpinning for integrated
pathology and epidemiology educational programs.
Eventually, there will be a universal collaborative relation

between pathology and epidemiology (Figure 1), which will
facilitate high-quality health science at the molecular, cellu-
lar, and population levels. Pathology is capable of providing
detailed insights into pathogenic mechanisms and improving
understanding of disease processes. In comparison, epidemi-
ology can identify novel potential etiologic factors for patho-
logic processes. Pathologists also often contribute to early
recognition of new exposure-disease associations, such as
those among microbiota, inflammation, and cancers (77–86).
Another crucial component of the discipline of epidemiology
is expertise in study designs, statistical methods, and causal
inference, all of which are of utmost importance in correla-
tive clinicopathologic and translational research.
As an integrated discipline, MPE will draw on the

knowledge base of pathology and epidemiology. A scientist
with integrated MPE training would have the skills to con-
sider pathogenic hypotheses, design and conduct studies,
analyze data, make inferences, and validate/generalize find-
ings in populations. This type of researcher can work well
with other investigators in diverse disciplines and can
“translate” between collaborators who do not share this sci-
entific background.
For these reasons, it is desirable to establish integrated

educational programs of pathology and epidemiology. In
the current system, such educational opportunities will
require the merger of resources held by medical schools,
public health schools, and hospitals with pathology training
programs. We acknowledge that dual-degree Doctor of
Medicine/Master of Public Health programs exist, but they

are not standardized and do not systematically offer training
in epidemiology and biostatistics. We hope that institutions
will adopt integrated educational programs across medical
and public health schools and hospitals to meet these inter-
disciplinary research and educational needs.

SUBSTANTIAL ROLE OF FUNDING AGENCIES

Most biomedical and public health research projects are
funded by governments or nongovernment organizations.
Currently, relatively few funded projects integrate molecular
pathology and epidemiology or population health science.
There exists a significant knowledge gap between various
etiologic factors and cellular and molecular changes that
occur during disease evolution, and interdisciplinary inves-
tigations in these areas are needed. Funding agencies need
to increase career development grants in order to nurture the
next generation of scientists who can fully integrate the
fields of molecular pathology and epidemiology.

CONCLUSIONS AND FUTURE DIRECTIONS

Over the last century, biomedical and public health sci-
ences have been practiced in a highly compartmentalized
way, typically missing the value of the perspectives gained
through integration of divergent scientific fields. MPE
(4–6) is an example of the integration of molecular biologic
and population health science in order to gain insights into
disease etiology and pathogenesis. MPE research stands to
benefit both individuals and the population at large. To
advance integrated MPE research, appropriate interdisci-
plinary educational programs are needed. This will require
reforms in medical and public health education as well as
postgraduate pathology training. We need to be open-
minded and flexible in designing optimal education and
training programs at various levels. We believe that conver-
gence and integration of scientific disciplines should
become more commonplace in the future, as MPE will
prove to be a successful field.
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