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Introduction

The tendency of cancer research during the past decades has 
been focused on the gain of function of oncogenes and loss of 
function of tumor-suppressor genes. Although this paradigm 
provided major insights into cancer biology, it is now clear that 
there are additional factors contributing to carcinogenesis that 
cannot be ignored. Hanahan and Weinberg recently updated 
their review published in 2000 on the hallmarks of cancer by 
incorporating the remarkable progress in cancer research that 
was made over the last decade, one of which is “reprogramming 
of energy metabolism”.1 Cancer metabolism has been arousing 
wide interest, not only because the large number of oncogenes 
and tumor-suppressor genes involved, but also because it reveals 
novel therapeutic targets for inhibiting tumor growth. Here, we 
summarize recent developments and therapeutic targets in the 
area of cancer metabolism and discuss the future direction of 
metabolism-targeted cancer therapy.

The Warburg Effect and Cancer

The earliest and best-known cancer metabolic anomaly is 
described by Otto Warburg in the 1920s. Dr Warburg reported 
that tumors showed unusually high rates of glucose uptake and 
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The early observations by Dr Otto Warburg revealed that 
fundamentally metabolic differences exist between malignant 
tumor cells and adjacent normal cells. Many studies have 
further reported the relationship between altered cellular 
metabolism and therapeutic outcomes. These observations 
suggest that targeting the peculiar metabolic pathways in 
cancer might be an effective strategy for cancer therapy. In 
recent years, investigations have accelerated into how altered 
cellular metabolism promotes tumor survival and growth. This 
review highlights the current concepts of altered metabolism 
in cancer and the molecular targets involved in glycolysis, 
mitochondria and glutamine metabolism and discusses future 
perspective of cellular metabolism-based cancer treatment.
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lactate production compared with normal tissues, even in the 
presence of oxygen (Warburg effect).2 In fact, the enhanced 
tumor uptake of 2-deoxy-2(18F)-fluoro-D-glucose in positron 
emission tomography (PET) scans is now exploited in the clinic 
for diagnostic purposes.3 Glycolysis produces ATP with lower 
efficiency, but at a faster rate than oxidative phosphorylation. 
This faster rate of ATP production is thought to aid the rapid 
proliferation of cancer cells. In addition to providing ATP, 
the high glycolytic rate may favor the growth of cancer cells 
through increasing biosynthesis of important molecules such as 
lipids, nucleotides, NADPH and amino acids.4 Other metabolic 
products of glycolysis, such as lactate and H+, cause a consistent 
acidification of the extracellular environment5 and favor cancer 
invasion.6 Because of the similarity, abnormally high aerobic 
glycolysis is now considered a hallmark of cancer. It is therefore 
greatly important to understand the molecular pathways 
that regulate aerobic glycolysis, to exploit the altered cancer 
metabolism for cancer therapy.

Glycolytic Pathways as Cancer Therapeutic Targets

In the standard model, glucose is first uptaken into cells through 
glucose transporters (GLUTs), after which it is phosphory-
lated by hexokinaseII (HKII) to become glucose-6-phosphate. 
Glucose-6-phosphate is then converted to fructose-6-phosphate 
by glucose-6-phosphate isomerase to proceed into glycolysis or 
it can be shunted into the pentose phosphate pathway (PPP) by 
glucose-6-phosphate dehydrogenase (G6PDH) to participate 
in nucleotide synthesis. The oxidative branch of PPP also pro-
duces NADPH, which is used in combating oxidative stress.7 
Phosphofructokinase-1 (PFK-1), located at downstream of 
HKII in glycolysis, converts fructose-6-phosphate to fructose-
1,6-bisphosphate. Fructose-1,6-bisphosphate is then converted 
either to glyceraldehyde-3-phosphate to proceed into glycolysis 
or converted to dihydroxyacetone phosphate which is critical for 
lipid synthesis. In glycolysis, glyceraldehyde-3-phosphate is then 
converted to glycerate-2-phosphate by G3PDH and glycerate-
2-phosphate is converted to phosphoenol pyruvate by enolase. 
Pyruvate kinase (PK) catalyzes an ATP-producing step of gly-
colysis in which phosphoenol pyruvate is converted into pyruvate 
with the release of ATP. Further down the glycolysis pathway, 
lactate dehydrogenase-A (LDH-A) converts pyruvate to lactate 
and generates NAD+ from NADH. NAD+ is necessary for con-
tinued flux through glycolysis (Fig. 1).
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mitochondria, abolish the activity of mitochondrial bound HKII 
and induce cancer cell death by a dramatic decrease in the level 
of ATP13 (Table 1).

PK converts phosphoenol pyruvate to pyruvate with release 
of ATP. PK has two splice variants: PKM1and PKM2. PKM1 is 
found in many normal cells, whereas tumors express higher levels 
of PKM2.14 Due to the high expression and activity of PKM2, 
this enzyme is also considered as an attractive target for cancer 
therapy. However, a recent study found that inhibition of PKM2 
activity by cellular oxidative stress promotes accumulation of 
glycolytic intermediates and feeds other biosynthetic pathways 
(such as PPP pathway), resulting in tumor progression.15 On 
the other hand, Goldberg and colleagues demonstrated that 
knockdown of PKM2 expression by RNAi increases apoptosis 
in vitro and causes tumor regression in vivo.16 These paradoxical 
results may be explained by different cellular responses to 
varying degrees of hypoxia. Under moderate hypoxia, PKM2 
is oxidized, leading to inhibition of its activity, promotion of 
PPP pathway and enhanced generation of cellular NADPH. 
This prevents accumulation of aberrantly high levels of ROS 
and oxidative cellular damage. Under severe hypoxia, oxidative 
phosphorylation is limited and cancer cells become dependent 
on PKM2 activity for ATP generation. Thus, PKM2 inhibitors 

The increased dependence of cancer cells on glycolysis offers 
a number of attractive potential therapeutic targets for selectively 
killing cancer cells. Unfortunately, both cancer cells and normal 
proliferating cells display the Warburg effect. It is thus chal-
lenging to specifically target cancer metabolism, while sparing 
normal tissues. Several candidates such as GLUT1, HKII, PK, 
LDH-A and G6PD are currently the focus of interest for target-
ing, as they are overexpressed in cancer.

GLUT1 appears to be the predominant glucose transporter 
in many types of cancer.8,9 Inhibition of glucose transporter by 
phloretin can preferentially sensitize cancer cells to chemothera-
peutic drugs10 (Table 1).

HKII is a key glycolytic enzyme catalyzing the first step of 
glycolysis. Wolf and colleagues recently found that malignant 
gliomas show elevated HKII expression. Depletion of HKII in 
malignant glioma cells stimulates the production of ROS and 
increases cell death.11 Another reason for considering HKII as a 
therapeutic target is that this enzyme is reversibly bound to the 
mitochondrial membrane protein named porin, which not only 
plays a role in maintaining HKII activity to regulate glycolysis, 
but also prevents cytochrome c release during the intrinsic apop-
tosis cascade.12 Some drugs such as 3-bromopyruvate (3-BrPA) 
and clotrimazole can induce the detachment of HKII from 

Figure 1. Schematic representation of the glucose metabolism in cancer cells. Cancer cells increase the uptake and metabolism of glucose by 
regulating key transporters and enzymes (shown in red font) involved in glycolytic pathways. Key oncogenic pathways are shown in green and key 
tumor suppressor pathways are shown in purple. The oxidative branch of PPP is required in nucleotide synthesis anddihydroxyacetone phosphate 
pathway is critical for lipid synthesis.
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efficacy of ABT-263/737 (molecular antagonists of the Bcl-2 
family) without harming healthy cells.19 Iodoacetate, an inhibi-
tor of G3PDH, increases cellular necrosis in pancreatic cancer.20 
Fluoride, an inhibitor of enolase, has been shown to induce C6 
glioma cell death.21 Dichloroacetate (DCA), an inhibitor of pyru-
vate dehydrogenase kinase 1 (PDK1), increases mitochondrial 
production of ROS in cancer cells by shifting metabolism from 
glycolysis to glucose oxidation.22 Given that NADPH is impor-
tant in combating oxidative stress, inhibiting PPP could also 
be an attractive target. Buthionine S′R′-sulfoximine (BSO), a 
G6PDH inhibitor, has been shown to suppress the colony-form-
ing efficiency of G6PDH-expressing cells.23 The combination 
of 2DG and 6-AN (6-aminonicotinamide, another promising 
inhibitor of G6PDH) has been shown to greatly decrease the 
glutathione(GSH) content of cancer cells and enhance radiation-
induced damage in human glioma and squamous carcinoma cell 
lines24 (Table 1).

Additionally, a number of oncogenes are known to be 
involved in the metabolic switch from oxidative phosphorylation 
(OXPHOS) to glycolysis in tumor cells, such as AMP-activated 
protein kinase(AMPK),25 hypoxia-inducible factor 1α (HIF-1α),26 
Myc,27 PI3K/Akt/mTOR28 and rat sarcoma viral oncogene homo-
log (RAS).29 Targeting of these oncogenes may selectively kill can-
cer cells by inhibiting glycolytic pathway (Fig. 1).

prevent ATP production in severely hypoxic cancer cells, 
whereas PKM2 activators promote oxidative cellular damage 
in moderately hypoxic cancer cells. The therapeutic benefits 
of PKM2 inhibitors and activators are therefore context- and 
tumor type-dependent. PKM2 inhibitors may be therapeutically 
effective in relatively limited-oxygenated tissues such as brain, 
whereas PKM2 activators may be therapeutically beneficial in 
relatively well-oxygenated tissues such as lung.

Lactate overproduction is another important hallmark of 
advanced cancer. The first metabolic target for cancer therapy 
was LDH-A, an enzyme which converts pyruvate to lactate and 
converts NADH to NAD+. In addition to facilitating sustained 
glycolysis, the overproduction of lactate leads to an acidic tumor 
microenvironment associated with metastasis, tumor recurrence 
and poor survival.17 Inhibition of LDH-A by a small-molecule 
inhibitor (FX11 [3-dihydroxy-6-methyl-7-(phenylmethyl)-
4-propylnaphthalene-1-carboxylic acid]) reduces ATP levels, 
induces significant oxidative stress and inhibits the progression 
of sizable human lymphoma and pancreatic cancer xenografts18 
(Table 1).

In addition to the above mentioned candidate targets, there 
are other molecules in the glycolytic pathway that are poten-
tially implicated in cancer therapy. Fox example, 2-deoxyglucose 
(2-DG), a non-metabolizable glucose analog, could improve the 

Table 1. Summary table of selective potential drugs/compounds targeting cancer metabolism pathways and mode of action

Drug/compound Molecular target Mode of action

Phloretin GLUT1 Blocks glucose uptake

Fasentin GLUT1 Blocks glucose uptake

2-Deoxyglucose Hexokinase Blocks glycolytic flux

3-Bromopyruvate Hexokinase Blocks glycolytic flux

Clotrimazole Hexokinase Blocks glycolytic flux

Iodoacetate G3PDH Blocks glycolytic flux

Fluoride Enolase Blocks glycolytic flux

FX11 Lactate dehydrogenase Blocks metabolic flux

Dichloroacetate Pyruvate dehydrogenase kinase Promotes oxidative phosphorylation

PKM2 inhibitor Pyruvate kinase 2 Prevents ATP production in hypoxia cancer cells

PKM2 activator Pyruvate kinase 2 Promotes oxidative cellular damage in oxygenated cancer cells

Buthionine S'R'-sulfoximine G6PD Inhibits oxidative PPP pathway

6-Aminonicotinamide G6PD Inhibits oxidative PPP pathway

Chloroquine Autophagy Cuts off stromal fuel supply

Metformin Energy sensing pathways(AMPK) Inhibits lipolysis and oxidative phosphorylation

C93 FASN Inhibits fatty acid synthesis

FAS31 FASN Inhibits fatty acid synthesis

Rotenone Mitochondrial respiration complex I Inhibits oxidative phosphorylation

α-TOS Mitochondrial respiration complex II Genarates reactive oxygen species

Benzylisothiocyanate Mitochondrial respiration complex III Genarates reactive oxygen species

Oligomycin Mitochondrial respiration complex IV Inhibits ATP synthesis

Resveratrol Mitochondrial respiration complex IV Inhibits ATP synthesis

l-asparaginase Glutamine uptake Depletes blood glutamine level

L-γ-glutamyl-p-nitroanilide (GPNA) SLC1A5 (a target of Myc) Inhibits glutamine uptake and inhibits mTOR activation

968 Glutaminase Inhibits Rho GTPases

Aminoxyacetic acid (AOA) Glutamine aminotransferase Inhibits transamination
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Mitochondrial Oxidative Phosphorylation 
and Therapeutic Intervention

Mitochondria are important cellular organelles 
that fulfill a dual role in cell metabolism. During 
anabolic cell proliferation, they are the “power 
center” of the cell. However, under stressful cir-
cumstances, mitochondria control the intrinsic 
pathway of apoptosis by regulating the transloca-
tion of pro-apoptotic proteins to the cytosol.

Inspired by his initial observations, Warburg 
hypothesized that in tumors, mitochondrial respi-
ration becomes defective, followed by an increas-
ing reliance on glycolysis for ATP production.2 
However, this view has been disputed in recent 
years and may need a revision. Although gly-
colysis is the best-known metabolic phenotype of 
cancers, it is not a unique feature of all human 
cancers. In fact, in highly glycolytic tumor cells, 
defects in mitochondrial oxidative metabolism are 
not found.34 Fogal and colleagues reported that 
high levels of glycolysis, in the absence of adequate 
OXPHOS, may not be beneficial for breast can-
cer growth.36 Jessie and colleagues showed that 
introduction of activated Ras not only promotes 
tumorigenesis but also upregulates basal autoph-
agy, leading to maintenance of mitochondrial 

function and providing energy substrates required for the tricar-
boxylic acid (TCA) cycle during periods of nutrient limitation.37 
These studies suggest that under certain circumstances, cancer 
cells will depend on mitochondrial oxidative phosphorylation to 
meet with cellular ATP demands.

Recently, some studies have shown that hydrogen peroxide 
secreted by epithelial cancer cells can induce oxidative stress in 
adjacent tumor stroma. This oxidative stress induces autophagy, 
mitophagy and glycolysis in the tumor stroma.38,39 l-lactate 
derived from glycolytic tumor stroma can be transferred to the 
adjacent cancer cells and used for energy production via mito-
chondrial oxidative phosphorylation38,40 (Fig. 2). Similarly, 
Pierre reported that lactate generated by hypoxic tumor cells 
is a prominent substrate that fuels the oxidative metabolism of 
oxygenated tumor cells. These observations imply that glyco-
lytic and oxidative tumor cells mutually regulate their access to 
energy metabolites.41 It has also been reported that starvation 
mobilizes lipid stores from adipocytes to form ketone bodies, 
which can also fuel the mitochondrial oxidative phosphorylation 
of adjacent epithelial cancer cells38,40,42 (Fig. 2). Tumor stroma 
metabolites such as lactate and ketone may thus promote tumor 
growth by acting as high-energy metabolites. In support of this 
view, a recent study by Nieman and colleagues demonstrated 
that lipolysis in adipocytes leads to the release of free fatty acids. 
Ovarian cancer cells showed increased free fatty acids uptake and 
β-oxidation in mitochondria, which promoted ovarian cancer 
metastasis and provided energy for rapid tumor growth (Fig. 2). 
This study suggests that metabolic coupling between adipocytes 
and cancer cells may also favor tumor growth and that this can 

In 2008, while sequencing 22 human glioblastomas, research-
ers found that five of these tumors harbored mutations in the iso-
citrate dehydrogenase 1 (IDH1) gene.30 IDH is a key player in the 
tricarboxylic acid cycle or Krebs cycle and catalyzes the oxidative 
decarboxylation of isocitrate to produce α-ketoglutarate (α-KG). 
Mutations in the enzyme isocitrate dehydrogenase 1 (IDH1) 
have been recently identified in secondary brain glioblastomas 
(> 70%).31 One explanation for the role of mutant IDH1 in can-
cer was first described in 2009. Researchers found that mutant 
IDH1 could reduce levels of α-KG, but lead to hypoxia-inducible 
factor (HIF) upregulation, a condition often seen in tumors.32 
Other researchers inserted mutant IDH1 into cells and found 
resulting high levels of a single metabolite, 2-hydroxyglutatarate 
(2HG). This metabolite was thought to potentially disable mito-
chondria and push the cancer cells toward anerobic glycolysis.33 
The IDH1 pathway thus represents a novel therapeutic target 
for cancer, particularly cancers like brain glioblastomas or acute 
myeloid leukemia that most commonly harbor IDH1 mutations.

Although the increased dependence of cancer cells on gly-
colysis offers an attractive therapeutic strategy in cancer therapy, 
some clinical trials have reported that utilization of glycolytic 
inhibitors may not be appropriate for certain types of tumors. 
Moreno-Sanchez and colleagues reported that some tumors 
located in the lung, mammary gland, cervix, ovaries and skin are 
not dependent on glycolysis, but are instead dependent on mito-
chondrial oxidative phosphorylation.34 This suggests that glyco-
lytic pathway-targeted strategies might only be useful in cancer 
cells with mitochondrial function defects or under hypoxia con-
ditions when glycolysis is the major source of ATP.35

Figure 2. Mitochondrial oxidative phosphorylation in cancer cells. Some energy-rich 
metabolites (l-lactate, ketones and fatty acids shown in yellow) derived from the tumor 
stroma can be transferred to the adjacent cancer cells and used for energy production 
via mitochondrial oxidative phosphorylation.
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of glutamine as a carbon source provides the mitochondria with 
precursors for maintaining mitochondrial membrane potential, 
which is critical for glutamine-dependent cancer cells. Glutamine 
carbon is also converted into lactate acid and secreted from cells. 
Conversion of glutamine into lactate acid requires malic enzyme, 
which decarboxylates malic acid and produces NADPH to meet 
the need in the proliferating cells (Fig. 3).58

Glutamine also contributes to macromolecular synthesis 
by means other than production of oxaloacetate, NADPH 
and supply of carbon to mitochondria. Real-time 13C NMR 
studies showed that glutamine also serves as a nitrogen source.58 
Theamido and amino groups of glutamine contribute to 
metabolic intermediates in the synthesis of non-essential amino 
acids, nucleotide biosynthesis, hexosamines and ammonia 
(Fig. 3). Yuneva and colleagues reported that supplementation 
of glutamine-starved Myc-driven cells with TCA intermediates 
could rescue cell viability but not proliferation.59 Similarly, 
Meng and colleagues reported that supplementation of 
glutamine-starved Hep3B cells with alternate nitrogen sources 
such as alanine or asparagine could rescue cell proliferation.60 In 
nucleotide biosynthesis, the role of glutamine as nitrogen donor 
for both purine and pyrimidine has been implicated in support 
of proliferation. Gaglio and colleagues showed that the K-Ras 
transformed fibroblasts cultured in the glutamine-deprived media 
exhibit reduced cellular proliferation and decreased progression 
into S phase. The growth potential of the transformed cells 
was restored by adding the four deoxyribonucleotides.61 These 
results suggest that the role of glutamine as a nitrogen donor 
might explain some of the proliferation-inhibitory effects of 
glutamine deprivation.

Many types of cancer cells are sensitive to glutamine 
deprivation, including pancreatic cancer cells, lung cancer 
cells andglioma cells. Pre-clinical tests of l-asparaginase can 
significantly deplete blood glutamine levels and has some success 
in the treatment of pediatric acute lymphoblastic leukemia 
(ALL) (Table 1). However, l-asparaginase treatment has shown 
significant toxicity and side effects, such as increasing mental 
confusion and early signs of coagulopathy.62 Novel glutamine 
metabolism-based therapies for cancer are needed which do not 
impair normal tissues. Glutamine-dependent cancer cells always 
make use of mitochondria to produce precursors from glutamine 
for the synthesis of lipids, proteins and nucleotides through 
activities of the mitochondrial electron transport chain. Thus, 
inhibition of mitochondrial respiration chain by mitoformin 
can also inhibit glutamine metabolism and slow the growth of 
glutamine-dependent cancer cells.63 The oncogene Myc regulates 
several steps in the glutamine metabolism and the expression 
level of Myc has been demonstrated to be linked to the increased 
glutaminolysis through transcription program. L-γ-glutamyl-
p-nitroanilide (GPNA), an inhibitor of SLC1A5 which is a 
direct target of Myc, can inhibit glutamine uptake and suppress 
glutamine-dependent mTOR activation64 (Table 1). Glutamine 
metabolism is mediated by three types of enzymes: glutaminase 
(GLS), glutamate dehydrogenase and aminotransferase. Active 
Rho GTPases can increase GLS for transformation.65 One 
compound 968, a small molecular inhibitor of Rho GTPase, can 

be blocked by lipid transport from adipocytes to cancer cells.43 
Thus, stromal-epithelial metabolic coupling and mitochondria 
are promising candidate targets for devising novel therapeutic 
intervention for cancer treatment and prevention. For instance, 
chloroquine inhibits autophagy and cuts off the stromal fuel sup-
ply, preventing high-energy metabolites moving from the stroma 
to cancer cells.44 Metformin, an anti-diabetic reagent, inhibits 
both lipolysis in adipocytes and oxidative phosphorylation,45 
preventing cancer cells from using the energy-rich metabolites 
derived from the tumor stroma. The mitochondrial respiration 
complex I inhibitors, rotenone or bullatacin, induce apopto-
sis in a variety of cancer cell lines.46,47 The complex II inhibi-
tor, α-TOS (α-tocopheryl succinate, vitamine E analogs), causes 
electron leakage and subsequent generation of reactive oxygen 
species (ROS), which are cytotoxic to tumor cells.48 The complex 
III inhibitor, benzylisothiocyanate, generates ROS and induces 
apoptosis in breast cancer, liver and lung solid tumor.49 The com-
plex IV and ATP synthesis inhibitors, resveratrol or oligmycin, 
show antitumor actions in skin, neuroblastoma and lymphoblas-
toid cancer models47,50 (Table 1).

Target Glutamine Metabolism for Cancer Therapy

The unique role of glutamine in proliferating cells was first 
observed by Eagle in 1955.51 Eagle observed that many cell lines 
consumed 10-fold higher rates of glutamine than any other 
amino acids and these cell lines could not proliferate or maintain 
their viability in the absence of glutamine. Subsequent experi-
ments showed that glutamine is involved in oxidative mitochon-
drial metabolism.52 In order to be oxidized, glutamine first loses 
its amide group to form glutamate by glutaminase (GLS), which 
then loses its amine group to form α-ketoglutarate by glutamate 
dehydrogenase, in the TCA cycle. Some cancer cells gener-
ate more than 50% ATP by oxidizing α-ketoglutarate in mito-
chondria. For example, in lymphoma cells, even in the absence 
of glucose or under hypoxia, glutamine is able to fully sustain 
the mitochondrial TCA cycle for ATP production.53 During 
glutamine oxidation in the TCA cycle, glutamine metabolism 
contributes to mitochondrial ROS production. To combat ROS 
oxidative stress, glutamine can be converted directly into GSH 
by the enzyme glutathione cysteine ligase (GCL). The reduced 
form of GSH has an antioxidant role and plays a key role in con-
trolling cellular redox homeostasis (Fig. 3).54

In addition to ATP production, real-time 13C NMR studies 
showed that glutamine provides the major source of oxaloace-
tate (Fig. 3). Oxaloacetate is the substrate that condenses with 
acetyl-coA to form citrate, which serves as a precursor for fatty 
acids synthesis.55 The fatty acids are used for energy production 
through β-oxidation or lipids synthesis for membrane produc-
tion in highly proliferating cancer cells. Fatty-acid synthesis 
involves one key enzyme, fatty-acid synthase (FASN), which is 
overexpressed in cancer. Several FASN inhibitors such as C93 
and FAS31 have been tested in pre-clinical studies (Table 1). 
Treatment of tumor cells with these FASN inhibitors effectively 
suppresses the growth in small lung cancer and mouse mela-
noma models.56,57 By contributing to citrate production, the role 
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Conclusions and Perspectives

Modulating cancer metabolism is a novel therapeutic strategy 
for suppression of tumor growth. The increasing interest 
in cancer metabolism has already generated a series of new 
potentially useful therapeutic agents. Nevertheless, there are 
potential difficulties and concerns due to the low selectivity and 
specificity of the current generation of agents. It is known that 
in addition to cancer cells, some normal tissues (brain, retina 
or testis), stem cells and immune cells also display glycolysis, 
mitochondrial oxidative phosphorylation and glutaminolysis. 
Therefore, most current metabolism-based therapeutic agents 
show some toxic effects on normal cells. The question for 
the next decade of metabolic cancer research is: What is the 
best way to specifically target the metabolism of cancer cells? 
First, a better understanding is necessary of the key metabolic 
differences between cancer cells and non-malignant cells. A 
better understanding of how different cancer cells adapt these 
processes to fulfill their energy requirements may help improve 
the selectivity of cancer metabolism-based therapy. These efforts 
may lead to generation of highly specific cancer metabolism-
targeted agents that uniquely induce cancer cell death. For 
example, Myc addicts cancer cells to glutamine by preventing 
them from supplying the TCA with other nutrients.59 Thus, 
glutamine addiction is often exploited for metabolic therapy.

inhibit growth, migration and invasive activity of transformed 
fibroblasts and human cancer cells and shrink tumors in mouse 
xenograft models without obvious adverse effects66 (Table 1). 
Another recent study indicates that glutamine dehydrogenase 
may not be the rate-limiting step in glutamine metabolism. 
The major route of glutamine-derived carbon that enters the 
TCA cycle is through transamination.67 Thus, aminotransferase 
appears to be a promising target for cancer therapy.

Amino-oxyacetic acid (AOA) (Table 1), an inhibitor of 
transaminase, can selectively suppress the proliferation of 
MDA-MB-231 cells and inhibit the growth of MDA-MB-231 
breast tumor xenografts in mouse model.68 These studies sug-
gest that selective inhibition of one step of glutamine metabo-
lism (such as glutaminase or glutamine aminotransferase) might 
produce an anticancer effect without the toxicity associated with 
inhibition of the full glutamine metabolism chain. Based on the 
characteristics of tumors exhibiting increased glutamine metab-
olism, novel glutamine-based imaging techniques have recently 
emerged. Glutamine PET tracers 18F-(2S,4R)4-fluoroglutamine 
and l-[5-11C]-glutamine have been shown to be taken up by glu-
taminolytic cancer cell lines and tumors in the mouse model 
and can be used to image glutamine metabolism both in vitro 
and in vivo.69 This relatively recent technology will facilitate the 
ongoing development of drugs that target glutamine metabolism 
pathway.

Figure 3. Glutamine metabolism in cancer cells. High throughput glutamine uptake feeds cancer cell growth and proliferation with a large pool of 
carbon and nitrogen for the biosynthesis of the nonessential amino acids and fatty acids for membrane production. Carbon precursors derived from 
glutaminolysis (oxaloacetate and glutamate) serve as the carbon substrate for amino acid biosynthesis and lactate. Glutamate donates its amine 
group to these carbon substrates to produce non-essential amino acids (NEAA), nucleotide and α-ketoglutarate. Glutamine can be converted directly 
into GSH which has antioxidant role and plays a key role in controlling cellular redox homeostasis.



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

www.landesbioscience.com Cancer Biology & Therapy 87

Cancer cells display metabolic flexibility, which provides abil-
ity for a given cancer cell to alternate between glycolysis and 
OXPHOS in response to physiological needs. It is becoming 
increasingly understood that cancer cells can develop resistance to 
inhibition of one metabolic pathway through upregulation of other 
alternate metabolic pathways. Combinational approaches that 
target the increased metabolic flexibility of cancer cells are thus 
worth exploring. Bezielle (BZL101), a candidate oral drug that is 
distinguished from other similar agents due to its ability to inhibit 
both glycolysis and OXPHOS, has shown promising efficacy and 
excellent safety in the early phase clinical trials for advanced breast 
cancer.71 Similarly, the combined use of 2-DG and metformin in 
a recent study led to significant cell death and tumor growth inhi-
bition, associated with decreases in cellular ATP.72 These studies 
indicate that deprivation of tumor bio-energetics by dual inhibi-
tion of energy pathways might be an effective novel therapeutic 
approach for a board spectrum of human tumors. In conclusion, 
altered energy metabolism in cancer cells provides a unique oppor-
tunity to develop novel and more effective anticancer therapies.
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Second, we need a better understanding of how oncogenic 
activation controls cancer cell metabolism for proliferation. 
The metabolic type of a given tumor may vary widely from 
oxidative to glycolytic due to oncogenes activated or the micro-
environmental change.34 For example, under stressful environ-
ments, cancer cells can take advantage of oncogene-induced 
autophagy or mitophagy for energy demand. Some mutations 
in BRAF or KRAS can sustain cancer cell growth in low 
glucose conditions.70 In this regard, key metabolic oncogene 
regulators could serve as therapeutic targets without impairing 
normal tissues.

Third, heterogeneity of metabolic profiles of different can-
cer types needs to be further clarified, such as brain cancer (gly-
colytic type), lung cancer (OXPHOS type) and others. If the 
metabolic profile primarily used for energy production is better 
elucidated, targeting the predominant bio-energetic pathway 
might lead to more effective utilization of the metabolism-
targeted agents. Hence, re-activation of mitochondrial oxida-
tive metabolism in glycolytic tumors or reduced mitochondrial 
content and OXPHOS capacity in “OXPHOS” type of tumors 
may be considered as potential therapeutic strategies.

Fourth, delivering the metabolism-targeted agents to the 
tumor sites by specific delivery systems will enhance the anti-
cancer efficiency of those drugs and decrease their side effects. 
Although the success of nanoparticle interventions has cur-
rently been primary limited to laboratory tests in human can-
cer cell lines and mouse xenograft models, this new approach 
shows promise to provide an alternative strategy for clinical 
cancer diagnosis and therapy.
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