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Abstract

The mitochondrial genome maintenance gene, MGM101, is essential for yeasts that depend on mitochondrial DNA
replication. Previously, in Saccharomyces cerevisiae, it has been found that the carboxy-terminal two-thirds of Mgm101p has
a functional core. Furthermore, there is a high level of amino acid sequence conservation in this region from widely diverse
species. By contrast, the amino-terminal region, that is also essential for function, does not have recognizable conservation.
Using a bioinformatic approach we find that the functional core from yeast and a corresponding region of Mgm101p from
the coral Acropora millepora have an ordered structure, while the N-terminal domains of sequences from yeast and coral are
predicted to be disordered. To examine whether ordered and disordered domains of Mgm101p have specific or general
functions we made chimeric proteins from yeast and coral by swapping the two regions. We find, by an in vivo assay in
S.cerevisiae, that the ordered domain of A.millepora can functionally replace the yeast core region but the disordered
domain of the coral protein cannot substitute for its yeast counterpart. Mgm101p is found in the mitochondrial nucleoid
along with enzymes and proteins involved in mtDNA replication. By attaching green fluorescent protein to the N-terminal
disordered domain of yeast Mgm101p we find that GFP is still directed to the mitochondrial nucleoid where full-length
Mgm101p-GFP is targeted.
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Introduction

A distinctive feature of respiring eukaryotic cells is the

mitochondrion. This organelle is the site for electron transport,

oxygen consumption and ATP synthesis collectively termed

oxidative phosphorylation. In most eukaryotes some components

of oxidative phosphorylation are encoded by the organelle’s

genome that varies in size and may have from 3 to 67 protein-

coding genes [1]. However, a large majority of mitochondrial

proteins are coded by nuclear DNA, made in the cytoplasm and

imported. Proteins required for mitochondrial DNA (mtDNA)

replication, repair, distribution, packaging and transcription are all

imported. Such proteins, together with mtDNA, are located in

nucleoids named by analogy to similar bodies in bacteria.

Nucleoids are attached to the inner membrane on the matrix

side and have been shown in yeasts and mammals to contain over

20 proteins, some of which do not have recognizable roles in

mtDNA transactions [2–6]. Mitochondrial nucleoids in mammals

are thought to have a layered structure where components

involved in mtDNA replication and transcription occupy a central

core while other proteins are located in the periphery [2]. Such an

organization appears to preclude mixing of mtDNA between

nucleoids [7]. Notable components of nucleoids in yeasts are

mtDNA polymerase, Mip1, single stranded binding protein, Rim1,

a mtDNA packaging protein, Abf2, a protein for transcription,

Rpo41 and a protein for mitochondrial genome maintenance,

Mgm101.

In Saccharomyces cerevisiae the mitochondrial genome maintenance

gene, MGM101, encodes a protein of 269 amino acids [8]. The

mature polypeptide has 247 amino acids after cleavage of an

amino-terminal 22 amino acid mitochondrial targeting signal [9].

This gene is vital for yeasts that depend on mtDNA replication

such as Kluyveromyces lactis [10], but is dispensable for S.cerevisiae.

Mgm101p has been implicated in recombination repair [11–13]

and the initiation of mtDNA replication [14]. It has been found in

association with the Mmm1 protein [15], that is required for

maintenance of mitochondrial shape [16]. New data indicates that

Mmm1p is part of a complex that attaches the endoplasmic

reticulum to the outer mitochondrial membrane [17]. However,

Mmm1p also appears to associate with Mgm101p in a structure

spanning inner and outer mitochondrial membranes that persists

in mutants of yeast that lack mtDNA (rho-zero cells). In other

words Mgm101p and Mmm1p do not depend on mtDNA as a

scaffold for assembly.

In S.cerevisiae it has been shown that the carboxy-terminal two-

thirds of the protein, termed the functional or active core of 165

amino acids, can restore growth at 35uC of a temperature sensitive

mutant [9]. However, the functional core is unable to complement

a mgm101 null mutant indicating that for proper operation the

active enzyme must be a dimer or multimer with input from the
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amino-terminus of the full-length protein. As the functional core of

Mgm101p contains a large number of lysine and arginine residues

it is reasonable to believe that this region is responsible for DNA

binding and consequent activities. However, the role of the

essential amino-terminus remains unknown.

The MGM101 gene is widely distributed in fungi, some protists

and cnidaria but it is not present in plants or the Bilateria.

Alignment of amino acids from Mgm101p shows a high level of

conservation in the carboxy-terminus [9], whereas a smaller

amino-terminal segment is variable in both length and sequence.

In view of these observations it became apparent that this protein

has two distinct domains. Recent knowledge shows that some

proteins are intrinsically disordered or have disordered domains

[18–20]. Consequently, we were curious to know if the amino-

terminus of Mgm101p could belong to the latter category, and if

so, whether such a trait could have functional significance.

Intrinsically unstructured/disordered proteins (IDPs) do not

adopt a well-defined structure in isolation, instead existing as a

rapidly interchanging ensemble of conformations [18–20]. The

function of disordered proteins relies on this highly flexible state,

defying the traditional structure-function paradigm [21]. IDPs

participate in many vital cellular functions, including regulation,

transcription, translation and signal transduction [22]. They are

often involved in binding to other proteins, DNA or RNA and can

facilitate the assembly of large multiprotein complexes [23]. The

importance of protein disorder is underlined by the abundance of

partially or fully disordered proteins in available genome

sequences [24,25]. Correlating with the complexity of the

organism, prokaryotic proteins in general display a low amount

of structural disorder while eukaryotes have a significantly higher

fraction of disordered proteins. Disordered regions can be

predicted from the amino acid sequence [26]. Dedicated

prediction methods use either machine-learning approaches or

simple biophysical models to discriminate disordered regions from

ordered ones based on their distinct amino acid composition, the

increased content of low complexity segments and their different

tendency to form regular secondary structure elements [27,28].

Disordered proteins are also different in terms of their evolution-

ary behaviour [29]. In most cases, they are less conserved, but the

disorder tendency can be maintained without apparent sequence

conservation [30]. In general, protein disorder seems to be a

crucial invention in evolution that is especially important in larger

multi-domain proteins in eukaryotes [31].

As described in this communication, it appears that the

experimentally determined functional core of Mgm101p in

S.cerevisiae corresponds to an ordered domain that is preceded by

an amino-terminal disordered region. To examine whether these

two domains have specific or general functions we made chimeric

proteins from S.cerevisiae and the coral Acropora millepora by

swapping the two regions. By an in vivo assay in S.cerevisiae we

find that the ordered domain of A.millepora can functionally replace

the yeast core region but the disordered region of the coral protein

cannot substitute for its yeast counterpart. In other words,

operation of the disordered domain appears to be specific whereas

activity of the ordered region is general. An implication from this

result is that the disordered region functions by specific interaction

with a component of the nucleoid whereas the core region is not so

constrained.

Results

Ordered and disordered regions in Mgm101p
In a previous publication [9] we experimentally determined that

165 amino acids in the C terminal region of S.cerevisiae Mgm101p

are necessary for complementation of a temperature sensitive

mutation, Mgm101-1. We termed this sequence a ‘functional core’

as it is preceded and followed by segments that are not needed for

restoration. In the present report we use ‘core’ in a more general

sense to include the 6 inessential carboxy-terminal amino acids. As

the functional core region of A.millepora Mgm101p has not been

determined, we use the more general terminology of ‘core’ in the

first instance (see below), to include all amino acids downstream of

the junction with the disordered domain.

Using various bioinformatic tools, the sequences of Mgm101p

from S.cerevisiae and A.millepora were studied from the viewpoint of

protein disorder, domain content and mitochondrial target

sequence. The alignment of the sequences confirmed earlier

results, indicating a strong sequence conservation within the C-

terminal region corresponding to the functional core, and the lack

of apparent sequence conservation within the N-terminal regions

(Fig. 1). For both the S.cerevisiae and A.millepora sequences, the N-

terminal region contains a predicted mitochondrial targeting

sequence followed by regions that were consistently predicted to

contain a large disordered segment using various disorder

prediction tools (Fig. 2). A few disordered residues were also

predicted within the functional core and in the C-terminal regions.

These are likely to correspond to flexible regions within an ordered

domain. For both S.cerevisiae and A.millepora, the analysed sequence

features indicated three distinct regions. These correspond to the

mitochondrial signal sequence that is cleaved from the mature

protein, a disordered region and the C-terminal Mgm101p

domain corresponding to the functional core. For S.cerevisiae

Mgm101p, the lengths of these regions were determined to

comprise 29, 68, and 172 residues, respectively. In the case of

A.millepora, the corresponding regions were 28, 31, and 187

residues.

An extended analysis of the Mgm101 family included four

additional sequences from Amphimedon queenslandica (sponge),

Trichoplax adhaerens (placozoan), Dictyostelium discoideum (slime

mould) and Naegleria gruberi (amoebo-flagellate). These species were

selected to represent the evolutionary diversity within this family.

Their Mgm101p sequences show a very similar domain organi-

zation to S.cerevisiae and A.millepora (Fig. S1). The N-terminal region

contains the predicted mitochondrial signal sequence followed by

a largely disordered region. These disordered regions lack

sequence conservation and also vary in their lengths. The C-

terminal region contains the conserved Mgm101 domain, the

functional core of the protein. The sequences of D.discoideum and

N.gruberi have a C-terminal extension that lacks sequence

conservation and is predicted to be largely disordered (Fig. S1).

An even larger C-terminal extension has been described in a

Mgm101-like protein from Physarum polycephalum termed Glom2, as

it participates in DNA agglomeration [32]. Like the two C-

terminally extended proteins the P.polycephalum carboxy-terminal

region lacks sequence conservation and is predicted to be

disordered (unpublished data). Apart from these three cases, the

domain organization is common to all members of this sequence

family, despite the fact that sequence and length of the disordered

regions are not conserved. The lack of conservation in the N-

terminal region suggests that the mitochondrial targeting signal

and the disordered region operate in a species-specific manner.

Complementation of the temperature sensitive mutation
In a previous study we used a recessive temperature-sensitive

mutant, mgm101-1 P141S, located at the end of the first highly

conserved region (Fig. 1), to determine that Mgm101p has a 165

amino acid functional core [9]. The same assay was used in the

present work to examine whether the A.millepora Mgm101p and

A Function for the Disordered Domain of Mgm101p
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two chimeric proteins can restore growth of the mutant at the

restrictive temperature. Three plasmids, one containing the

MGM101 gene from A.millepora, and two containing chimeric

genes having the intrinsically disordered domain (ID) of yeast

Mgm101p joined to a putative core region of the coral gene and

vice versa, were constructed in the vector pCXJ22 used in the

previous study [9] (Fig.S2). These plasmids, together with the

original pCXJ22-ScMGM101, all have the mitochondrial target-

ing signal sequence specific for S.cerevisiae. The strain M2915-7C,

containing the mgm101-1 temperature sensitive (ts) mutation was

transformed with the three plasmids followed by selection for

Ura+. Transformants were examined for restoration of growth at

the restrictive temperature, 35uC (Fig. 3). All three strains, as well

as the strain with the wild-type S.cerevisiae gene, grow at the

restrictive temperature. Of note is that the growth rate at 35uC
varies. The transformant containing pCXJ22-AmMGM101

(A.m.ID-A.m.C) grows slower than the transformant containing

the ID region of S.cerevisiae joined to the coral core domain (S.c.ID-

A.m.C). Almost equal growth rates are displayed by the

transformants containing the wild-type yeast gene and the ID

region of the coral linked to the S.cerevisiae core domain (A.m.ID-

S.c.C).

Figure 1. Alignment of six representative members of the Mgm101p sequence family. The C-terminal extension for Dictyostelium
discoideum and Naegleria gruberi, that lack sequence conservation, were omitted from the alignment.
doi:10.1371/journal.pone.0056465.g001

Figure 2. Domain organization for the S.cerevisiae and A.mill-
epora Mgm101p sequences. The thick black line represents the
predicted mitochondrial target signal. The green bar identifies the
experimentally determined core region for S. cerevisiae and the
corresponding region determined from the sequence alignment for A.
millepora. The orange bars represent predicted disordered regions.
Disorder predictions were carried our using three independent
methods, IUPred, PONDR VSL2, and DISOPRED2. The sequences were
aligned so that the beginning of the core region is in the same vertical
position.
doi:10.1371/journal.pone.0056465.g002

Figure 3. Complementation of the temperature sensitive
mutant. A GlyYP plate with 1, M2915-7C mgm101-1ts, and M2915-7C
transformed with pCXJ22 plasmids containing, 2, S.cerevisiae MGM101,
3, A.millepora MGM101 with a S.cerevisiae mitochondrial targeting signal
(A.m.ID-A.m.C)(Fig. 3), 4, S.cerevisiae intrinsically disordered (ID) domain
joined to A.millepora core region (S.c.ID-A.m.C) and 5, A.millepora ID
region joined to S.cerevisiae core region (A.m.ID-S.c.C). The constructs all
have a mitochondrial targeting signal sequence as shown in Figure S2.
The plate was incubated at 35uC for 3 days before being photographed.
doi:10.1371/journal.pone.0056465.g003

A Function for the Disordered Domain of Mgm101p
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Restoration of respiration with a chimeric protein
The above result led us to test whether restoration of respiration

could occur in the absence of the Mgm101-1ts mutant protein. For

this test we used a diploid strain, CS5/mL3, homozygous for ura3

and heterozygous for disruption of MGM101 (mgm101::LEU2).

The same pCXJ22 constructs, used before, were employed for

transformation of the diploid. Transformants were sporulated, asci

dissected and results from the four strains are summarised in

Table 1. The presence of the plasmid, marked by Ura+ (the

plasmid contains URA3 wild type) [9] varied between 54–62%

while disruption of MGM101, indicated by Leu+ (disruption of

MGM101 is by insertion of LEU2 wild type), segregates 2:2. A

demonstration that wild-type ScMGM101 can complement

disruption of the chromosomal gene is shown in Table 1. All 63

Ura+,Leu+ spores can grow on glycerol. Growth on glycerol is an

indication that respiration is present that in turn depends on a

functional mitochondrial genome and an operational Mgm101p.

By contrast, no complementation was found with the A.millepora

gene or when the ID region of this gene is attached to the core

region of S.cerevisiae mgm101p (A.m.ID-S.c.C). However, when the

ID domain of the yeast gene is joined to the core region of the

coral gene (S.c.ID-A.m.C), 10 out of 42 Ura+ Leu+ grow on

glycerol (Fig. 4). As shown in the figure, there are two tetrads (3&5)

with three colonies growing on glycerol. In each of these tetrads

there is one Gly + colony, 3B and 5D, that contains both the

plasmid (Ura+) and disruption of MGM101 (Leu+).

Examination by DAPI staining of Ura+,Leu+ cultures that failed

to grow on glycerol revealed that mtDNA was no longer present. A

possible explanation for failure to maintain mtDNA is that the

chimeric protein has lower activity compared to the wild type and

only in some cases is there sufficient plasmid to permit the

remaining activity to function productively. Support for this view is

that the expression of the MGM101 constructs relies on the

relatively weak native promoter and that pCXJ22 depends on the

ARS.CEN sequence for replication and is in low copy number as

demonstrated by the limited frequency of Ura + (54–62%) in

tetrads. This is also illustrated in Figure 4 by the absence of Ura+

from some tetrads (2&9).

Examination of constructs using an integrative plasmid
In view of the variable presence of pCXJ22 in tetrad colonies,

we hypothesized that integration of the constructs into a

chromosomal location would improve frequency of growth on

glycerol, especially of transformants containing the ID domain of

the yeast gene joined to the coral core of Mgm101p. For this test

we recloned the three constructs into the integrative vector pUC-n

lacking an intrinsic origin of DNA replication. Such constructs can

be integrated at ura3 by cleavage at a single StuI site in the wild-

type URA3 gene on the plasmid followed by selection for Ura+

transformants. All resulting isolates had a stable genotype that

segregated 2:2 for URA3:ura3 on tetrad dissection.

When S.cerevisiae MGM101 was integrated, all spores containing

a Ura+,Leu+ phenotype grew on glycerol (Table S1). However,

none of the other constructs showed greater than 2:2 segregation

of Gly+:Gly2 growth or contained any Ura+,Leu+ spores that were

Gly+. It is likely, as with pCXJ22, that the wild-type MGM101

promoter is not active enough to yield sufficient protein to

maintain mtDNA except when driving expression of the native

S.cerevisiae protein.

Function of the intrinsically disordered domain
Previous studies employing green fluorescent protein (GFP)

have shown that Mgm101p is found in mitochondrial nucleoids

[12,15]. Similar observations were obtained in our laboratory with

a centromeric vector, pCXJ8, containing GFP joined to the C-

terminus of Mgm101p (Xiaoming Zuo, unpublished observations).

In the present study we have used the pCXJ8-MGM101GFP

plasmid (Fig. S4) as a starting point to construct a plasmid with the

N-terminal ID region of Mgm101p joined to GFP. This plasmid

has the 22 amino acid mitochondrial targeting signal and the next

76 amino acids containing the ID region linked to GFP. Using this

construct we find that GFP has a punctate appearance and a

peripheral distribution in cells that is similar to that obtained with

the plasmid containing full-length Mgm101p (Fig. 5).

Discussion

Prediction by three different methods shows that the previously

determined 165 amino acid functional core of S.cerevisiae

Mgm101p is not disordered whereas the N-terminal region, as

well as part of the mitochondrial signal sequence, is disordered.

Sequence alignment of Mgm101 proteins shows that the N-

terminal domain does not contain recognizable common elements

while the functional core shares conserved sequences. We have

used the predictions of the ordered and disordered domains of

A.millepora and the conserved core of S.cerevisiae in constructing the

chimeric proteins.

Examination of constructs by complementation of the temper-

ature sensitive allele, Mgm101-1, has shown that the wild types and

chimeras all restore temperature tolerance but at different levels

(Fig. 3). The complementation test only determines whether the

core region can help restore temperature tolerance. Restoration is

likely to depend on a hybrid multi-subunit complex. Recent

studies have shown that Mgm101p forms a ring structure

containing 14 subunits [11,13]. Hence a hybrid complex of

subunits from different sources may function at the restrictive

Table 1. Distribution of phenotypes in segregants containing pCXJ22 MGM101 plasmids.

Plasmid Construct

Asci with 4
viable
spores Ratio of Gly+: Gly2 spores*

Ura+ spores,
frequency(%) Ura+, Leu+ spores

4:0 3:1 2:2 Gly+ Gly2

S.c MGM101 56 19 24 13 139 (62%) 63 0

A.m MGM101 34 0 0 34 74 (54%) 0 31

S.c 1D domain-A.m core* 44 2 6 35 98 (56%) 10 32

A.m 1D domain-S.c core 50 0 0 50 108 (54%) 0 44

*1 tetrad contains 4 Gly2 spores.
doi:10.1371/journal.pone.0056465.t001

A Function for the Disordered Domain of Mgm101p
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temperature because unfolding of Mgm101-1p may be prevented

by the foreign subunits. In the case of A.millepora wild type or the

yeast ID-coral core region construct, restoration is not as effective

as the S.cerevisiae wild type or coral ID-yeast core region construct

(Fig. 3). However, complementation with A.millepora wild type or

the yeast ID-coral core region chimeric construct does suggest that

the coral core domain may function. However, complementation

does not demonstrate that the A.millepora core region of Mgm101p

can operate in mtDNA maintenance in the absence of a

contribution from the yeast Mgm101-1 ts protein.

Evidence that the core region of A.millepora Mgm101p can

function in maintaining respiration in the absence of the Mgm101-

1 protein has been obtained by a genetic test that simultaneously

gives prominence to the ID region of yeast Mgm101p. It has been

found that the core-region of the coral protein can maintain

respiration when attached to the yeast ID region. However,

respiration is not maintained when the yeast core-region is joined

to the coral ID domain despite the demonstrated integrity of the

yeast core (Fig. 3). In other words, the ID region of the yeast

protein is vital for the activity of the coral core region. In

summary, the two constructs with the coral ID region of

Mgm101p do not function whereas the construct with the yeast

ID domain does.

Previous studies have shown that isolated nucleoids, both from

S.cerevisiae [33] and Candida parapsilosis [5], contain Mgm101p while

the Mgm101-like protein Glom2 is also found in nucleoids [32].

An in vivo demonstration of Mgm101p’s association with nucleoids

has been obtained using GFP [12,15]. Consequently we consid-

ered whether the association of Mgm101p with the nucleoid may

be due to the ID region. In the present study we found that the ID

domain of Mgm101p is sufficient to give a punctate appearance of

GFP in the absence of the core region (Fig. 5). The distribution of

GFP at the periphery is characteristic of nucleoids being located in

mitochondria that are close to the cell wall. In a comprehensive

study where proteins, or fragments of proteins, from different

compartments of mitochondria were labelled with GFP, only

Abf2, that binds to mtDNA, gave a punctate appearance whereas

mitochondrial tubule fluorescence was found with other compo-

nents [34]. Therefore it appears that the ID region of Mgm101p

can direct GFP to the nucleoid.

In our study we have shown that Mgm101p is a bifunctional

protein with separate activities associated with its two domains.

The specific function of the N-terminal region is likely to depend

on its disordered nature. Disordered segments are frequently

involved in the assembly of large macromolecular complexes [35].

In accord with the idea that ID domains are malleable, it seems

possible that this portion of Mgm101p could mould to a structural

template in the nucleoid where operation of its core would be

undertaken. Future work will attempt to identify the interacting

partners of Mgm101p and further define the roles of the two

domains. If the ID domain of Mgm101p is confirmed as necessary,

as well as sufficient, for nucleoid localization, it is expected that the

coral ID domain will be unable to provide this function, possibly

due to an inability to recognize the interacting molecules in yeast.

The bifunctional nature of Mgm101p underlines the impor-

tance of ID regions even in mitochondria where the amount of

protein disorder is generally low [36].

Figure 5. Nucleoids labelled with GFP. S. cerevisiae M2915-7C
transformed with (A) pCXJ8MGM101-GFP and (B) the deletion plasmid
pCXJ8MGM101D99-269-GFP subcultured to GMM Ade,His,Leu for 24 h
at 30uC before being photographed. The deletion leaves 98 amino acids
at the N-terminus of Mgm101p consisting of a 22 amino acid
mitochondrial targeting signal and 76 amino acids incorporating the
ID region.
doi:10.1371/journal.pone.0056465.g005

Figure 4. Maintenance of respiration by the core of A.millepora
Mgm101p. Tetrads of S.cerevisiae CS5/mL3 containing pCXJ22-
S.cerevisiae ID domain-A.millepora core region. After growth on GYP
for 35 hours at 30uC phenotypes were determined by replica plating to
GlyYP, GMM supplemented with Ade,His,Leu (Ura+ determination), and
GMM supplemented with Ade,His,Ura, (Leu+ determination). Plates
were incubated at 30uC for 3 days before being photographed. The
white circle identifies colonies 3B and 5D that grow on all media.
doi:10.1371/journal.pone.0056465.g004

A Function for the Disordered Domain of Mgm101p
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Materials and Methods

Strains and media
The yeast strains are M2915-7C Mata,ade2-1,his4,leu2-3,ura3-

52,mgm101-1ts, and CS5/mL3 Mata/Mata,leu2-3/leu2-3,ura3-52/

ura3-52,ade2-1/+,his4/+, mgm101::LEU2/+. GYP medium contains

1% glucose, 0.5% Bacto yeast extract, 1% Bacto tryptone; GlyYP

contains 2% glycerol in place of glucose and GMM; glucose

minimal medium contains, 1% glucose, 0.5% ammonium sulfate

and 0.67% Difco yeast nitrogen base without amino acids.

Nutrients essential for auxotrophic strains were added at 25 mg/ml

for bases and 50 mg/ml for amino acids. Sporulation medium

consists of 1% potassium acetate and 0.05% glucose. Plates were

solidified by 2% Difco agar.

Biological material
Staged coral larvae and adult material was collected during the

annual mass spawning event at Magnetic Island, Queensland,

Australia under permit G08/28473.1 issued by the Great Barrier

Reef Marine park Authority.

Sequence analysis
The alignment was generated using the Clustalw [37] and

Jalview [38] programs. The presence of a mitochondrial target

signal was predicted using the MitoProt program [39]. Protein

disorder was predicted using three largely orthogonal methods, the

IUPred [40], Disopred2 [25], and PONDR VSL2 [41] programs.

For Disorpred2 and PONDR VSL2 the default cutoff value was

used, for IUPred it was lowered to 0.4 to allow regions undergoing

disorder-to-order transitions to be predicted as disordered.

Currently, disorder prediction methods work with about 80%

accuracy overall but can be quite noisy [27]. The main reason for

this is that protein disorder is a heterogeneous phenomenon and

the various methods can recognize the different types of disorder

differently. For this reason, it is not clear which is currently the

best method or what is the best way to create a consensus.

Nevertheless, the agreement of the prediction methods confirms

that our conclusions are not dependent on the choice of prediction

method.

Isolation of an MGM101 cDNA clone from A.millepora
Total RNA was isolated from frozen coral tissue ground in

liquid nitrogen using the RNAwiz reagent (Ambion) following

manufacturer’s instructions. cDNA was synthesized from mixed

planula larva and adult RNA using an anchored oligo dT primer

and PrimeScript reverse transcriptase (Takara). PCR primers

based on the MGM101 sequence in the A.millepora transcriptome

database [42] (Accession JR994989) were used to amplify a

MGM101 product, which was cloned into pGEMTeasy (Promega,

Madison, WI). The primers were 59 GATCTTCTACTAGT-

GATCAACAACATCAAGAAAATGG 39 and 59 GGCCACAT-

GAATTCTCTTTCTCACACTGGATGGCAAG 39. These

primers contain SpeI and EcoRI restriction endonuclease sites to

facilitate cloning. The plasmid insert was sequenced with internal

and vector primers using Big Dye Terminator v. 3.1 (Applied

BioSystems) and reactions were run on an ABI 3730 DNA

Analyzer at the Biomolecular Resource Facility (JCSMR, ANU).

Constructs for yeast transformation
The A.millepora MGM101 cDNA insert was excised with SpeI

and EcoRI and inserted between the SpeI and EcoRI sites of

pCXJ22-ScMGM101 [9] to give pCXJ22-AmMGM101 which

codes for a protein consisting of the A.millepora intrinsically

disordered region and Mgm101p core downstream of the

S.cerevisiae mitochondrial import signal sequence. To make a

construct with an ORF consisting of the S.cerevisiae intrinsically

disordered amino terminal region fused to the A.millepora

Mgm101p core the primers, 59 GTTAGCGGAATTCACTG-

GCCGTCGTTTTACAACGTC 39 and 59 CCAGTCGG-

TACCTCCCTTGACTTGCTTATAACTATTG 39 were used

to amplify a product from pCXJ22-ScMGM101, and the primers

59 TCATATGGTACCCTATCAGAAGACTTTTCTGGAGC-

TTC 39 and 59 GGCCACATGAATTCTCTTTCTCACACTG-

GATGGCAAG 39 were used to amplify a product from the

A.millepora MGM101 cDNA clone. The products were digested

with Acc651 and EcoRI and ligated together to give

pScAmMGM101. To make a construct with an ORF consisting

of the A.millepora intrinsically disordered amino terminal region

fused to the S.cerevisiae Mgm101p core the primers, 59

GTTAGCGGAATTCACTGGCCGTCGTTTTACAACGTC

39 and 59 CCAGAAAAGGTACCTGATAGCCTATCATAT-

GAATTATTCG 39 were used to amplify a product from

pCXJ22-AmMGM101 and primers 59 GACTGGGGTACCT-

CATGGTATGGCCTAGGTATGAAGC 39 and 59 GGCCAG-

TGAATTCCGCTAACCCTGAAATAGAAGGCG 39 were used

to amplify a product from pCXJ22-ScMGM101. The products

were digested with Acc651 and EcoRI and ligated together to give

pAmScMGM101. The amino acid sequences of the Mgm101

proteins coded by these constructs are shown in Figure S3.

To make the integrative constructs, fragments containing the

intrinsically disordered and core domains were excised from

pCXJ22-AmMGM101, pScAmMGM101, and pAmScMGM101

with SpeI and EcoRI and ligated into the SpeI and EcoRI sites of

pUC-n-MGM101His [9] [43].

To make a construct containing the S.cerevisiae Mgm101p

intrinsically disordered region fused to GFP in a pCXJ8 vector

(placing expression of the fusion under the control of the alcohol

dehydrogenase promoter), an EcoRI fragment containing the

S.cerevisiae MGM101 open reading frame fused to GFP was excised

from pCXJ8-MGM101GFP [43]; Fig. S4), and inserted into the

EcoRI site of pEMBL8+ [44] to give pEMBLMGM101GFP. A

region corresponding to amino acid position 99 to the C terminus

of the Mgm101 protein was deleted from pEMBLMGM101GFP

using Pfu Ultra II Fusion HS DNA polymerase (Agilent

Technologies) with a method modified from that described in

[45]. The primers pairs used were 59 CAAGTCAAGGGAGA-

CAGTAAAGGAGAAGAACTTTTCAC 39; 59 TTATAACTA-

TTGTTCAAAGAATC 39 and 59 TTCTTCTCCTTTACTG-

TCTCCCTTGACTTGCTTATAAC 39; 59 CTTTTCACTG-

GAGTTGTCCC 39. PCR reactions were digested with DpnI

(New England Biolabs) to remove template DNA and purified with

the QIAquick PCR Purification Kit (Qiagen). 50 ng of each PCR

product were combined in 10 mM Tris pH 7.5, 100 mM NaCl,

1 mM EDTA heated to 95uC for 3 minutes and annealed at 65uC
for 2 minutes followed by 15 minutes at 25uC. Colonies harbour-

ing the desired deletion construct were recovered following

transformation of JM109 (Promega) with the annealed products.

The resulting plasmid, pEMBLMGM101D99-269GFP, was di-

gested with EcoRI and the purified insert was ligated into the

EcoRI site of pCXJ8 to give pCXJ8-MGM101D99-269GFP. The

domain structure of the wild-types and chimeric constructs is

illustrated in Figure S2, while amino acid sequences of these

proteins are shown in Figure S3.

Manipulation of S.cerevisiae
Transformation of yeast was performed by the lithium acetate-

dimethyl sulfoxide method [46]. Tetrad dissection employed a

Singer 200 series micro-dissection apparatus (Singer Instruments,
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Somerset, UK) following a brief treatment with Zymolyase

(Seikaguku, Japan).

Microscopy
Digital images of yeast cells were captured with a Spot Camera

mounted on a Leica DM6000B microscope with 636 or 1006
NA1.4 oil immersion objectives.

Supporting Information

Figure S1 Domain organization for the six representative

members of Mgm101p sequence family. The thick black line

represents the predicted mitochondrial target signal. The green

bar indicates the experimentally determined core region for

S.cerevisiae and the corresponding region determined from the

sequence alignment for A.millepora. The orange bars represent

predicted disordered regions. Disorder predictions were carried

out using three independent methods, IUPred, PONDR VSL2,

and DISOPRED2, indicated by different shades. The sequences

were aligned so that the beginning of the core region is in the same

vertical position.

(EPS)

Figure S2 Structure of the Mgm101p constructs. The sequence

regions for Mgm101p, indicating the mitochondrial target

sequence (S.c.T/A.m.T) in blue, the disordered region (S.c.ID/

A.m.ID) in red and orange respectively, and the core region

(S.c.C/A.m.C) in green for S.cerevisiae and A.millepora. Based on

these regions three constructs were designed. Construct 1 (A.m.ID-

A.m.C) has the A.millepora disordered and A.millepora core regions

fused to the S.cerevisiae mitochondrial import signal. Construct 2

(S.c.ID-A.m.C) has the S.cerevisiae mitochondrial import signal and

disordered region fused to the A.millepora core. Construct 3

(A.m.ID-S.c.C) has the A.millepora disordered region and the

S.cerevisiae core fused to the S.cerevisiae mitochondrial import signal.

In the last two cases the dipeptide GlyThr was introduced by the

restriction site (Acc651) that was used to facilitate the cloning.

(EPS)

Figure S3 Amino acid sequences of the construct open reading

frames. AmMgm101p. The predicted sequence of the A.millepora

MGM101 protein derived from Accession JR994989 and the

A.millepora genome sequence (www.coralbase.org). ScMgm101p.

The sequence of the S.cerevisiae MGM101 protein (Accession

NP_012678) A.m.ID-A.m.C. (pCXJ22-AmMGM101). This con-

struct consists of the S.cerevisiae mitochondrial targeting signal and

the A.millepora ID and core regions. S.c.ID-A.m.C.

(pScAmMGM101). This construct consists of the S.cerevisiae

mitochondrial targeting signal and ID region and the A.millepora

core region. A.m.ID-S.c.C. (pAmScMGM101). This construct

consists of the S.cerevisiae mitochondrial targeting signal, the

A.millepora ID region and the S.cerevisiae core. S.c.MGM101GFP.

The sequence of the MGM101-GFP fusion protein from pCXJ8-

MGM101GFP. S.c.ID-GFP. (pCXJ8MGM101D99-269GFP).

The sequence of the S.cerevisiae ID region fused to GFP. It

represents a deletion of amino acids 99–272 from

S.c.MGM101GFP (A three amino acid linker between the end

of the Mgm101 protein and GFP (Fig. S3), which is present in

S.c.MGM101GFP, has been deleted in S.c.ID-GFP along with the

core region).

(TIF)

Figure S4 Map of plasmid pCXJ8-MGM101GFP. This plasmid

contains the full-length S.cerevisiae MGM101 open reading frame

fused in-frame to GFP (Aequorea victoria GFP-S65T derived from

pFA6a-GFPS65T-kanMX6; accession AJ002682). Expression of

the fusion protein is under the control of the S.cerevisiae ADH

(alcohol dehydrogenase) promoter.

(TIF)

Table S1 Distribution of phenotypes in segregants from pUC-N

MGM101 constructs integrated at ura3

(DOC)

Acknowledgments

We thank Daryl Webb and Eldon Ball for assistance with microscopy. We

thank Xiaoming Zuo for plasmid pCXJ8MGM101-GFP and Xin Jie Chen

for information about Mgm101p subunit composition. We thank Eldon

Ball, Xin Jie Chen, Nick Dixon, Thomas Huber, Joe O’Neil, Gottfried

Otting and Immo Scheffler for critical comments.

Author Contributions

Conceived and designed the experiments: DCH GDC-W. Performed the

experiments: DCH GDC-W. Analyzed the data: ZD. Contributed

reagents/materials/analysis tools: DCH GDC-W ZD. Wrote the paper:

DCH GDC-W ZD.

References

1. Gray MW (1999) Mitochondrial Evolution. Science 283: 1476–1481.

2. Bogenhagen DF, Rousseau D, Burke S (2007) The Layered Structure of Human

Mitochondrial DNA Nucleoids. J Biol Chem 283: 3665–3675.

3. Chen XJ, Butow RA (2005) The organization and inheritance of the

mitochondrial genome. Nat Rev Genet 6: 815–825.

4. Kucej M, Butow RA (2007) Evolutionary tinkering with mitochondrial

nucleoids. Trends Cell Biol 17: 586–592.

5. Miyakawa I, Okamuro A, Kinsky S, Visacka K, Tomaska L, et al. (2009)

Mitochondrial nucleoids from the yeast Candida parapsilosis: expansion of the

repertoire of proteins associated with mitochondrial DNA. Microbiology 155:

1558–1568.

6. Bogenhagen DF (2012) Mitochondrial DNA nucleoid structure. Biochim

Biophys Acta 1819: 914–920.

7. Gilkerson RW, Schon EA, Hernandez E, Davidson MM (2008) Mitochondrial

nucleoids maintain genetic autonomy but allow for functional complementation.

J Cell Biol 181: 1117–1128.

8. Chen X, Guan M, Clark-Walker G (1993) MGM101, a nuclear gene involved in

maintenance of the mitochondrial genome in Saccharomyces cerevisiae. Nucl

Acids Res 21: 3473.

9. Zuo X, Xue D, Li N, Clark-Walker GD (2007) A functional core of the

mitochondrial genome maintenance protein Mgm101p in Saccharomyces

cerevisiae determined with a temperature-conditional allele. FEMS Yeast Res

7: 131–140.

10. Clark-Walker GD, Chen XJ (1996) A vital function for mitochondrial DNA in

the petite-negative yeast Kluyveromyces lactis. Mol Gen Genet 252: 746–750.

11. Mbantenkhu M, Wang X, Nardozzi JD, Wilkens S, Hoffman E, et al. (2011)

Mgm101 Is a Rad52-related Protein Required for Mitochondrial DNA

Recombination. J Biol Chem 286: 42360–42370.

12. Meeusen S, Tieu Q, Wong E, Weiss E, Schieltz D, et al. (1999) Mgm101p is a

novel component of the mitochondrial nucleoid that binds DNA and is required

for the repair of oxidatively damaged mitochondrial DNA. J Cell Biol 145: 291.

13. Nardozzi JD, Wang X, Mbantenkhu M, Wilkens S, Chen XJ (2012) A Properly

Configured Ring Structure is Critical for the Function of the Mitochondrial

DNA Recombination Protein, Mgm101. J Biol Chem 287: 37259–37268.

14. Zuo X, Clark-Walker G, Chen X (2002) The Mitochondrial Nucleoid Protein,

Mgm101p, of Saccharomyces cerevisiae Is Involved in the Maintenance of

{rho}+ and ori/rep-Devoid Petite Genomes but Is Not Required for

Hypersuppressive {rho}-mtDNA. Genetics 160: 1389–1400.

15. Meeusen S, Nunnari J (2003) Evidence for a two membrane-spanning

autonomous mitochondrial DNA replisome. J Cell Biol 163: 503–510.

16. Hobbs AEA, Srinivasan M, McCaffery JM, Jensen RE (2001) Mmm1p, a

mitochondrial outer membrane protein, is connected to mitochondrial DNA

(mtDNA) nucleoids and required for mtDNA stability. J Cell Biol 152: 401–410.

17. Elbaz Y, Schuldiner M (2011) Staying in touch: the molecular era of organelle

contact sites. Trends Biochem Sci 36: 616–623.

18. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:

527–533.

A Function for the Disordered Domain of Mgm101p

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e56465



19. Dyson H, Wright P (2005) Intrinsically unstructured proteins and their functions.

Nat Rev Mol Cell Biol 6: 197–208.
20. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, et al. (2001)

Intrinsically disordered protein. J Mol Graph Model 19: 26–59.

21. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the
protein structure-function paradigm. J Mol Biol 293: 321–331.

22. Galea C, Wang Y, Sivakolundu S, Kriwacki R (2008) Regulation of Cell
Division by Intrinsically Unstructured Proteins: Intrinsic Flexibility, Modularity,

and Signaling Conduits. Biochemistry 47: 7598–7609.

23. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured
proteins. Curr Opin Struct Biol 12: 54–60.

24. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic
protein disorder in complete genomes. Genome Inform Ser Workshop Genome

Inform 11: 161–171.
25. Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004) The

DISOPRED server for the prediction of protein disorder. Bioinformatics 20:

2138–2139.
26. Garner E, Cannon P, Romero P, Obradovic Z, Dunker A (1998) Predicting

Disordered Regions from Amino Acid Sequence: Common Themes Despite
Differing Structural Characterization. Genome Inform Ser Workshop Genome

Inform 9: 201–213.
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