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Abstract
BACKGROUND—Mitochondria-related mechanisms have been suggested to mediate
methamphetamine (METH) toxicity. However, changes in brain energetics associated with
highenergy phosphate metabolism have not been investigated in METH users. Phosphorus-31
(31P) magnetic resonance spectroscopy (MRS) was used to evaluate changes in mitochondrial high
energy phosphates, including phosphocreatine (PCr) and β-nucleoside triphosphate (β-NTP,
primarily ATP in brain) levels. We hypothesized that METH users would have decreased high-
energy PCr levels in the frontal gray matter.

METHODS—Study participants consisted of 51 METH (age=32.8±6.7) and 23 healthy
comparison (age=31.1±7.5) subjects. High-energy phosphate metabolite levels were compared
between the groups and potential gender differences were explored.

RESULTS—METH users had lower ratios of PCr to total pool of exchangeable phosphate (PCr/
TPP) in the frontal lobe as compared to the healthy subjects (p=0.001). The lower PCr levels in
METH subjects were significantly associated with lifetime amount of METH use (p=0.003). A
sub-analysis for gender differences revealed that female METH users, who had lower daily
amounts (1.1±1.0 gram) of METH use than males (1.4±1.7 gram), had significantly lower PCr/
TPP ratios than male METH users, controlling for the amount of METH use (p=0.02).
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CONCLUSIONS—The present findings suggest that METH compromises frontal lobe high-
energy phosphate metabolism in a dose-responsive manner. Our findings also suggest that the
abnormality in frontal lobe high-energy phosphate metabolism might be more prominent in female
than in male METH users. This is significant as decreased PCr levels have been associated with
depressive symptoms, and poor responses to antidepressant treatment have been reported in those
with decreased PCr levels.
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1. INTRODUCTION
Methamphetamine (METH) abuse is a disorder characterized by compulsive METH-craving
and consumption despite an apparent awareness of serious negative consequences. METH
use has been linked to the emergence of psychotic symptoms (Iyo et al., 2004; London et al.,
2004; Winslow et al., 2007) as well as morphological, functional, and neurochemical
abnormalities in multiple brain areas (Bae et al., 2006; Chung et al., 2007; Ernst et al., 2000;
Hwang et al., 2006; Oh et al., 2005). Alterations in monoaminergic neurotransmission
(Kokoshka et al., 1998; Ricaurte et al., 1980; Robinson and Berridge, 1993) in the frontal
lobe have been related to cognitive impairments in METH users because prefrontal cortical
neural networks play a central role in impaired decision-making and inhibitory control
(Lubman et al., 2004; Yucel and Lubman, 2007).

In METH toxicity, multiple lines of evidence suggest that dysfunctional energy metabolism
plays an important role. For instance, 1) impairments of mitochondrial function have been
reported after administration of METH to animals including impairments in mitochondrial
electron transport chain enzyme complexes (Brown et al., 2005; Burrows et al., 2000a;
Klongpanichapak et al., 2006); 2) METH toxicity involves a depletion of energy stores,
evidenced by synergistic metabolic inhibition by METH resulting in depletion of striatal
dopamine content (Burrows et al., 2000b); and 3) ex vivo METH exposure has been
associated with oxidative cell injury and apoptosis in rat cortical neuron and undifferentiated
pheochromocytoma (PC12) cells (Cunha-Oliveira et al., 2006; Oliveira et al., 2002).
Considering the evidence for mitochondrial involvement in the potential pathophysiology of
METH toxicity, it is not surprising that proton (1H) magnetic resonance spectroscopy
(MRS) studies have consistently reported that METH users, relative to healthy comparison
subjects, have decreased levels of total creatine (phosphocreatine plus creatine) as well as
decreased N-acetylaspartate (NAA, a marker of neuronal viability or integrity (Moffett et al.,
2007)) levels (Chang et al., 2005; Ernst et al., 2000; Nordahl et al., 2002; Sailasuta et al.,
2010b; Sekine et al., 2002; Smith et al., 2001; Sung et al., 2007; Taylor et al., 2007). As
NAA synthesis occurs primarily in the mitochondria (Patel and Clark, 1979), decreased
NAA levels in METH users are potentially consistent with compromised brain energetics.

Phosphocreatine (PCr) and adenosine triphosphate (ATP) make up the PCr-ATP energy
buffering system in neuronal cells that have high and fluctuating energy demands. The
enzyme creatine kinase controls the transfer of a phosphate group from PCr to ADP, thereby
replenishing brain ATP. It is reported that PCr serves as a buffer to maintain constant ATP
levels so that ATP levels remain relatively stable at the cost of PCr expenditure (Schlattner
et al., 2006). In the fluctuating energy requirements of neurons, mitochondrial dysfunction
may lead to decreased formation of phosphocreatine mediated by the mitochondrial creatine
kinase isoenzyme (Dolder et al., 2001; Wallimann et al., 1998). Regarding region specific
deficits, frontal hypometabolism has been reported in METH users using positron emission
tomography (PET; Kim et al., 2005; London et al., 2005, 2004). These findings would be
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consistent with the potential mitochondrial abnormality and decreased PCr levels in the
frontal lobe of METH users.

Published neuroimaging studies have reported gender differences in METH toxicity with
favorable outcomes in female METH users in terms of frontal glucose metabolism and white
matter hyperintensities/integrity (Bae et al., 2006; Chung et al., 2007; Kim et al., 2005),
probably reflecting a protective effect of estrogen (Dhandapani and Brann, 2002). However,
female psychostimulant users are more sensitive to the reinforcing effects than male users
(Anker and Carroll, 2011; Carroll et al., 2004). Also, female METH users have a higher
incidence of depression and more severe depressive symptoms than male METH users
(Dluzen and Liu, 2008; Hser et al., 2005; Kalechstein et al., 2000). In non-METH users,
depression severity has been significantly associated with decreased brain PCr levels (Kato
et al., 1992), but it is not known what the effects of METH use will be on brain high energy
phosphate metabolism in female METH users.

Phosphorus-31 (31P)-MRS provides a unique method to evaluate changes in high-energy
phosphate metabolites such as PCr and beta-nucleoside triphosphate (β-NTP), which arises
primarily from ATP in brain (Renshaw et al., 2001). To date, there have been no reports
measuring 31P-MRS metabolite levels in METH users relative to healthy subjects. In this
study, we aimed to investigate whether METH use significantly altered high energy
phosphate metabolism. It was hypothesized that first, METH use would be associated with
decreased highenergy PCr levels by 31P-MRS in the frontal cortex, and second, that altered
PCr levels will be significantly correlated with lifetime amount of METH use. In addition,
we explored possible gender differences in the phosphorus metabolite levels in METH users.

2. METHODS
2.1 Subjects

This was a cross-sectional study in which phosphorus MRS data was acquired to examine
brain metabolite alterations related to METH use. The study participants consisted of 51
METH dependent subjects (age=32.8±6.7, female=23) and 23 healthy comparison subjects
(age=31.1±7.5, female=11). Each individual underwent two dimensional phosphorus
magnetic resonance spectroscopic imaging (2D 31P-MRSI) as well as assessment of clinical
and drug abuse history. METH-dependent subjects were evaluated for the severity of their
lifetime METH use (METH amount, frequency, duration, and abstinence). Inclusion criteria
for METH subjects were as follows: (1) age 18–55 years, (2) subjects who met diagnostic
criteria for current methamphetamine abuse or dependence as their preferred drug of abuse
as determined by the Structured Clinical Interview for DSM-IV (SCID-IV). A board
certified psychiatrist took complete medical histories and physical examinations of the
subjects. The SCID-IV was administered by a trained psychologist (ECM), and (3) METH
use within the past six months. Exclusion criteria for METH subjects included (1) major
medical or neurological disorders, including HIV seropositivity; (2) comorbid psychiatric
disorders including schizophrenia, bipolar disorder, and use of other illicit drugs as preferred
drug of abuse; (3) major sensorimotor handicaps (e.g., deafness, blindness, and paralysis),
full scale IQ <70 or learning disabilities; and (4) contraindications to magnetic resonance
imaging.

Healthy comparison (HC) subjects were recruited with the inclusion criteria (1) age 18 to 55
years, (2) no dependence or abuse of alcohol, METH, amphetamine, cocaine, heroin,
alcohol, and cannabis, and (3) no psychiatric, neurologic, and medical disease identified by
physical examination. The healthy subjects were matched on age and gender with METH
users. The healthy subjects had a slightly higher level of education than METH users and
this difference was controlled for statistically. Exclusion criteria for the HC subjects were
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the same as for the METH users. The study protocol was approved by the Institutional
Review Boards of the University of Utah and the Department of Human Services of the
State of Utah. Written informed consent was obtained from all study subjects before
participation.

2.2 Magnetic Resonance Imaging and Spectroscopy Data Acquisition and Processing
2.2.1 Structural MR Images—Brain MR imaging was performed using a 3 Tesla
Siemens scanner (Trio, Siemens AG, Erlangen, Germany) and a 31P/1H double-tuned
volume head coil (Clinical MR Solutions LLC, Brookfield, WI) for transmission and
reception. To obtain high resolution T1-weighted anatomical images for tissue segmentation
and positioning MRS grids, a three dimensional chemical Magnetization Prepared Rapid
Acquisition Gradient Echo (MPRAGE) pulse sequence was used. The parameters for the
structural MRI were as follows: T1 weighted image: TR=2000 ms, TE=3.37 ms, TI=1100
ms, average number=1, flip angle=8°, FOV=256 mm, matrix 256×192×144, bandwidth=300
Hz/pixel, slice thickness 1.0 mm and no gap.

2.2.2 31P Magnetic Resonance Spectroscopy—Phosphorus spectra were acquired on
the same 3 Tesla Siemens system using the 31P/1H double-tuned volume head coil. The
spectra were obtained using a two dimensional-chemical shift imaging (2D-CSI) free
induction decay (FID) pulse sequence with TR= 3000, TE=2.3 ms, average number=36, flip
angle=90°, vector size=1024, FOV=200×200mm2, slice thickness=2.5 cm, matrix 8×8,
sampling bandwidth=2.5 kHz, and voxel dimension=2.5×2.5 cm2. The 2D-CSI grid was
positioned covering an axial brain slice just above an imaginary line connecting the anterior
commissure and posterior commissure. The acquisition matrix of the 2D-CSI grid was 8x8
with the slice thickness 25mm (Figure 1). Shimming was performed over the excited brain
volume. Since MRS data is significantly affected by magnetic field inhomogeneity, high
order advanced shimming routine on the Siemens system was used to achieve linewidths of
less than or equal to 15 Hz for the unsuppressed water signal. The proton channel was used
for shimming, localization, and anatomic imaging. As an a priori region of interest (ROI),
frontal lobe spectroscopic data were quantified. Also, as a control region for the comparison,
temporoparietal lobe and occipital lobe were included in the spectroscopic and statistical
analyses. The frontal lobe was selected as an active ROI because of prior reports suggesting
frontal neurochemical abnormalities and hypometabolism in METH users (Kim et al., 2005;
London et al., 2005; London et al., 2004; Sailasuta et al., 2010a)

2.2.3 31P-MRS Data Analysis—Before performing 2D Fast Fourier Transform (FFT) on
raw data, a Hamming filter was applied to reduce the effect of the point-spread-function, and
each free induction decay (FID) was line-broadened with 10 Hz of apodization. After
Fourier transformation and frequency shift correction, zero-/first-order phase correction and
baseline correction with polynomial interpolation were applied. Metabolite location error
resulting from different chemical shift displacement was corrected along in-plane readout
and phase-encoding directions. Following that, spatial filtering with a Hamming window
function was implemented to reduce the signal contamination from neighboring voxels. The
preprocessed 31P-MRSI data was fitted using jMRUI software (Naressi et al., 2001) with the
Advanced Method for Accurate, Robust and Efficient Spectral fitting (AMARES) algorithm
(Vanhamme et al., 1997). Metabolites of interest were PCr, β-NTP, and their ratio (Figure
1C). Each metabolite concentration was expressed relative to the total pool of exchangeable
phosphate (TPP; Blumberg et al., 1999). Referencing 31P metabolites to TPP facilitated
effective evaluation of high energy phosphate metabolism (Amess et al., 1997; Cady et al.,
2008; Iwata et al., 2008).
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From the registered anatomical images, tissue segmentation was performed using FSL
(FMRIB's Software Library) software so that cerebrospinal fluid (CSF)-corrected metabolite
concentrations as well as gray matter percentage in each voxel could be used as covariates in
the statistical analysis. No significant difference in CSF amount was detected in the frontal
voxels between METH and control subjects (t72=0.56, p=0.58).

2.2.4 Statistical Analysis—Collected demographic and clinical data were managed using
Research Electronic Data Capture (REDCap) electronic data capture tools hosted at the
University of Utah, which is a secure, web-based application designed to support data
capture for research studies (Harris et al., 2009). Analysis of variance (ANOVA) was used
for between-group comparisons involving continuous demographic data. Generalized
Estimating Equations regression modeling was used to evaluate group differences in
metabolite levels controlling for age, sex, education level, and tissue partial volume effects
(i.e. gray matter, white matter, CSF). Fisher's Exact Test compared groups on categorical
variables. To determine the clinical relevance of metabolite changes in METH users, robust
multiple regression analyses (White, 1980) were performed to assess the relationship
between PCr levels and lifetime amount of METH use or days of abstinence of METH.
Partial correlation coefficients were calculated covarying for age and sex. Models with all
pair-wise and three-way interactions between covariates were first considered, and
interactions not significant were removed from the models. Statistical significance was
defined at an alpha level of p=0.05, two-tailed. Stata for Unix, version 12.1 (StataCorp,
College Station, TX) was used for all computations.

3. RESULTS
3.1 Demographics and clinical characteristics

There were no significant differences between the METH and the HC groups in terms of age
(32.8±6.7 vs. 31.1±7.5 respectively, t72=0.95, p=0.35) and sex (45% vs. 47% female ratio
respectively, Fisher's Exact Test, p=0.5). The METH users, however, had lower education
level than the HC subjects although this difference was modest (12.7±1.8 vs. 13.9±1.3,
respectively, p<0.05). Fifty METH users met lifetime METH dependence DSM-IV criteria
and one participant was diagnosed with METH abuse. Table 1 presents study subject
characteristics and other demographics in detail. Table 2 presents METH and other drug use
history for all METH users.

3.2 Group differences in Metabolite levels
PCr levels in METH users were significantly reduced in the frontal lobe compared with
those in HC group but not β-NTP/TPP levels (PCr/TPP, t72=−3.46, p=0.001; β-NTP/TPP,
t72=0.56, p=0.58, Figure 2). The statistically significant reduction in PCr levels was
maintained after controlling for potential confounding variables such as age, sex, education
level, and tissue segmentation (t68=−2.99, p=0.004). As there was a high collinearity
between group variable and alcohol amount/nicotine amount consumed, we did not conduct
regression analysis adjusting for alcohol, nicotine and caffeine.

To ensure that decreased PCr/TPP did not result from increased total TPP values, we
repeated our statistical analysis using β-NTP as a denominator, with findings remaining the
same. Specifically PCr/β-NTP levels were significantly decreased in METH users compared
to the HC subjects (t72=−2.08, p=0.04). Also, to ensure that the MR system did not drift
across the study period, absolute measurements (arbitrary institutional unit) of total
phosphorus were compared between the groups, with no group differences in TPP levels
(p=0.10). Further, to assess test-retest reliability of our 31P-MRS protocol, we scanned nine
healthy subjects twice using the exact same protocol. The intraclass correlation coefficient
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(ICC; Shrout and Fleiss, 1979) for PCr levels was calculated to be 0.72, which suggests
good reliability.

Other metabolite levels such as phosphomonoester, phosphodiester, and inorganic phosphate
were not significantly different between the groups (see Table 3). We did not find a
statistically significant difference in PCr/TPP levels in other brain regions such as
temporoparietal lobe (t72=−1.71, p=0.10) and occipital lobe (t72=1.60, p=0.12) between
METH and HC subjects.

3.3 PCr levels in female vs. male METH users
Frontal PCr/TPP levels in female METH users were significantly lower (5.3%) than those in
male METH users (t49=−2.06, p=0.04, Figure 3). Female METH users reported lower
amounts of daily METH use (1.1±1.0 gram) compared to male METH users (1.4±1.7 gram)
(t49=−0.75, p=0.46). After adjusting for the daily amount of daily METH use, the
significance for betweengroup gender difference of PCr/TPP levels was maintained (t48=
−2.41, p=0.02). In the healthy subjects, there were no significant gender differences in either
PCr (t21=−0.90, p=0.38), β-NTP (t21=−0.90, p=0.38), or other metabolites (Table 3)

3.4 Relationship between Frontal lobe PCr levels and lifetime METH amount
There was significant relationship between frontal lobe PCr levels and total amount of
lifetime METH use (Figure 4), before (t49=−3.17, p=0.003), and after (t47=−2.87, p=0.006)
controlling for age and education.

3.5 Relationship between Frontal lobe PCr levels and duration of abstinence from METH
There was a trend toward a negative relationship between frontal lobe PCr levels and
duration of METH abstinence but this was not statistically significant (t49=−1.49, p=0.14).

4. DISCUSSION
In this study, we found that METH users have abnormal PCr levels in the frontal lobe
compared with the HC subjects. To the best of our knowledge, this is the first 31P-MRS
study reporting abnormal brain cellular energetics in human METH users.

Our findings are consistent with the prior neuroimaging reports regarding metabolic
hypofrontality in METH users. For example, 18F-fluorodeoxyglucose (FDG) PET studies
have noted lower FDG uptake in the frontal lobe and cingulate (Kim et al., 2005; London et
al., 2005; 2004) and in the striatum (Volkow et al., 2001a). Also, single photon emission
computed tomography (SPECT) studies have reported decreased frontal blood flow in
METH users (Hwang et al., 2006).

Of particular relevance to the decreased PCr levels and mitochondrial dysfunction in METH
users, several 31P-MRS studies of individuals with primary mitochondrial disease have
reported decreased PCr levels in the resting state of muscles (Argov et al., 1987; Arnold et
al., 1985; Hoang et al., 1998) as well as in affected brain regions (Barbiroli et al.,
1995,1993). Importantly, when there was no clinical brain involvement in the mitochondrial
disease, patients had normal PCr levels (Rango et al., 2001). The abnormal PCr levels in our
METH users are consistent with results observed in opioid-dependent subjects. For example,
heroin-dependent subjects were reported to have decreased PCr levels (−15.3%) at the onset
of methadone maintenance treatment (Silveri et al., 2004). Notably, decreased PCr levels in
opiate-dependent polydrug abusers tended to recover after methadone maintenance therapy
(Kaufman et al., 1999).
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The alteration of PCr levels only in the frontal lobe of METH users suggest that the damage
induced by METH may be region-specific rather than global in terms of brain energetics.
The frontal lobe is more metabolically active than other brain regions (Ivancevic et al.,
2000; Loessner et al., 1995) and frontal lobe dysfunction is commonly associated with
chronic METH use (Henry et al., 2010). We previously reported that compromised frontal
executive function was significantly correlated with reduced frontal glucose metabolism in
METH dependent subjects (Kim et al., 2005). Therefore, it is possible that the reduced PCr
levels may be a 31PMRS metabolic biomarker of hypofrontality in METH users.

The present phosphorus MRS findings are consistent with the existing proton MRS
literature. For instance, reduced NAA levels, which are known to reflect the functional
status of mitochondria have been associated with human METH use (Chang et al., 2005;
Ernst et al., 2000; Nordahl et al., 2002; Sailasuta et al., 2010b; Sekine et al., 2002; Smith et
al., 2001; Sung et al., 2007; Taylor et al., 2007). Of note, NAA is generated by L-aspartate
N-acetyltransferase, an enzyme predominantly located in the mitochondria. Further,
decreased PCr levels in our 31P-MRS findings are in line with the prior 1H-MRS reports of
decreased total creatine plus phosphocreatine levels in METH users (Ernst et al., 2000).

Constant brain adenosine triphosphate levels are critical for cell survival and proper human
brain functioning (Niizuma et al., 2009). In high energy phosphate metabolism, PCr-ATP
buffering and the creatine kinase system (PCr2+ + ADP- ↔ Cr + ATP2+) play important
roles in maintaining constant ATP levels. No significant differences in the β-NTP levels
between METH users and HC subjects suggest a possible compensatory or homeostatic
mechanism in maintaining ATP levels in METH users. Although the precise mechanisms
remain unclear, creatine and PCr have been reported to have neuroprotective effects in
various brain disorders including ischemic stroke and Alzheimer’s disease (Beard and
Braissant, 2010). Therefore, our finding of decreased PCr levels may indicate an increased
susceptibility to neurotoxic changes in METH users. This suggests a potential treatment
target, as exogenous creatine supplementation, which increases PCr levels in healthy
volunteers (Lyoo et al., 2003), might provide beneficial effects directly targeting the
underlying pathophysiology of METH-induced mitochondrial toxicity. However, further
study would be required to confirm the possible therapeutic effects of oral creatine in METH
users.

Gender differences in METH toxicity have been reported in previous neuroimaging studies
of diffusion tensor imaging and white matter hyperintensities (Bae et al., 2006; Chung et al.,
2007). Male METH users had lower fractional anisotropy values and greater severity of
white matter hyperintensites than female METH users. In the present 31P-MRS study,
however, decreased PCr levels were more prominent in females. The exact mechanism
responsible for lower PCr levels in female METH users is unclear and has yet to be
elucidated. However, since lower brain levels of PCr have also been associated with severe
depression (Kato et al., 1992) and worse outcomes in response to antidepressant treatment
(Iosifescu et al., 2008), our findings may be related to the higher incidence of depression in
female METH users (Semple et al., 2007). Indeed, METH abuse is associated with increased
risk of depression and suicide attempts compared to rates observed in the general population
(Glasner-Edwards et al., 2009). Also, METH abusers have higher female/male ratios (46%)
than heroin (11%) or cocaine (29%) abusers (Cohen et al., 2007; Holdcraft and Iacono,
2004; Hser et al., 2008). Therefore, the relatively large reduction of PCr levels in female
METH users highlights the potential consequences of bioenergetic impairment that merit
special clinical attention in female subjects. Another possible underlying mechanism for
lower PCr in female METH users may be related to the effect of gonadal hormones on brain
PCr levels. For example, estrogen has been reported to stimulate brain-specific cytosolic
creatine kinase activity (Kaye, 1983). Therefore, the higher estrogen levels in females may
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contribute to the decreased PCr levels through the forward (i.e. regenerating ATP) creatine
kinase activity in the PCr-ATP buffer system. Although it was not statistically significant,
we found slightly lower PCr levels in female healthy subjects. Interestingly, a recent PET
study demonstrated decreased prefrontal metabolism in females but not in male cocaine
users (Volkow et al., 2011). This observation suggests that gonadal hormones may be
associated with increased risk of abnormal high energy phosphate metabolism. However,
further study will be required to clarify the relationship between hormone levels and brain
high energy phosphate changes.

The significant relationship between total amount of METH use and the PCr levels
illustrates that heavy METH users might manifest as an abnormality in high energy
phosphates in a dose-responsive manner. These findings raise the possibility that heavy
METH users may benefit from agents which facilitate the recovery of frontal lobe PCr
levels. A non-significant negative association between frontal lobe PCr levels and duration
of METH abstinence suggests that recovery of PCr levels may not occur during the
moderate levels of simple abstinence (95% confidence limits: 26 to 50 days). Indeed, the
negative trend suggests that longer abstinence may result in PCr levels that remain low or
even decline further. These findings are consistent with persistently lower striatal, but not
thalamic, FDG metabolism in METH users compared to HC even after 12 to 17 months of
abstinence (Wang et al., 2004), as well as significantly reduced striatal dopamine transporter
levels in METH users compared to HC even after 11 months of abstinence (Volkow et al.,
2001b).

4.1 Study Limitations
When considering our findings, several factors should be taken into consideration.
The 31PMRS data are reported by ratio to TPP with no absolute 31P metabolite
concentration. Although this is a standard practice in the MRS literature, decreased PCr/TPP
may have originated from increased TPP levels (Jansen et al., 2006; Jayakumar et al., 2010).
However, even when we use a different denominator such as β-NTP, we observe similar
results. Also, metabolite ratio measures have been compared favorably with absolute
measures (Klunk et al., 1994). Therefore, decreased PCr/TPP ratios are likely to reflect
decreased PCr levels.

Female subjects were not scanned at the same phase of the menstrual cycle in the present
study. Since prior published studies suggest hormonal levels are related to subjective reports
of stimulation after D-amphetamine administration (Reed et al., 2010; White et al., 2002),
phosphorus metabolite levels may also fluctuate across the menstrual cycle in the females,
placing the lack of the control of menstrual phase as a limitation of this study. However,
since the female subjects were randomly scanned for both controls and METH users, we
believe that the variance in PCr levels was similar between groups, and hence the menstrual
phase variation did not significantly affect our findings.

Multiple comparisons were performed in statistical analysis for our metabolites of interest,
PCr and β-NTP. As we used an a priori hypothesis in our research design, corrections for
multiple comparisons were not attempted. Therefore, readers should be aware of possible
type I errors arising from our analysis.

The METH subject enrollment criteria involved the inclusion of subjects who identified
METH as their drug of choice. Therefore, the characteristics of our cohort may not represent
general METH users and our findings may not be generalized to other METH-dependent
populations. On the other hand, all METH users abused other drugs to some degree and
decreased PCr levels in METH users may be, in part, due to polysubstance abuse. Self report
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of drug use history in METH subjects might have resulted in some degree of uncertainty
including underreport of drug use behaviors.

Because the location of our 2D-CSI grid was immediately superior to the AC-PC line, we
could not include subgenual cingulate or cerebellum as regions-of-interest to evaluate
whether these brain regions have abnormalities in high energy phosphorus metabolism.
Since the subgenual cingulate is reported to be associated with depression (Drevets et al.,
2008; Mayberg et al., 2005), a study design including this brain region will be important in
future studies.

5. CONCLUSION
Overall, the present study provides evidence of altered high-energy phosphate metabolism in
METH users. Our findings suggest that (1) METH use is associated with dose-dependent
decreases in high-energy PCr levels, which may imply a decreased energetic buffer due to
mitochondrial dysfunction; and (2) female METH users may be more vulnerable than male
METH users in terms of high-energy phosphate neurochemistry. Further study is warranted
to explore the relationship between the altered phosphorus metabolism and cognitive as well
as psychiatric symptoms. Also, a longitudinal study design would shed light on within-
subject changes in high energy phosphate metabolism following long-term abstinence and/or
treatment. Efforts to characterize the relationship between the changes in high energy
phosphates and psychiatric symptomatology have the potential to generate novel treatment
strategies for METH toxicity.
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Figure 1.
Illustration of two dimensional MRSI grid placement: (A) Sagittal and (B) Axial views.
Dotted red line in the figure shows frontal lobe region of interest. (C) A representative 31P
spectrum is displayed in frequency domain with 10 Hz exponential filtering. Abbreviations:
PCr, phosphocreatine; PME, phosphomonoester; PDE, phosphodiester; α-, β-, γ-NTP
(nucleoside triphosphate).
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Figure 2.
Comparison of frontal lobe phosphorus metabolites levels in methamphetamine (METH,
n=51) dependent subjects compared to healthy controls (HC, n=23). Phosphocreatine levels
were significantly reduced in METH users compared to HC (p<0.001). There were no
significant differences in β-NTP levels between the HC and METH groups. Error bars
represent 95% confidence intervals. * Indicates statistically significant difference.
Abbreviations: TPP, total pool of exchangeable phosphate.
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Figure 3.
Comparison of gender difference in PCr levels. (A) In METH-dependent subjects, female
METH users (n=23) had significantly lower PCr levels compared to male METH users
(n=28). (B) Healthy subjects did not show significant gender difference. Error bars represent
95% confidence intervals. * Indicates statistically significant difference. Abbreviations:
TPP, total pool of exchangeable phosphate.
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Figure 4.
Significant relationship (p=0.003) between PCr/TPP levels and total amount of lifetime
METH use (gram) in METH-dependent subjects (regression analysis using robust estimator
of variance (White, 1980). Gray line and area denote predicted 95% confidence interval.
Abbreviations: TPP, total pool of exchangeable phosphate.
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