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Abstract
Glutamate transporters facilitate the buffering, clearance and cycling of glutmate and play an
important role in maintaining synaptic and extrasynaptic glutamate levels. Alterations in glutamate
transporter expression may lead to abnormal glutamate neurotransmission contributing to the
pathophysiology of schizophrenia. In addition, alterations in the architecture of the superior
temporal gyrus and hippocampus have been implicated in this illness, suggesting that synapses in
these regions may be remodeled from a lifetime of severe mental illness and antipsychotic
treatment. Thus, we hypothesize that glutamate neurotransmission may be abnormal in the
superior temporal gyrus and hippocampus in schizophrenia. To test this hypothesis, we examined
protein expression of excitatory amino acid transporter 1-3 and vesicular glutamate transporter 1
and 2 in subjects with schizophrenia (n = 23) and a comparison group (n = 27). We found
decreased expression of EAAT1 and EAAT2 protein in the superior temporal gyrus, and
decreased EAAT2 protein in the hippocampus in schizophrenia. We didn’t find any changes in
expression of the neuronal transporter EAAT3 or the presynaptic vesicular glutamate transporters
VGLUT1-2. In addition, we did not detect an effect of antipsychotic medication on expression of
EAAT1 and EAAT2 proteins in the temporal association cortex or hippocampus in rats treated
with haloperidol for 9 months. Our findings suggest that buffering and reuptake, but not
presynaptic release, of glutamate is altered in glutamate synapses in the temporal lobe in
schizophrenia.
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1. Introduction
Glutamate is synthesized in the cytoplasm and packaged into synaptic vesicles in the
presynaptic terminal by vesicular glutamate transporters (VGLUTs) (Bellocchio et al., 2000;
Liguz-Lecznar and Skangiel-Kramska, 2007; Takamori et al., 2000). Following its
exocytotic release, glutamate activates ionotropic or metabotropic glutamate receptors on
both neurons and astrocytes (Hollmann and Heinemann, 1994; Shigeri et al., 2004).
Excitatory amino acid transporters (EAATs) help terminate glutamatergic neurotransmission
by removing glutamate from the synaptic cleft (Danbolt, 2001; Masson et al., 1999).
Alterations in expression of excitatory amino acid transporters could lead to changes in
synaptic or perisynaptic glutamate levels attributable to diminished buffering and reuptake
of glutamate (Tzingounis and Wadiche, 2007).

EAAT1 and EAAT2, primarily expressed in the plasma membranes of astrocytes and
oligodendrocytes, are responsible for the majority of glutamate reuptake, whereas EAAT3 is
primarily localized to post synaptic neurons, and in most regions has a minor contribution to
glutamate reuptake. (Chaudhry et al., 1995; Rothstein et al., 1994; Maragakis and Rothstein,
2004; Sheldon and Robinson, 2007; Furuta et al., 1997a; Furuta et al., 1997b; Rothstein et
al., 1994). Studies of glutamate transporter-deficient mice have clarified the role of each
transporter in synaptic glutamate transmission. Knockout mice for EAAT1 (called GLAST
in the rodent) exhibit abnormalities of behavioral measures considered endophenotypes for
the positive (locomotor hyperactivity), negative (social withdrawal), and attentional/
cognitive (impaired working memory) symptoms of schizophrenia (Karlsson et al., 2008;
Karlsson et al., 2009). In EAAT2 (called GLT-1 in the rodent) knockout mice, synaptic
glutamate levels are elevated, leading to increased susceptibility to acute cortical injury and
death (Tanaka et al., 1997). In contrast, EAAT3 (called EAAC1 in the rodent) knockout
mice have no abnormalities that would suggest increased glutamate levels (Peghini et al.,
1997). Consistent with the transgenic mice studies, a rat study using antisense
oligonucleotides to knockdown the expression of EAAT1 or EAAT2 confirmed increased
extracellular glutamate levels and neurodegeneration (Rothstein et al., 1996). In addition to
these preclinical studies, partial deletion of the EAAT1 gene has been found in a subject
with schizophrenia (Walsh et al., 2008), while expression of a high-risk for schizophrenia
allele of the GRM3 metabotropic glutamate receptor is associated with decreased EAAT2
mRNA expression in human prefrontal cortex (Egan et al., 2004; Walsh et al., 2008). Taken
together, these findings suggest that abnormal expression of EAAT1 and EAAT2 may
contribute to the pathophysiology of schizophrenia.

Converging evidence implicates temporal lobe areas in the pathophysiology of
schizophrenia, including data from neuroimaging, postmortem, and animal model studies
(Benes et al., 1991; Bogerts et al., 1990; Boyer et al., 2007; Bruder et al., 1999; Eastwood
and Harrison, 2000; Fatemi et al., 2001; Harrison et al., 2003; Heckers, 2001; Heckers and
Konradi, 2002; Le Corre et al., 2000; Lipska, 2004; Nelson et al., 1998; Ohnuma et al.,
2000; Rajarethinam et al., 2004; Rajarethinam et al., 2000; Schroeder et al., 1999; Sokolov
et al., 2000; Tseng et al., 2009; Uezato et al., 2009; Young et al., 1998). Volume reduction is
one of the most consistent structural abnormalities found in the temporal lobe in
schizophrenia (Nelson et al., 1998; Rajarethinam et al., 2004; Rajarethinam et al., 2000), and
volume change in these regions correlate with the presence of severe thought disorder.
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Changes in cellular density as well as expression of synaptic proteins have also been
reported in the temporal lobe in this illness. These findings suggest that glutamate synapses
may be remodeled due to a lifetime of severe mental illness and antipsychotic treatment.
Thus, we tested the hypothesis that glutamate transmission may be abnormal by examining
expression of glutamate transporter proteins in the STG and hippocampus in schizophrenia.

2. Materials and Methods
2.1 Subjects and Tissue Preparation

Postmortem brain samples were provided by the Mount Sinai Medical Center and Bronx
Veterans Administration Medical Center Brain Bank (Table 1 and Supplemental Table 1)
and consisted of twenty-three subjects with schizophrenia and twenty-seven
nonpsychiatrically ill comparison subjects. Subjects were excluded for a history of
alcoholism, death by suicide, or coma for more than 6 hours before death. Next of kin
consent was obtained for each subject.

Brain samples obtained upon autopsy were sliced mid-sagittally and sectioned in 6-8 mm
coronal slabs, immediately snap-frozen in liquid nitrogen-cooled isopentane, and stored at
−80°C. The superior temporal gyrus was defined by sulcogyral position and dissected from
frozen slabs. Anterior hippocampus was dissected from the 0.8mm thick coronal block at the
level of the mammillary body. The dissected tissue was pulverized into a fine powder at
−190°C, aliquoted into individual Eppendorf tubes, and stored at −80°C.

2.2 Animals
Twenty-two adult male Sprague-Dawley rats were ordered from Harlan (Indianapolis,
Indiana, USA) at approximately 60 days of age and housed 2-3 to a cage with food and
water ad libitum. Animals received subcutaneous injections of haloperidol dissolved in
sesame oil (28.5 mg/kg) or vehicle (sesame oil) every 3 weeks for 9 months (n = 11 per
group). 24 hours following the last injection, the animals were sacrificed, and brains were
immediately removed, dissected, and snap-frozen in isopentane cooled to −25°C. For
dissection, a brain blocker (David Kopf Instruments, Tujunga, California, USA) was used to
block the brain into coronal planes containing the rostrocaudal extension of the region of
interest. Temporal association cortex (TAC) and hippocampus were dissected using
landmarks from The Rat Brain in Stereotaxic Coordinates. Specifically, brains were blocked
from interaural 6.88mm to 4.48mm for HC and from interaural 2.28mm to 1.36mm for
TAC. Immediately after dissection, tissue was homogenized (10% w/v) in 50 mM Tris-HCl
with a Polytron homogenizer (Fisher Scientific International Inc., Pittsburg, Pennsylvania,
USA) for 30 seconds and stored at −80°C in 0.5 ml aliquots.

2.3 Antibodies
Commercially available antisera for EAAT1 (1:1000, Santa Cruz Biotechnology, Santa
Cruz, California, USA), EAAT2 (1:1000, Millipore, Billerica, Massachusetts, USA),
EAAT3 (1:1000, Alpha Diagnostic International, San Antonio, Texas, USA), VGLUT1
(1:2000, Alpha Diagnostic International, San Antonia, Texas, USA) and VGLUT2 (1:1000,
Synaptic Systems, Göttingen, Germany) were used for Western blot analyses. β-tubulin
(1:10,000; Upstate, Lake Placid, New York, USA) was used as a loading control.

2.4 Western Blot Analysis
Postmortem brain samples (50mg) were homogenized in 1 ml of 5mM Tris-HCl (pH 7.4),
containing one Complete, mini, ethylene diaminetetraacetic acid-free protease inhibitor
cocktail tablet (Roche Applied Science, Indianapolis, Indiana, USA) per 10 ml, for 30
seconds with a PowerGen 125 homogenizer (Fisher Scientific International, Inc., Hampton,
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New Hampshire, USA). Total protein concentration was determined with a bicinchoninic
acid protein assay kit (Pierce Biotechnology, Inc., Rockford, Illinouis, USA), and
absorbance was measured on a SpectraCount absorbance microplate reader (Packard/Perkin
Elmer, Wellesley, Massachusetts, USA) at 562 nm. Homogenates were stored in 0.5 ml
aliquots at −80°C until assayed.

For electrophoresis, samples were prepared by combining homogenate with sample buffer
and sterile water, and then denatured at 95°C for 4 min. For VGLUT1-2, samples were
loaded in duplicate on 7.5% or 12.5% precast Criterion polyacrylamide Tris-HCl gels (Bio-
Rad, Hercules, California, USA). For EAAT1-3, Nupage BisTris gels were used (Invitrogen,
Carlsbad, California, USA). Gels were run at 120V for 1.75 hours. Following transblot onto
nitrocellulose (VGLUT1-2) or PVDF (EAAT1-3) membranes with a semidry transblotter
(Biorad, Hercules, California, USA), blots were rinsed several times in distilled water and
blocked in 3% dried milk phosphate buffered saline (PBS) (VGLUT1), 1% BSA in PBS
(VGLUT2), or LiCor/Oddyssey blocking buffer (LiCor, Lincoln, Nebraska, USA)
(EAAT1-3) while rocking at room temperature for 30 minutes. Blots were then exposed to
the primary antibody in their respective blocking solutions while rocking overnight at 4°C.
After two 5 minute washes in PBS, the blots for VGLUT1-2 were incubated with a
horseradish peroxidase coupled goat anti-rabbit secondary antibody or goat anti-mouse
secondary antibody (VGLUT1: 1:5000; VGLUT2: 1:5000; Upstate, Lake Placid, New York,
USA) respectively in 3% dried milk PBS on a rocker for 2 hours at room temperature. For
EAAT1-3, the blots were probed with IR-Dye labeled secondary antibodies (1:10000,
LiCor, Lincoln, Nebraska, USA) in 0.1% Tween, 0.01% sodium dodecyl sulfate (SDS),
LiCor/Oddyssey blocking buffer for 1 hour in the dark at room temperature, then blots were
imaged with the LiCor Odyssey laser based imaging system followed by washing three
times for 5 minutes each in 0.01% tween phosphate buffered saline, and briefly washing in
water three times. VGLUT1-2 blots were saturated in enhanced chemiluminescence reagent
(Pierce, Rockford, Illinois, USA), and exposed to film (ISC BioExpress, Kaysville, Utah,
USA). All membranes were also probed with β-tubulin antibody.

We have previously tested VGLUT1-2, EAAT1-3, and β-tubulin Western blot assays using
varying protein concentrations of human brain homogenate and determined that our assays
are in the linear range of the concentrations correlated for each protein be assayed (Bauer et
al., 2008; Oni-Orisan et al., 2008).

2.5 Data Analysis
For VGLUT1-2, developed films were digitally captured with a charge-coupled device
based imaging system using Scion Imaging software 4.0.3 (Scion Corporation, Frederick,
Maryland, USA). Gray scale values were obtained for bands at the expected molecular
weight, and membrane background was subtracted. Gray scale values for duplicate samples
were averaged and converted into optical density (OD). The mean ratio of VGLUT1: β-
tubulin or VGLUT2: β-tubulin OD was used for data analysis. For EAAT1-3, digital images
were obtained using a LiCor Odyssey scanner (LiCor, Lincoln, Nebraska, USA). Odyssey
analytic software (3.0) was used to quantify raw integrated intensity for bands of interest.
The ratio of EAAT: β-tubulin expression was used for data analysis.

Data were analyzed using Statistica (StatSoft, Tulsa, Oklahoma, USA). Multiple regression
analysis was performed to probe for possible correlations between protein expression and
age, postmortem interval, and/or tissue pH. Analysis of covariance (ANCOVA) was used to
analyze the data when significant correlations were found, otherwise analysis of variance
(ANOVA) was used. ANOVA was also performed to assess the effects of sex and
antipsychotic status on the dependent measures. For antipsychotic status, subjects with
schizophrenia were considered off antipsychotics if antipsychotics were not administrated
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within 6 weeks of death. We also examined expression of the loading control β-tubulin
(unnormalized) using ANOVA. For all tests, α = 0.05.

3. Results
3.1 Postmortem Studies

We examined expression of EAAT1-3 proteins in the superior temporal gyrus and
hippocampus (Figure 1). EAAT1 [F (1, 26) = 40.2, P < 0.01] and EAAT2 [F (1, 25) = 32.4,
P < 0.01], but not EAAT3, were significantly decreased in the superior temporal gyrus in
subjects with schizophrenia (Figure 1A). We also found that EAAT2 [F (1, 20) = 7.40, P <
0.02], but not EAAT1 or EAAT3, was significantly decreased in the hippocampus in
subjects with schizophrenia (Figure 1B).

In order to determine whether changes in transporter expression extend to the presynaptic
component of glutamate synapses, we examined expression of VGLUT1-2 proteins in the
superior temporal gyrus and hippocampus (Figure 2). We didn’t detect any changes in
expression of VGLUT1 and VGLUT2 proteins in the superior temporal gyrus (Figure 2A) or
hippocampus (Figure 2B) in subjects with schizophrenia.

Expression of β-tubulin protein in schizophrenia subjects was not changed compared to
comparison subjects. No significant difference was found in subjects with schizophrenia on
antipsychotic medications at the time of death, compared to subjects off medications for at
least 6 weeks (data not shown).

3.2 Antipsychotic Rat Studies
The potential effects of antipsychotic medication on the protein expression of EAAT1 and
EAAT2 were explored in rats treated with haloperidol for 9 months. There were no changes
in expression of EAAT1 and EAAT2 proteins in rats treated with haloperidol (28.5 mg/kg)
compared to rats administrated vehicle in the temporal association cortex (Figure 3A) or
hippocampus (Figure 3B). No significant differences in β-tubulin expression were detected
in our animal studies.

4. Discussion
In this study, we examined the expression of glutamate transporter proteins in temporal lobe
areas in elderly patients with schizophrenia. Decreased expression of EAAT2 protein was
found in the STG and hippocampus, while expression of EAAT1 protein was decreased in
the STG in schizophrenia. Decreased expression of EAAT1 and/or EAAT2 protein may
have profound effects of glutamate neurotransmission. These transporters are expressed at
high levels on astrocytic membranes near excitatory synapses, where they either bind and
release glutamate or bind and transport glutamate into the cell. Since the transport efficiency
of bound glutamate is about 0.5, the transporters act as a buffer to limit glutamate spillover
to extrasynaptic regions (Tzingounis and Wadiche, 2007). The transporters rapidly remove
glutamate from the perisynaptic space, maintaining low basal levels of glutamate in the
synaptic cleft and limiting the pool of glutamate available to spill out of the synapse. A
decrease in this glutamate buffering and reuptake capacity may lead to spillover of
glutamate, increasing glutamate levels in extrasynaptic microenvironments where the level
of glutamate is tightly regulated (Bridges et al., 2012).

Increased extrasynaptic glutamate may impact neurotransmission in a number of ways
(Danbolt, 2001; Tzingounis and Wadiche, 2007). Increased extrasynaptic glutmate levels
could activate extrasynaptic glutamate receptors on neurons and astrocytes, modulating the
responses of these cells. For example, activation of presynaptic metabotropic receptors (that
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are localized to areas outside of the synaptic cleft) decreases glutamate release from the
presynaptic terminal (Moghaddam and Adams, 1998). A decrease in astrocytic glutamate
reuptake may also impact the activation of postsynaptic receptors within the synaptic cleft;
prolonged exposure to higher glutamate levels, as well as increased baseline glutamate
levels within the synapse, may impact the physiology of ionotropic glutamate receptor
activiation, disrupting molecular correlates of learning and memory, including long-term
potentiation or depression (Tzingounis and Wadiche, 2007). Finally, extrasynaptic glutamate
may also spillover into adjacent synapses and activate receptors in those synapses, leading to
a loss of input specificity (Bridges et al., 2012; Tzingounis and Wadiche, 2007).

Changes in EAAT1 expression and glycosylation have previously been reported in
schizophrenia. We found decreased expression of EAAT1 protein in the DLPFC, as well as
a change in EAAT1 glycosylation consistent with decreased localization of EAAT1 to the
plasma membrane in the same region (Bauer et al., 2008; Bauer et al., 2010). In contrast to
these protein studies, increased levels of EAAT1 mRNA were found in the anterior
cingulate cortex (ACC) and thalamus (Bauer et al., 2008; Rao et al., 2012; Smith et al.,
2001). Taken together, these data suggest a profound abnormality of EAAT1 protein
expression, with a compensatory increase in EAAT1 mRNA expression in schizophrenia.

Since EAAT1 is mainly expressed in astrocytes, and not neurons, throughout the central
nervous system, our data suggest an abnormality of astrocytes in schizophrenia (Bar-Peled et
al., 1997; Lehre et al., 1995; Schmitt et al., 1997). Consistent with this hypothesis, we found
decreased expression of glial fibrillary acidic protein (GFAP), an astrocyte marker, in the
frontal cortex in this illness (Johnston-Wilson et al., 2000; Steffek et al., 2008). These data
raise the question of whether changes in EAAT1 protein expression are due to a decrease in
EAAT1 protein levels in astrocytes, or an overall decrease in the number of astrocytes where
the remaining astrocytes are expressing normal levels of EAAT1 protein. Several studies
have found decreased astroglial cell numbers in the PFC (Cotter et al., 2002; Rajkowska et
al., 2002), ACC (Cotter et al., 2001a; Cotter et al., 2001b; Stark et al., 2004) and
hippocampus (Falkai and Bogerts, 1986) in schizophrenia, supporting the hypothesis that
decreases in EAAT1-2 protein expression may be secondary to diminished numbers of
astrocytes.

Similar to EAAT1, EAAT2 protein expression is widely distributed throughout the brain in
astroglial cell bodies and processes (Chaudhry et al., 1995; Rothstein et al., 1994). While
there is some overlap of expression of EAAT1 and EAAT2 in the same astrocytes, these
molecules are generally expressed in different populations of astroglia (Rothstein et al.,
1996; Tanaka et al., 1997). Consistent with our findings, deceased EAAT2 mRNA
expression was found in the hippocampus in schizophrenia (Ohnuma et al., 2000). In
contrast to the hippocampus, divergent findings have been reported for the neocortex. In the
frontal cortex, one study found decreased EAAT2 mRNA using in situ hybridization (ISH)
(Ohnuma et al., 1998), while another found increased EAAT2 mRNA with QPCR (Matute
et al., 2005) and three others found no changes using QPCR or ISH (Bauer et al., 2008;
Lauriat et al., 2006; Rao et al., 2012). These conflicting data may be attributable to
differences in methodology, tissue source and subject demographics, as well as differential
treatment with antipsychotic medications.

In subjects from the same brain collection as the present study, we have previously
measured EAAT2 protein expression in the DLPFC and ACC and detected no changes
(Bauer et al., 2008). However, while we did not find changes in EAAT2 protein levels in
these two regions, we did find an increase in G-protein pathway suppressor-1 (GPS1) in the
frontal cortex (Bauer et al., 2008). GPS1 decreases EAAT2 mediated glutamate reuptake
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through a direct protein-protein interaction by regulating surface trafficking through a
leucine zipper-like motif (Watanabe et al., 2003).

EAAT-mediated glial reuptake of glutamate may also be regulated by posttranslational
modifications including N-linked glycosylation (Conradt et al., 1995; Raunser et al., 2005).
N-linked glycosylation of EAATs is associated with trafficking from the ER to plasma
membrane, increased stability at the plasma membrane, and increased glutamate reuptake
(Trotti et al., 2001). We found an alteration in EAAT2 glycosylation that may reflect
retention of EAAT2 in the endoplasmic reticulum, which might indicate decreased
trafficking of EAAT2 to the plasma membrane (Bauer et al., 2010).

Our previous findings of increased GPS1 protein expression and altered EAAT2
glycosylation suggest that while total EAAT2 levels are normal in the frontal cortex, there
may in fact still be a decrease in EAAT2 mediated glutamate reuptake via mechanisms other
than a change in regional EAAT2 protein expression. Taken together with our findings of
decreased EAAT2 protein levels in the hippocampus and STG, these results suggest there
are pervasive abnormalities of EAAT2 protein expression and trafficking in schizophrenia,
via region-specific mechanisms, leading to impaired glutamate reuptake in temporal and
frontal brain regions.

We did not detect changes in EAAT3 protein expression in the STG or hippocampus in
schizophrenia. We previously reported increased expression of EAAT3 protein and mRNA
in the ACC, while other studies have found changes in EAAT3 mRNA expression in the
frontal cortex (increased), DLPFC (no change) and striatum (decreased) (Bauer et al., 2008;
Horiuchi et al., 2012; Lauriat et al., 2006; McCullumsmith and Meador-Woodruff, 2002;
Nudmamud-Thanoi et al., 2007; Rao et al., 2012). Our lack of findings for EAAT3 protein
levels suggest that neuronal glutamate reuptake may be preserved in these regions in
schizophrenia. However, EAAT3 protein is localized to regulatable cytosolic pools that may
be rapidly mobilized to the plasma membrane in response to elevated synaptic glutamate
levels (Kugler and Schmitt, 1999). Such a mechanism would suggest that EAAT3 activity
may be regulated by modulating EAAT3 localization, rather than increasing or decreasing
levels of EAAT3 protein in the cell. Thus, the possibility remains that there may be an
alteration in EAAT3-mediated glutamate reuptake without a change in total EAAT3 protein
levels.

In contrast to EAAT1-2, we did not find changes in the expression of VGLUT1-2 protein
levels in the STG or hippocampus. Alterations in synaptic activity can be induced via
regulation of the amount of glutamate released from presynaptic terminals, and VGLUT-
mediated packaging of glutamate is a central control point for normal synaptic activity
(Bellocchio et al., 2000; Shigeri et al., 2004; Takamori et al., 2000). Thus, measurement of
VGLUT protein levels may indicate the relative strength of presynaptic innervation for a
given brain region (Daniels et al., 2006; Daniels et al., 2004; Pothos et al., 2000; Wilson et
al., 2005). We previously examined VGLUT mRNA expression in the hippocampal
subfields in tissues from a different brain collection, and found no changes in VGLUT1 or
VGLUT2 transcript expression. A different study, using tissues from a different source,
found reduced VGLUT1 mRNA in a younger cohort with schizophrenia (Eastwood and
Harrison, 2005; Uezato et al., 2009). In the present study we did not find an association
between age and our dependent measures, while the study using the younger subjects
reported an association between VGLUT1 expression and age, which may account for these
divergent findings.

Since antipsychotic medications are known to influence glutamate transporter expression,
we used two complimentary approaches to evaluate this potential confounding factor (De
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Souza et al., 1999; Melone et al., 2001; Schneider et al., 1998). Our secondary analyses
showed no differences in expression of EAAT1 and EAAT2 proteins between medicated
patients and patients who had been free of antipsychotic medications for at least 6 weeks
prior to death. We also investigated the effects of haloperidol on the expression of EAAT1
and EAAT2 protein levels in the rat brain. We chose haloperidol because the vast majority
of our subjects who were on medications were receiving a typical antipsychotic. Consistent
with our human data, following 9 months of treatment with haloperidol we did not detect
changes in EAAT1 or EAAT2 protein expression in the rat brain. Taken together, these data
suggest our findings are not due to treatment with antipsychotic medication.

The temporal lobe plays a central role in many symptoms associated with schizophrenia,
including altered cognitive function, oversensitization to sensory stimuli, and auditory
hallucinations (Boyer et al., 2007; Brady et al., 2010; Bruder et al., 1999; Fujimoto et al.,
2012). Structural and functional abnormalities of STG and hippocampus have been reported
in this illness, while quantitative investigations have demonstrated reductions in neuronal
size, cortical glial cell number, as well as changes in neuronal density (Boyer et al., 2007;
Bruder et al., 1999; Heckers, 2001; Rajarethinam et al., 2004; Rajarethinam et al., 2000;
Steen et al., 2006); (Benes et al., 1991; Cotter et al., 2002; Heckers and Konradi, 2002;
Uranova et al., 2004). Consistent with loss of volume and cellular pathology, a number of
postmortem studies found altered expression of synaptic proteins in the temporal lobe,
including decreased expression of complexin, synaptophysin, SNAP-25, VGLUT1 and
several ionotropic glutamate receptor subunits (Eastwood and Harrison, 2000, 2005;
Harrison et al., 2003; Sokolov et al., 2000; Young et al., 1998). Taken together with our
findings, these data support the hypothesis that there are profound abnormalities of
glutamate neurotransmission in excitatory circuits in the temporal lobe in schizophrenia.

In summary, we found that expression of astroglial glutamate transporters was abnormal in
temporal lobe areas in schizophrenia. These data suggest a deficit of glutamate reuptake
capacity that may lead to alterations in excitatory neurotransmission. We did not find any
changes in expression of the neuronal glutamate transporter EAAT3 or the neuronal
vesicular glutamate transporters VGLUT1 and VGLUT2, suggesting that aspects of
neuronal function are preserved in the STG and hippocampus in this illness. Our findings
indicate a critical role for glial glutamate reuptake in severe mental illness and suggest that
elements of the glutamate reuptake pathway may be high yield targets for development of
novel treatments for this illness.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Western blot analysis of EAAT1-3 normalized to β-tubulin in the (A) superior temporal
gyrus (STG) and (B) hippocampus. Data are shown as mean ± standard deviation. *P < 0.05.
A) EAAT1 and EAAT2 were significantly decreased in subjects with schizophrenia. No
change was observed for EAAT3. B) EAAT2 was significantly decreased in subjects with
schizophrenia. No changes were observed for EAAT1 or EAAT3. Abbreviation: excitatory
amino acid transporter (EAAT).
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Figure 2.
Western blot analysis of VGLUT1-2 normalized to β-tubulin in the (A) superior temporal
gyrus (STG) and (B) hippocampus. Data are shown as mean ± standard deviation. VGLUT1
and VGLUT2 were not changed in the (A) superior temporal gyrus or (B) hippocampus in
subjects with schizophrenia. Abbreviation: vesicular glutamate transporter (VGLUT).

Shan et al. Page 15

Schizophr Res. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Western blot analysis of EAAT1-2 normalized to β-tubulin in the (A) temporal association
cortex (TAC) and (B) hippocampus in rats treated with haloperidol (28.5 mg/kg) or vehicle.
Data are shown as mean ± standard deviation. There were no differences in EAAT1 or
EAAT2 protein expression. Abbreviation: excitatory amino acid transporter (EAAT).
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Table 1

Subject Characteristics

STG/HPC

Comparison Schizophrenia

N 27 23

Sex 14m/13f 16m /7f

AOD (years ) 79 13 72 12

Tissue pH 6.5 0.2 6.5 0.3

PMI (hours) 7.6 6.8 14.6 8.9

Rx (on/o ff/un known) 0/27/0 16/6/1

Abbreviations: superior temporal gyrus (STG); hippocampus (HPC); female (f); male (m); age of death (AOD); post mortem interval (PMI);
medications (Rx: on or off antipsychotic medication for at least 6 weeks at time of death ). Values are presented as standard deviation.
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