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Skin wounds comprise a serious medical issue for which few pharmacological interventions are available.
Moreover, the inflammatory, angiogenic, and proliferative facets of a typical response to a wound each have
broader relevance in other pathological conditions. Here we describe a genomics-driven approach to identify
secreted proteins that modulate wound healing in a mouse ear punch model. We show that adiponectin, when
injected into the wound edge, accelerates wound healing. Notably, adiponectin injection causes upregulation of
keratin gene transcripts within hours of treatment, and subsequently promotes collagen organization, formation
of pilosebaceous units, and proliferation of cells in the basal epithelial cell layer and pilosebaceous units of
healing tissue. The globular domain of adiponectin is sufficient to mediate accelerated dorsal skin wound
closure, and the effects are lost in mice that are homozygous null for the adiponectin receptor 1 gene. These
findings extend recent observations of a protective role of adiponectin in other tissue injury settings, suggest
modulation of AdipoR1 for the clinical management of wounds, and demonstrate a new approach to the
identification of regulators of a wound healing response.
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INTRODUCTION
The repair of most tissue injury in mammals is associated
with a fibrotic response, resulting in scar tissue formation
that often compromises the function of the affected organ.
However, regeneration of adult mammalian liver and
wounded mammalian fetal tissue are some of the few
examples in which healing occurs without scar formation.
Identification of regulators of the response to tissue injury
would have major implications for the treatment of dermal
lesions and may translate into novel strategies for the
management of fibrotic conditions such as cirrhosis of the
liver, fibrotic lung disease, and myocardial infarction
(Gurtner et al., 2008). Thus far, only a few promising thera-
peutic candidates have been shown to promote wound
healing in murine models, and these belong primarily to
members of growth factor families such as fibroblast growth
factor, transforming growth factor, and platelet-derived
growth factor (Ortega et al., 1998; Keswani et al., 2004;
Ferguson et al., 2009). In some cases, these findings have

translated to clinical practice: topical platelet-derived
growth factor administration for the treatment of diabetic
ulcers and intravenous KGF injection to enhance mucosal
epithelialization in the treatment of patients undergoing
stem cell transplant for hematological malignancies (Smiell
et al., 1999; Beaven and Shea, 2007).

Healing after an ear punch wound in the mouse ear is an
experimentally tractable system that recapitulates much of the
biology of tissue injury, including hemostasis, inflammation, and
tissue remodeling. Wide variation in the quality and speed of
the response to this injury has been noted across inbred mouse
strains (Metcalfe et al., 2006), suggesting that experimental
manipulation of the model might uncover new pathways with
the potential for clinical modulation of tissue injury.

Here, we use the same model to identify several genes in
which messenger RNA (mRNA) expression was highly regu-
lated during the ear and dorsal punch wound response in
MRL/MpJ (fast ear healing) or SJL/J (slow ear healing) mice.
We used an automated mammalian protein production system
(described in Gonzalez et al., 2010) to generate a subset of
these proteins predicted to be secreted or single-pass
transmembrane. Finally, we tested the effect of these
proteins on the wound healing process by direct injection
into the skin surrounding the wound and identified adipo-
nectin as a novel regulator of cutaneous wound healing in
mice. Molecular and histological effects of adiponectin on
promoting epidermal reconstitution indicate this protein to be
of potential use in human diseases of compromised epithelial
barrier function.
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RESULTS
Selection of proteins to test using in vivo wound healing models

To identify genes with strongly regulated expression
during cutaneous wound healing, we used expression
arrays to analyze skin samples 9, 20, and 36 days after ear
and dorsal skin wounding in two inbred mouse strains
(MRL/MpJ and SJL/J). These data confirmed the upregulation
of gene-expression modules known to be regulated by
wounding, such as an inflammation signature at day 9 in ear
(P¼ 7.4 E�4) and dorsal tissue (P¼0.03) and a keratinization
signature at day 20 in dorsal tissue (P¼9.5 E� 21)
(Supplementary Table S1 online, Supplementary Figure S1
online). A total of 250 mRNAs were at least 10-fold regulated
during the wound healing process in at least one of the four
data sets: dorsal or ear wounds in MRL/MpJ or SJL/J mice.
These 250 mRNAs included 22 predicted single-pass mem-
brane or secreted proteins, of which we were able to express
11 proteins for in vivo wound healing studies. Ten of
these secreted proteins represent genes with increased gene
expression after wound healing, whereas only one gene,
adiponectin, had a sustained reduction in gene-expression
levels after wounding in both tissue types and in both mouse
strains (Figure 1).

Identification of adiponectin as a regulator of murine wound
healing

We injected 1mg of recombinant purified protein into the
wound edge area of 2-mm-diameter ear wounds of C57BL/6J
mice on days 0, 1, 2, and 3 post wounding (Supplementary
Figure S2 online). Subsequently, the wound area was mea-
sured over a period of 5–6 weeks (see Materials and Methods
section for description of the in vivo ear wound model). In all,
10 of the 11 proteins tested showed no significant or
reproducible effect on the rate of hole closure after an ear
punch wound. However, adiponectin injection caused a
significant healing phenotype when compared with mouse
serum albumin (MSA) control injections in repeated experi-
ments (Figure 2a). The hole diameter in mice from the
adiponectin-treated group decreased less in the first 3 weeks
after wounding than in the MSA control group. Between 3 and
6 weeks after wounding, the holes in the adiponectin-treated
animals became larger, whereas those in the control groups
remained of approximately constant size during this period.
The ability of 1mg adiponectin to affect ear hole closure was
also confirmed in the SJL/J strain of mice (Supplementary
Figure S3 online), but a lower dose of 400 ng adiponectin had
no effect (Supplementary Figure S4 online).

Wound healing in dorsal skin is distinguished from the ear
punch model by a more prominent vasculature component
and the presence of a migratory surface for attachment of the
healing epithelial tongue. Biopsy punches were administered
on either side of the mid-dorsum region excising the dermal
and epidermal skin layers. A measure of 4mg of adiponectin
protein was injected at the wound site by inserting the needle
intradermally adjacent to the wound punch (see Materials and
Methods section for description of the in vivo dorsal wound
model). In adiponectin-treated mice, we noticed significantly
faster healing of dorsal wounds compared with MSA-treated

controls (P¼0.034 and P¼ 0.006 at days 2 and 4 post
wounding, respectively) (Figure 2b).

Adiponectin causes enhanced expression of keratin genes in
undamaged skin, and enhanced epithelialization at the wound
margin

To detect changes in gene expression directly attributable to
adiponectin injection, we tested the effects of adiponectin
injection on gene expression in vivo in unwounded mouse
skin, using whole-genome Affymetrix expression arrays.
These data indicated a striking and transient upregulation in
the expression of genes associated with keratinization at
6 hours following adiponectin injection when compared with
control MSA-injected mouse ears (Figure 3a) (P¼9.9 E�29,
Bonferroni-corrected significance test for ‘‘keratin’’
keyword—Swiss Prot & Protein Information Resource Key-
word Search, DAVID Bioinformatics Resource). We measured
the expression of a select group of genes involved in
keratinization (Krt6b, Sprr1b, Krt25, Krt27) in an independent
in vivo experiment. Krt6b and Sprr1b are canonical markers
of a wound healing response (Mansbridge and Knapp, 1987;
Wong and Coulombe, 2003; Vermeij and Backendorf, 2010),
whereas Krt25 and Krt27 are structural proteins of the
proliferative hair follicular unit (Langbein et al., 2006). By
using quantitative real-time reverse-transcriptase–PCR (qRT-
PCR), we confirmed the ability of adiponectin to directly
upregulate the expression of these genes as early as 2 hours
after injection of adiponectin (Figure 3b). However, adipo-
nectin had no effect on keratin gene expression or on cell
migration using in vitro assays in primary human keratinocyte
NHEK cells (Supplementary Figure S5 online).

Histological analysis of adiponectin-injected ear wounds
revealed that at day 20 post wounding adiponectin-injected
ears displayed a significant thickening of the epidermal layer
at the leading edge of the wound (P¼ 0.001) (Figure 3c). This
enhanced epithelialization was not evident in ear tissue
peripheral to the wound site (data not shown). Adiponectin
treatment was also associated with a significantly thicker
epidermal layer compared with the MSA-treated control mice
at 14 days after a dorsal wound (P¼0.037) (Figure 3d).

Assessment of histological effects of adiponectin on wound
healing parameters
Adiponectin was injected in dorsal wounds and mice were
killed at days 3, 5, 10, and 14 post wounding for analysis by
Masson’s trichome staining. No differences in tissue architec-
ture could be identified at day 3 post wounding. However,
analysis of day 5 post-wounding sections clearly showed
earlier resolution of surface scab tissue in adiponectin-injected
samples (Figure 4a). By day 10, collagen fibers were thicker
and deposition was more orderly in adiponectin-treated
wounds than in MSA controls, with a parallel arrangement
of collagen fibrils in the adiponectin-treated mice (P¼0.02,
blind scoring for collagen fiber thickness and organization)
(Figure 4b). We also noted a small, yet reproducible, transient
upregulation of col3a1 (collagen type III), but not of col1a1
(collagen type I), gene expression, 6 hours after adiponectin
injection in vivo (Supplementary Figure S6 online). A greater

NS Salathia et al.
Adiponectin and Wound Healing

www.jidonline.org 813

http://www.jidonline.org


number of sebaceous glands were present in adiponectin-
treated dorsal skin at day 10 post wounding (P¼0.013)
(Figure 4b). Notably, adiponectin injection in vivo did not
cause an increase in the number of sebaceous glands
compared with controls in unwounded dorsal skin
(Figure 4c). We did not observe any changes in staining of
CD31, a marker of angiogenesis, between adiponectin-
injected and MSA-injected mice at 3, 10, or 20 days after
an ear wound (data not shown), nor did we see any effect on
neutrophil influx. Histological and gene-expression analyses
of macrophages at dorsal wound sites indicated that adipo-
nectin did not affect macrophage infiltration (Supplementary
Figure S7 online). Collectively, these data highlight the
expedited wound healing caused by adiponectin at the
tissue level.

We then asked whether adiponectin caused greater prolif-
eration at the wound site. Adiponectin did not affect epider-
mal proliferation at days 3 and 5 post wounding in dorsal skin,
as assessed by Ki67 staining (a marker for cell proliferation)
(Figure 4d). However, in tissues in which wounds had re-
epithelialized, we noticed that adiponectin caused more
frequent expression of Ki67 in both dorsal and ear wounds
(Figure 4d and e). Notably, Ki67 expression was only observed
in the basal layer of healed epidermis. These data indicate that
the effects of adiponectin on epidermal proliferation are
distinct from psoriatic skin conditions, in which general
hyperplasia is observed in all epidermal layers (Staiano-
Coico et al., 1993).

We also noticed significantly enhanced Ki67 staining in the
pilosebaceous units of dorsal wounds in healed wounds
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Figure 1. Temporal gene-expression profiles of 11 maximally altered secreted proteins tested in the ear punch wound healing model. Gene expression from

MRL/MpJ and SJL/J ear (left y-axis) and dorsal (right y-axis) wound tissue is shown.
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(Figure 4f). The pilosebaceous units are a seat for a stem cell
population that is known to be important in both tissue
homeostasis and cutaneous wound healing (Blanpain, 2010).

Effects of adiponectin on wound healing are mediated via the
AdipoR1 receptor

The biological effects of adiponectin are known to be
regulated via two transmembrane receptors: AdipoR1 and
AdipoR2, as well as the cell membrane–anchored T-cadherin
receptor (Takeuchi et al., 2007). AdipoR1, the best-
characterized adiponectin receptor, is ubiquitously expressed
and is present at high levels in skeletal tissue and cardiac
myocytes (Guerre-Millo, 2008). We noted that adipoR1
homozygous knockout mice (Bjursell et al., 2007) had no
ear wound healing phenotype compared with wild-type
C57BL/6J mice (Supplementary Figure S8 online). These data
suggest that the AdipoR1 receptor itself does not regulate
wound healing. Importantly, injection of adiponectin protein
in wounded ears of adipoR1 knockout mice did not affect
wound healing rates in these mice compared with control
injections (Figure 5a).

To test whether the effects of adiponectin on keratin gene
expression were also dependent on signaling via the AdipoR1
receptor, we conducted a time-course study of adipoR1
knockout mice injected with adiponectin in ear tissue. Unlike
in the case of C57BL/6J mice, adiponectin injection had no

effect on keratin gene expression in adipoR1 knockout mice
(Figure 5b). These data prove that the functions of exogenous
adiponectin in regulating wound healing are acting via the
AdipoR1 receptor. These studies also indicate that the effects
of wound healing are mediated by exogenous adiponectin
injection rather than contaminants in the adiponectin protein
preparation.

The role of g-Ad in dorsal wound healing

Adiponectin is known to exist in various multimeric aggre-
gates formed by homodimerization of the basic trimeric form,
each with different biological properties (Simpson and
Whitehead, 2010). Western blot analysis revealed that our
recombinant adiponectin protein samples included trimeric,
multimeric low-molecular-weight, and high-molecular-
weight forms of the protein (Supplementary Figure S9 online).
Adiponectin is a 247-amino-acid protein comprising a col-
lagen N-terminal domain and a globular C-terminal
domain. Enzymatic cleavage of the collagenous tails by
leukocyte elastase enzymes releases the globular domain of
globular-adiponectin (g-AD) species into circulation (Fruebis
et al., 2001; Waki et al., 2005). In vivo administration of g-AD
has been shown to increase free fatty acid oxidation
and decrease body weight in mice, with greater potency
than full-length adiponectin (f-AD) (Fruebis et al., 2001). All
forms of adiponectin are thought to be biologically active in
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skeletal muscle, although only f-AD or high-molecular-
weight complexes are thought to be active in the liver
(Guerre-Millo, 2008).

Given the potent biological activities of g-AD on in vivo
metabolism, we tested the ability of g-AD to affect wound
healing in dorsal wounds. Similar to the effects of full-length
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Figure 4. In vivo effects of adiponectin on tissue reorganization and cellular proliferation. (a) Adiponectin injection in dorsal wounds causes faster restoration of

normal tissue architecture at the wound surface (notable at day 5 post wounding; Masson’s trichome stain). (b) Adiponectin injection causes enhanced collagen

maturity and increased sebaceous glands formation (denoted as ‘‘SG’’ in figure) in dorsal wounds (day 10 post wounding). Collagen scoring based on subjective

blind scoring assessing collagen fiber thickness and organization (0¼ poor score, 5¼ excellent score) (Masson’s trichome stain: the epidermis is stained purple,

collagen is stained blue, and sebaceous glands are stained pink). Bar¼ 100mm. (c) Adiponectin injection does not cause an increase in sebaceous glands at day 3

or day 10 post injection in unwounded dorsal skin. (d) Adiponectin injection causes increased Ki67 staining in the basal epidermal layer at the wound site in dorsal

wounds (day 14 post wounding). (e) Adiponectin injection causes increased Ki67 staining in the basal epidermal layer at wound edge in ear wounds (day 20 post

wounding). Bar¼ 100mm. (f) Adiponectin injection causes increased Ki67 staining in pilosebaceous units near the wound site in dorsal wounds (day 14 post

wounding). Bar¼ 500mm. MSA, mouse serum albumin; NS, nonsignificant.
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adiponectin, g-AD significantly increased the rate of dorsal
wound healing in C57BL/6J mice (P¼0.037, P¼ 0.026 on
days 6 and 8 post wounding, respectively) (Figure 6).

DISCUSSION
In this report, we describe a generalizable approach to the
identification of modulators of wound healing. First, we
identified mRNA expression changes after ear and dorsal skin
wounding in two strains of mice with different wound healing
phenotypes. We then generated recombinant proteins for a
subset of these genes predicted to encode secreted or single-
pass transmembrane proteins. Finally, we injected these candi-
date proteins directly around the healing wound for several
days after injury. Gross observation of the wound diameter
identified adiponectin as a regulator of wound healing. Further
characterization of this process showed that adiponectin injec-
tion causes an immediate increase in mRNA of genes encod-
ing keratin proteins, a thicker epithelial cell layer in the
epidermis, and a late proliferative response of the basal layer
of the epithelium and within the pilosebaceous structures. We
propose that adiponectin injection into an ear wound promotes
re-epithelialization of the cut edge, and this resolution likely
halts or slows further hole closure. By contrast, adiponectin
injection around a dorsal wound accelerates re-epithelialization
across the basement membrane and consequent healing of the
wound. Histological characterization of both the ear and dorsal
wound models demonstrates the consistent effects of adipo-
nectin in promoting re-epithelialization and increasing pro-
liferation in the basal epidermal layer. Common cellular
processes thus appear to underlie both healing phenotypes.
A similar phenomenon has been described for inbred mouse
strains, in that Balb/C mice have a slower ear hole closing
phenotype than MRL/MpJ mice, yet exhibit faster dorsal wound
closure in response to burn wounds (Davis et al., 2007).

Adiponectin injection caused wounds to heal with a more
organized collagen deposition and promoted the formation of
differentiated sebaceous gland structures, with skin architec-
ture akin to normal skin (Lakshmi et al., 1989; Oxlund et al.,
1996). At the molecular level, the effects of adiponectin
appear to be mediated through the globular domain and are
dependent on signaling through the AdipoR1 receptor. Recent
studies have reported biologically active g-AD molecules with
improved pharmacokinetic properties (Ge et al., 2010), and an
adiponectin-mimetic peptide has also been developed (Otvos
et al., 2011). These molecules offer great potential as wound
healing therapeutics or for prophylaxis before surgical incision.

Adiponectin, an adipokine secreted from adipocytes, is a
pleiotropic regulator of metabolism, exerting insulin-sensitiz-
ing effects and regulating glucose and lipid metabolism
(Yamauchi et al., 2003, 2007; Holland et al., 2010). Leptin,
also an adipokine with profound effects on metabolism, has
similarly been shown to promote wound healing and has a
proliferative effect on epithelial cells at the wound edge (Frank
et al., 2000). In addition to the effects of adiponectin on
dermal injury described in this report, a protective role for
adiponectin has been demonstrated in multiple models of
visceral tissue injury. For example, adiponectin knockout mice
are prone to larger infarct sizes after myocardial ischemia–

reperfusion injury, an effect rescued by the addition of
exogenous adiponectin (Shibata et al., 2005). The effect of
mechanical trauma in potentiating cardiac reperfusion injury
is also mitigated by adiponectin treatment (Liu et al., 2011),
and protective effects of adiponectin on cerebral and renal
reperfusion injuries have also been noted (Nishimura et al.,
2008) (Cheng et al., 2012). Finally, adiponectin knockout
mice are more prone to intratracheal LPS-induced lung injury,
an effect attributable to well-described anti-inflammatory
properties of adiponectin (Konter et al., 2012), and adiponec-
tin has also been reported to protect against liver fibrosis
(Buechler et al., 2011). However, the role of adiponectin in
wound healing described herein, and its role in other tissue
injury models, is poorly understood at a mechanistic level.
Our data suggest that adiponectin treatment causes rapid
cellular differentiation, manifested by an abrupt increase in
keratin gene expression immediately after adiponectin injec-
tion, and subsequent restoration of a thickened epithelial layer
and pilosebaceous units. Proliferation of cells in the pilose-
baceous units and basal epithelial layer, noted 2 weeks after
adiponectin treatment, might then reflect restoration of the
depleted stem cell niche. However, we did not notice any
effects of adiponectin on the induction of keratin gene
expression, cell proliferation, or migration in mesenchymal
skin stem cells or the sebaceous gland cell line SZ95 in vitro
(data not shown).

Indeed, further study of the role of adiponectin in wound
healing might benefit in the understanding of the protective
role of adiponectin in more complex settings of tissue injury,
such as reperfusion injury, lung inflammation, and fibrosis.
We queried publicly available microarray gene-expression
data sets (Kupershmidt et al., 2010) and identified 14
epidermal disease states showing a reduction in adiponectin
mRNA expression, whereas symptom-alleviating therapies
were consistently associated with an upregulation of adipon-
ectin (Supplementary Figure S10 online). Collectively, these
data indicate that agonizing adiponectin signaling may be
beneficial in a variety of epidermal disease settings. If war-
ranted, the development of a therapeutic biologic would be
enabled by our observation that monomeric g-Ad facilitates
expedited wound healing, thus circumventing the difficulties
inherent in developing an otherwise heterogeneous mix of
multimers present in preparations of full-length adiponectin.

MATERIALS AND METHODS
Gene-expression profiling

For Affymetrix gene-expression profiling, total RNA was prepared

from wound tissues using Trizol (Invitrogen, Carlsbad, CA), followed

by RNeasy (Qiagen, Valencia, CA) cleanup. RNA was quantified, and

the quality was subjectively examined on a BioRad Experion

(Hercules, CA). A measure of 500 ng of total RNA was used to

amplify cRNA using Affymetrix 30 IVT Express kits. Microarray

hybridization and scanning were performed using standard Affymetrix

protocols. CEL files were processed using GC-RMA (Wu and Irizarry,

2005). Hierarchical clustering of gene-expression profiling was done

using Spotfire DecisionSite 9.1.1 (Tibco, Somerville, MA). Clustering

of normalized gene-expression values was conducted using the

UPGMA (Unweighted Pair Group Method with Arithmetic Mean)
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method with a Euclidean distance similarity measure. For qRT-PCR,

500 ng of total RNA was used for reverse transcription and comple-

mentary DNA synthesis (Qiagen) and to analyze mRNA levels using

SYBR green amplification (Applied Biosystems, Carlsbad, CA) on the

Applied Biosystems 7900HT RT-PCR machine. qRT-PCR data were

analyzed using the comparative CT method.

Protein preparation for in vivo wound healing studies

Human Adiponectin (24–244), including human IgG signal sequence

(1–16) and a C-terminal FLAG6His (DYKDDDDKHHHHHH) tag,

was cloned in pRSmut vector and expressed in FreeStyle 293-F cells.

Conditional medium containing secreted adiponectin was harvested

96 hours after DNA/PEI transfection by centrifugation at 2,000 g for

10 min. A volume of 600 ml of cultured medium was filtered through

a 0.22-mm low protein–binding membrane filter and loaded onto

an Ni-pentadentate (Etendx, San Diego, CA) column at a rate of

1 ml min� 1. Adiponectin was eluted in 20 mM Tris (pH 7.4), 150 mM

NaCl, and 250 mM Imidazole. The fractions containing adiponectin

were pooled and buffer exchanged in 20 mM Tris (pH 7.4) and

150 mM NaCl. For additional details of adiponectin protein produc-

tion, see Supplementary Figure S9 online and Supplementary Figure

S11 online. Further information regarding PEPP protein purification

platform can be found in Gonzalez et al., 2010.

In vivo studies

The Institutional Animal Care and Use Committee of The Genomics

Institute of the Novartis Research Foundation approved all described

animal procedures. Five- to six-week-old male mice were used for

in vivo wound healing studies. Inbred mouse strains were purchased

from The Jackson Laboratory (Bar Harbor, ME): C57BL/6J (000664),

MRL/MpJ (000486), and SJL/J (000686). adipoR1 knockout mice

(Deltagen, San Mateo, CA, T345) (Bjursell et al., 2007) were

backcrossed mutant line to C57BL/6J mice for six generations to

obtain mutant mice with a pure genetic background. For ear punch

experiments, a 2-mm-diameter hole-punch, a through-and-through

wound, was made in the center of the ear pinnae. Adiponectin or

MSA control protein was diluted in sterile Tris-buffered saline to a

concentration of 50mgml� 1, and 20ml of protein was injected in each

ear of mice, for a total of 1mg of protein per injection. Ear wound size

was measured using a loupe with a reticle scale (Edmund Optics,

Barrington, NJ). Width and height of each wound were measured,

from which wound area was calculated. For dorsal punches,

2� 4 mm diameter biopsy punches were made on either side of the

shaved mid-dorsum region Injections. Adiponectin or MSA control

protein was diluted in sterile Tris-buffered saline to a concentration of

80mgml� 1, and 50ml of protein was injected in each dorsal wound,

for a total of 4mg of protein per injection. Injections were

administered to the ear and dorsal wounds for 4 consecutive days

starting from the day of wounding. For dorsal wound measurement, a

loupe with a reticle scale (Edmund Optics) was placed on the wound

and photographed with a digital camera. Digital image sizes were

calibrated using the reticle scale and wound area was measured with

the Image J software (NIH, version 1.44p).

Histology protocols

Wound tissue was fixed in 10% neutral buffer formalin for at least

48 hours. Wounds were then bisected and processed into paraffin and

embedded. Five-micron serial sections were mounted onto slides.

Slides were stained with Masson’s trichrome. For Ki67, staining was

done using a Ventana Discovery XT platform using CC1 Standard

Heat-Induced Epitope Retrieval (Ventana Medical Systems, Tucson,

AZ, 950-124), followed by Avidin/Biotin blocking (Ventana Medical

systems, endogenous biotin blocking kit, 760-050). Serum blocking

with 1:20 normal goat serum (Jackson Immuno labs, 005-000-121)

was followed by 1 hour of 1:200 diluted primary antibody incubation

at 37 1C (Ki67 (Thermo-RM9106-s)). Secondary antibody was added

and incubated for 32 minutes (Goat anti Rabbit, (Jackson immuno

labs 711-065-152) at 1:500 dilution). Secondary antibody was labeled

with the Ventana DABMap kit (Ventana Medical systems, 760-124).

Slides were scanned on an Olympus Nanozoomer (Olympus, Tokyo,

Japan). Histological measurements were recorded with the Olympus

NDPI viewing software. F4/80 chromagen staining was carried out on

skin tissue by IHC Tech (http://ihctech.net), using F4/80 primary

antibody (Serotec, Raleigh, NC, MCA497R), followed by AP Polymer

detection (Thermo Scientific, Waltham, MA, TL-125-AP), and stained

with Warp RedTM (BioCare Medical, Concord, CA, WR806).

In vitro scratch migration assay

A density of 0.25� 106 NHEK primary human keratinocyte cells

(ATCC, Manassas, VA) was plated in 24-well tissue culture plates

(Greiner, Monroe, NC) in complete medium and scratched after

12 hours, using a P1000 pipette tip (Molecular Bio-Products, San

Diego, CA) to make two perpendicular scratches (to orient scratches

and enable measuring of migration rates from the same location over

the time course). Cells were then washed and kept in serum-free

medium with relevant exogenous protein added. Scratches were

photographed over a time course using a light microscope with an

integrated digital camera (Nikon, Tokyo, Japan). Migration across the

scratch wound was measured using Image J (version 1.44p, National

Institutes of Health, Bethesda, MD).

Sebaceous gland cell line

The sebaceous gland cell line SZ95 (Zouboulis et al., 1999) was a

generous gift from Dr Anton Stuetz, Novartis Institute of Biomedical

Research, Austria.

Statistical testing

Statistical tests for treatment effects were conducted using R

for Statistical Computing v2.5.1 (http://cran.r-project.org) and

D
or

sa
l w

ou
nd

 a
re

a
(m

m
2 

± 
S

E
M

) 

P< 0.05

2
Days post wounding

5.0

Day 0_12.6

6

*

*

*

g-Adiponection
MSA control

3 8

4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
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Microsoft Excel 2007. Functional enrichment studies were con-

ducted using DAVID Bioinformatics Resources version 6.7

(http://david.abcc.ncifcrf.gov). We used probes that were regulated

43-fold in either mouse strain, in ear, or dorsal tissue during the

wound healing time course, as background probe sets for functional

enrichment of the hierarchical clusters shown in Supplementary

Table S1 online and Supplementary Figure S1 online.
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