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Abstract
As a result of the availability of a very large numbers of single nucleotide polymorphisms, there
has been increasing interest in genetic associations involving several closely linked loci. Methods
for detection of association between traits and multiple genetic polymorphisms are being rapidly
developed, which include the Hotelling’s T2 test and the LD contrast (LDC) tests. The Hotelling’s
T2 test can be considered as a test to compare the means of the genotypic score in cases and
controls; while the (LDC) tests can be considered as a test to compare the variance-covariance
matrices of the genotypic score in cases and controls. In this article, we propose a likelihood ratio
test which simultaneously compares the means and the variance-covariance matrices of the
genotypic score in cases and controls. We use simulation studies to evaluate the type I error rate of
the proposed test, and compare the power of the test with the Hotelling’s T2 test and the LDC
tests. The simulation results show that when marginal effects of the disease loci are strong, the
proposed test is more powerful than the LDC tests and similar with or slightly less powerful than
the Hotelling’s T2 test. If there are interaction effects and weak or no marginal effects, the
proposed method is more powerful than the Hotelling’s T2 test and slightly more powerful than
the LDC tests.
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INTRODUCTION
Association tests have been used for detecting the association between the genetic variants
and the disease phenotypes. Recently, as the result of the availability of a very large
numbers of single nucleotide polymorphisms (SNPs), there has been increasing interest in
genetic associations involving several closely linked loci. There is strong evidence that
several mutations within a single gene can interact to create a super allele that has a large
effect on the observed phenotype [Schaid et al., 2002; Hollox et al., 2001; Clark et al., 1998;
Tavtigian et al., 2001; Drysdale et al., 2000], which emphasizes the importance of the
analysis of multiple SNPs that jointly represent variation within common transcripts and
other functional regions, such as promoters. In recent years, many multi-marker association
tests have been proposed which include haplotype-based methods that compare the
distribution of haplotypes in cases with those of haplotypes in controls [Sham, 1998; Zhao et
al., 2000; Schaid et al., 2002; Zaykin et al., 2002; Sha et al., 2005, 2007]; the Hotelling’s T2

test [Xiong et al., 2002; Fan and Knapp, 2003; Chapman et al., 2003; Wallace et al., 2006];
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and the linkage disequilibrium (LD) contrast tests [Hayes et al., 2004; Nielsen et al., 2004;
Zaykin et al., 2006; Wang et al., 2007]. Chapman et al. [2003] showed that in most cases the
Hotelling’s T2 test is more powerful than haplotype-based methods. However, when
marginal effects are weak and interaction effects are strong, the Hotelling’s T2 test which
depends on the linear combination of the marginal effects will lose power dramatically. It
has been noted that the extent of LD can be different between cases and controls in a region
of genetic association, and the case-control LD comparison can aid the analysis in a region
of putative association [Hayes et al., 2004]. In the context of association mapping, Nielsen et
al. [2004] presented a direct LD comparison approach involving two biallelic loci and noted
that, in certain situations, a test that directly compares the LD extent between cases and
controls can be a powerful alternative to either haplotype-based or single-marker
approaches. More recently, Zaykin et al. [2006] and Wang et al. [2007] suggested new LD
contrast (LDC) tests to compare the matrices of pair-wise LD in cases and controls and
demonstrated that the new LDC tests may be more powerful than Hotelling’s T2 test in the
presence of gene-gene interaction.

The LDC tests can be considered as a test to compare the variance of the genotypic score in
cases and controls; while the Hotelling’s T2 test can be considered as a test to compare the
mean of the genotypic score in cases and controls. In this article, we propose a test to
simultaneously compare the mean and variance of the genotypic score between cases and
controls. We used simulation studies to compare the power of the proposed method with the
Hotelling’s T2 test and the LDC tests. The simulation results show that when marginal
effects of the disease loci are strong, the proposed test is more powerful than the LDC tests
and similar with or slightly less powerful than the Hotelling’s T2 test. If there are interaction
effects and weak or no marginal effects, the proposed method is more powerful than the
Hotelling’s T2 test and slightly more powerful than the LDC tests.

METHOD
Consider a sample of n cases and m controls. Suppose that there are k biallelic markers that
have been genotyped for each of the sampled individuals. The jth marker has alleles bj and
Bj. Define a numerical code of the genotype of the jth marker for the ith case:

Similarly, we define a numerical code yij of the genotype of the jth marker for the ith
control. Let
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The Hotelling’s T2 [Xiong et al., 2002] test statistic is given by

When k = 1, the Hotelling’s T2 test statistic is the square of the standard student t test
statistic which is given by

The student t test is a standard test to compare the means of two populations. Thus, we can
consider the Hotelling’s T2 test described above as a test to compare the means of genotypic
codes in cases and controls.

Let Δx and Δy denote two k × k matrices with elements , respectively. The test
statistics of the LDC tests proposed by Zaykin et al. [2006] and Wang et al. [2007] have the
form

In Zaykin et al. [2006], Δx and Δy are the correlation matrices of the genotype codes in
cases and controls, where

and

In Wang et al. [2007], Δx and Δy are the modified variance-covariance matrices of the
genotype codes in cases and controls. From the statistics, we can see that the LDC tests
proposed by Zaykin et al. [2006] and Wang et al. [2007] are in fact used to compare the
variance-covariance of the genotypic codes in cases and controls.

In this article we proposed a test statistic to compare the means and the variance-covariance
matrices of the genotypic scores in cases and controls simultaneously. Suppose X1, X2 ⋯ Xn
are independent and identically distributed with a mean of μcase = (μ1, …, μk) and a
variance-covariance matrix of Σcase, and Y1, Y2, …, Ym are independent and identically
distributed with a mean of μcontrol = (μ1, …, μk) and a variance-covariance matrix of
Σcontrol. We consider the null hypothesis
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In the following discussion, we use multivariate normal distribution to deduce the log-
likelihood ratio test statistic, and then we use this log-likelihood ratio as our test statistic.
Although the multivariate normal assumption maybe violated, the log-likelihood ratio may
still be a good test.

If Xi and Yi both follow a multivariate normal distribution, the log-likelihood function is

Under the null hypothesis H0 : μcase = μcontrol and Σcase = Σcontrol, the maximum likelihood
estimates of the mean and the variance-covariance matrix are μ̂ and Σ̂, where

and

Under the alternative hypothesis, the maximum likelihood estimates of μcase, μcontrol, Σcase
and Σcontrol are μ̂case, μ̂control,Σ̂case and Σ̂control, respectively, where

and
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So, the log-likelihood ratio test statistic is

(2)

We propose to use a permutation procedure to evaluate the P-value of the test instead of
using χ2 distribution. To evaluate the P-value of the test, let LRT0 denote the value of the
test statistic based on the original data set. For each permutation, we randomly shuffle the
case and control states among the sampled individuals and denote the value of the test
statistic based on the permuted data set by LRTper. We perform the permutation procedure
many times. Then, the P-value of the test is the proportion of the number of permutations
with LRTper ≥ LRT0.

If there is a very small determinant of Σ̂case, Σ̂control or Σ̂, the log |Σ̂case|, log |Σ̂control| or log |
Σ| will be very sensitive to a small change of eigenvalues. Hence, we propose to use the
principle component (PC) analysis to reduce the sensitivity of the determinants. The PC
analysis can also increase the power due to reducing the degrees of the freedom of the test
[Sha et al., 2005]. To carry out the PC analysis, let qj be the eigenvector corresponding to
the jth largest eigenvalue λj of the variance-covariance matrix Σ̂control in controls. Then, the

jth PC of the ith individual in controls is  and the total variance in controls explained
by the jth PC is λj/(λ1 + ⋯ + λk). Let zi1, …, zil denote the first l PCs of Yi, that can explain
the majority of the total variability, where l is a pre-specified number and will be discussed
below. We use a l-dimensional vector (zi1, …, zil) instead of a k-dimensional vector Yi,
where l < k, as the new numerical codes for the multi-marker genotype of individual i in

controls. Similarly, we calculate the jth PC of the ith individual in cases as  and the

jth PC of the ith individual in pooled data as ; we use a l-dimensional vector (wi1,
…, wil) as the new numerical codes for the multi-marker genotype of individual i in cases.
Let Zi = (zi1, zi2, …, zil)T and Wi = (wi1, …, wil)T. Using the new coding scheme, the log-
likelihood ratio test statistic will be

where
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and

One question that needs to be answered in the proposed testing procedure is how to choose
the value of l. We propose to choose l such that (λ1 + λ2 + ⋯ + λl)/(λ1 + λ2 + ⋯ + λk) is
greater than a pre-specified value δ to make sure that the majority of the total variation in
the data is explained. We call this δ the cutoff value of PC. In the simulation studies, we
choose δ equal to 85% and we will give a further discussion about the choice of δ in the
discussion section.

SIMULATIONS
We use simulation studies to evaluate the performance of the proposed test LRT_PC and to
compare the power of the LRT_PC with four other tests: the LDC test proposed by Zaykin
et al. [2006], the modified LD contrast (MLDC) test proposed by Wang et al. [2007], the
Hotelling’s T2 test developed by Xiong et al. [2002], and the single-marker test. For the k
biallelic markers, we calculate the 1 degree freedom χ2 test statistics t1, t2, …, tk and use
SMT = max{t1, t2, …, tk} as the test statistic of our single-marker test. For each simulation
scenario, we simulate 1,000 replicated data sets and use 1,000 permutations to evaluate the
P-values of all the tests.

DATA SETS FOR ASSESSING THE TYPE I ERROR
We generate a data set to evaluate the type I error rate of the proposed method using the
simulation setting similar to that of Wang et al. [2007]. Briefly, we simulate a set of markers
with four SNPs in a local region or a candidate gene. The haplotypes of the four correlated
SNPs are simulated on the basis of a multivariate normal distribution with a pair-wise
correlation coefficient ρ. Each allele of a haplotype is generated by dichotomizing the
marginal normal distribution, and the cutoff is determined by the minor allele frequency. For
each individual, we randomly assign disease status. We consider different minor allele
frequencies, different values of ρ, and different sample sizes.

DATA SETS FOR POWER COMPARISON
To assess the power of the proposed tests, we consider two sets of simulations which are
generated based on a two-locus disease model and a haplotype effect model.

Haplotype effect model—In this set of simulation we use the same method as given in
“Data sets for assessing the type I error” section to generate genotypes, except that the
number of marker is 10. For a dichotomous trait, we assume that the trait is due to an
underlying continuous liability y. The trait y follows a linear model y = g1 + g2 + e, where
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g1 and g2 are trait-locus effects of the two haplotypes, and e is a random environment effect.
For a haplotype, the trait-locus effect is set in the following way: for a haplotype across the
10 markers, let sj represent the code of the allele at the jth marker (sj = 1 for minor allele; sj

= 0 for major allele) and . The trait-locus effect of this haplotype is defined by g
= |S−5|/5. Disease status is defined by a threshold Z, such that all individuals with y > Z are
classified as cases. In our simulations, Z = 1.65. We consider a sampling of 100 cases and
100 controls.

Two-locus disease model—In this set of simulation, we assume that the true risk model
involves two potentially interacting causal SNPs, S1 and S2, residing on two separate
candidate genes, G1 and G2, respectively. For each gene, there are seven SNPs and the third
SNP is the causal SNP. After we generate genotypes, we delete the genotypes at the third
SNP (the causal SNP). In our data analysis, we assume that, for each gene, genotype data are
available on six marker SNPs. To simulate a realistic LD pattern among the markers within
each gene (two genes assume to be in linkage equilibrium), we use haplotype data extracted
from two segments on chromosome 21 in the CEU HapMap sample [Thorisson et al., 2005].
The haplotypes and their frequencies are given in Table I.

To generate disease status, we follow the models used by Chatterjee et al. [2006]: purely
epistatic model, additively model, and crossover model as given in Table II. Define marginal
relative risks (MRR) as

and

where D denotes the disease, s1 and s2 refer to the number of copies of allele 1 in the causal
loci of G1 and G2, respectively. The values of the parameters θ1, θ2, and θ12 are decided by
the values of the prevalence (assume to be 0.1 in our simulation), MRR1, and MRR2. For
each model, we vary the value of MRR1 in the set {1.2, 1.5, 1.75, 2}. For the epistatic mode,
MRR2 is determined by MRR1. For the additive model, we fix the MRR2 to be 2.0. For the
crossover model, we assume θ1 = 0.9 and MRR2 is determined by MRR1. For each model,
we consider a sample of 500 cases and 500 controls.

RESULTS
TYPE I ERROR RATES

The estimated type I error rates for different allele frequencies, different correlation
coefficients, different sample sizes, and different value of δ (the cutoff value of the PC) are
given in Table III. The standard deviation for the estimated type I error is

 for the nominal level of 0.05 and 1,000 replicated samples, so
the 95% confidence interval is (0.0362, 0.0638). From Table III we can see that the
estimated type I error rates of the proposed test are not statistically significantly different
from the nominal levels in all the cases.
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POWER COMPARISONS
First, we evaluate the effects of δ (the cutoff value of the PC) on the power. We use the
haplotype effect models given in the above section to generate data sets. The results for
different simulation scenarios are summarized in Figure 1. From Figure 1 we can see that
the trends of the power are very similar for different values of correlation coefficients and
allele frequencies. The power is increasing as the cutoff value δ increases and it reaches its
maximum value at some point of δ, then the power is decreasing as the cutoff value δ
increases. Although there is no universal optimal value of δ, there is a wide range of δ in
which the power is higher than that of δ = 100% that is equivalent to the case of not using
PC analysis. In the following discussion, we use the cutoff value δ = 85% when we compare
the power of the proposed method with the other three methods.

To compare the power of the proposed test with the other four tests, we consider two sets of
simulations. One is based on two-locus disease models and the other is based on a haplotype
effect model. Under the haplotype effect model, we consider three different scenarios of the
high-risk allele frequencies of 0.1, 0.2 and 0.3 and vary the value of correlation coefficient
from 0 to 0.8. The results of the power comparisons are summarized in Figure 2. The
proposed method LRT_PC is consistently more powerful than the single-marker test and the
two LDC tests, LDC and MLDC, in all the cases. Except for the cases of correlation
coefficient being 0, the LRT_PC is also more powerful than that of the T2 test. The powers
of the LRT_PC, LDC and MLDC have similar patterns—power is increasing as the value of
the correlation coefficient ρ increases. The single-marker test and the Hotelling’s T2 have
similar patterns—power is increasing first then decreasing as the value of ρ increases. The
pattern of the power of the single-marker test indicates that the marginal effects will be
increasing first then decreasing as the value of ρ increases. This may partly explain the
power pattern of the other four tests. For large values of ρ such as ρ = 0.8, the LRT_PC is
much more powerful than the T2 test and the single-marker test.

The results of the power comparisons under the two-locus disease models are summarized in
Figure 3. The MRR given in Table IV as well as the power of the single-marker test in
Figure 3 indicate that all of the three two-locus models have strong marginal effects.Figure 3
again shows that the LRT_PC is consistently more powerful than the single-marker test and
the two LDC tests, LDC and MLDC. Comparing the power of LRT_PC with that of the T2

test, we can see that the two tests have similar power under the epistatic and crossover
models and the T2 test is slightly more powerful than the LRT_PC under the additive model.
The additive model is favorable to the T2 test because the T2 test is derived under the
assumption of the additive effect between markers. Under the additive model which assumes
no interaction, the LDC and MLDC have almost no power.

Summarizing the results from the two sets of simulations, we can see that the two LDC tests
(LDC and MLDC) which are designed to test interaction effects will lose power when there
exist marginal effects; the T2 test will lose power when the marginal effects are weak. The
proposed LRT_PC test has reasonable power in all the cases. The LRT_PC is consistently
more powerful than the single-marker test and the LDC tests (LDC and MLDC). Except for
the additive model, the LRT_PC test is not less powerful than the T2 test.

DISCUSSION
In this article we proposed a new multi-marker association test for case-control studies. The
proposed test statistic compares the difference of the mean and the variance of the genotypic
scores in cases and controls simultaneously. At the same time, we propose to use PC
analysis to reduce the degrees of the freedom of the test to improve the power of the
association test. We compared the power of the proposed test with that of the existing
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association tests which include the single-marker test, the Hotelling’s T2 test and two
recently developed LDC tests. The simulation results show that the proposed test is
consistently more powerful than the single-marker test and the two LDC tests. When there
are interaction effects and weak or no marginal effects, our proposed method is more
powerful than the Hotelling’s T2 test, when there are strong marginal effects, our proposed
method has similar power with or slightly less powerful than the Hotelling’s T2 test (see the
three two-locus models).

All the three two-locus models in our simulation studies have strong marginal effects. We
also did a simulation study under a two-locus model with weak marginal effects: considering
two markers A and B with alleles a, A and b, B, the two-locus high-risk genotypes are
{AAbb, AaBb, aaBB}. This model has weak marginal effects and strong joint effects. Our
simulation results showed that under this model the proposed method is the most powerful
one while the single-marker test and the Hotelling’s T2 test are almost no power at all.

In the PC analysis used in this article, we first find PC directions (eigenvectors of the
variance-covariance matrix) using the control sample only. Then, we project the original
numerical codes of multi-marker genotypes in cases and controls to the PC directions, and
get the PC codes for the multi-marker genotypes. Based on the PC codes, we calculate the
test statistic LRT_PC. Using this PC analysis, we need to recalculate PC directions and PC
codes in each permutation when we use permutation procedure to evacuate the P-value of
the test. Thus, this PC analysis makes the permutation procedure computationally intensive.
An alternative way to do the PC analysis is that we find PC directions using pooled sample
(cases and controls together) only. In this way, we do not need to recalculate PC directions
and PC codes in each permutation and the permutation procedure will be much faster. We
denote the corresponding LRT_PC by using this PC analysis as LRT_PC-Pool. Our
simulation studies showed that the power of the LRT_PC-Pool test is only slightly less
powerful than the LRT_PC test (results are not shown). Thus, we suggest using this PC
analysis whenever computational time becomes a concern.

One remaining question in the proposed LRT_PC is choosing the cutoff value δ in the PC
analysis. Our simulation studies show that there is no universal optimal value for δ.
However, we feel that the values around 90% are good choices. Although our simulation
results show that the optimal value of δ may be less then 50%, our experience shows that we
are more likely to miss rare disease associated alleles when we use small value of δ. In
general, we need further investigation on choosing the optimal value of δ.

Our method cannot be applied directly to genome-wide association studies. However, we
can apply the proposed method to genome-wide association studies by using a sliding
window approach. We have done a simulation study to compare the power of the proposed
test with the two LDC tests, the Hotelling’s T2 test and the single-marker test by using a
sliding window approach. Our simulation study showed that the pattern of the power
comparison by using a sliding window approach is similar to that of the other simulation
results. However, the power of the five tests is affected by the window sizes or the number
of markers in each window. The optimal choice of the window size needs further
investigation.
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Fig. 1.
Power comparisons of the proposed test for different cutoff values of the PC analysis under
the haplotype effect model. δ is the cutoff value of PC. ρ is the correlation coefficient. MAF
is the minor allele frequency. The sample consists of 100 cases and 100 controls.

Wang et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2013 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Power comparisons of the five tests under the haplotype effect model. The sample consists
of 100 cases and 100 controls. LRT_PC: the test proposed in this article; LDC: the LD
contrast test proposed by Zaykin et al. [2006]; MLDC: the modified LD contrast test
proposed by Wang et al. [2007]; T2: the Hotelling’s T2 test developed by Xiong et al.
[2002]; SMT: the single-marker test; ρ: correlation coefficient.
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Fig. 3.
Power comparisons of the five tests under three two-locus models. The sample consists of
500 cases and 500 controls. LRT_PC: the test proposed in this article; LDC: the LD contrast
test proposed by Zaykin et al. [2006]; MLDC: the modified LD contrast test proposed by
Wang et al. [2007]; T2: the Hotelling’s T2 test developed by Xiong et al. [2002]; SMT: the
single-marker test; MRR1: marginal relative risk.
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TABLE I

Haplotypes and their frequencies used in simulating genotype data of the two candidate genes

Gene I (G1) Gene II (G2)

Haplotype Frequency Haplotype Frequency

0100111 0.4000 1100011 0.4833

1000011 0.2083 1111111 0.0566

1110101 0.1217 1000101 0.0166

1100100 0.0416 0101011 0.2033

1000110 0.0333 1000100 0.0500

1101000 0.0166 1000000 0.0750

1100111 0.0316 1000011 0.0166

0101111 0.0083 1100001 0.0283

1101111 0.0316 1100111 0.0250

1101101 0.0333 1101011 0.0250

1100110 0.0166 1101111 0.0100

1100000 0.0083 0111011 0.0050

1001011 0.0083 1110001 0.0050

1100101 0.0199

1110111 0.0099

1111111 0.0099
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TABLE II

Relative risk in three disease models

Model
s1 = 0,
s2 = 0

s1 ≥ 1,
s2 = 0

s1 = 0,
s2 ≥ 1

s1 ≥ 1,
s2 ≥ 1

Purely epistatic 1 1 1 θ(>1)

Additive 1 θ1 θ2 θ1+θ2−1

Crossover 1 θ1(<1) 1 θ12(> 1)

s1 and s2 refer to the number of copies of allele 1 in the causal loci of G1 and G2, respectively
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