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Abstract

Objectives—To determine the optimal threshold by quantitatively assessing the extent of
emphysema at the level of the entire lung and at the level of individual lobes using a large, diverse
dataset of CT examinations.

Methods—This study comprises 573 chest CT examinations acquired from different subjects
(222 none, 83 mild, 141 moderate, 63 severe, and 64 very severe obstruction). The extent of
emphysema was quantified using the percentage of the low attenuation area (LAA%) divided by
the total lung or lobe volume(s). The correlations between the extent of emphysema, and
pulmonary functions and the five-category classification were assessed using Pearson and
Spearman’s correlation coefficients, respectively. When quantifying emphysema using a density
mask, a wide range of thresholds from -850 to —1000 HU were used.

Results—The highest correlations of LAA% with the five-category classification and PFT
measures ranged from —925 to —965 HU for each individual lobe and the entire lung. However,
the differences between the highest r and those obtained at —950 HU are relatively small.

Conclusion—Although there are variations in the optimal cut-off thresholds for individual
lobes, the single threshold of —950 HU is still an acceptable threshold for density-based
emphysema quantification.
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Introduction

The density of areas of emphysema depicted on computed tomography (CT) typically ranges
from —900 to —1024 Hounsfield Units (HU) [1]. Hence, a straightforward way of
quantitatively assessing the extent of emphysema is to compute the low attenuation areas
(LAA) under a specific threshold. Originally, Mller et al [2] suggested a threshold of —910
HU for this density mask analysis. Later, Gevenois et al [3] explained that a threshold of
-950 HU correlated more closely with the macroscopic pathological features of emphysema.
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Since then, a threshold of —950 HU has been commonly used for density-based emphysema
quantification [4-7]. However, recently, Madani et al [8] suggested that a cut-off of —960
HU or —970 HU might yield more accurate assessment of the extent of emphysema.
Therefore, there is no consensus on the optimal threshold for density-based emphysema
quantification.

Often, a global index is computed to quantify the severity of emphysema by measuring the
ratio of the low attenuation area below a specific threshold as a fraction of the entire lung
volume [9]. As a global measure, this index ignores the fact that the density of emphysema
may vary regionally throughout the lung. Considering that pulmonary lobes are relatively
independent functional units with their own vascular and airway branches, there has been
increasing interest in investigating the lobar distribution of emphysema [10-14]. Given the
heterogeneity of emphysema, it remains an open question whether different thresholds are
needed to accurately quantify emphysema in individual lobes. Different thresholds have
been employed by investigators to quantify the extent of emphysema at the individual lobe
level. For example, when the threshold was set at —910 HU, Saitoh et al [10] found that the
distribution of emphysema was different in the upper and lower lobes; when the threshold
was set at —950 HU, Mohamed Hoesein et al [14] found that subjects with upper lobe
predominant emphysema tended to have a more rapid decline in measures of pulmonary
function than those with lower lobe predominant emphysema; when investigating the
relationship between pulmonary function and normal lobar volume, Matsuo et al [13] also
used —950 HU as the cut-off threshold. Given the heterogeneity of emphysema, it may be
desirable to have a standardised cut-off threshold for density mask analysis in clinical
practice.

In this study, we systematically investigated how LAA% varies with different thresholds on
quantitative CT analysis of pulmonary emphysema at levels of both the individual lobe and
the entire lung. A large and diverse dataset consisting of 573 chest CT examinations was
collected from a chronic obstructive pulmonary disease (COPD) study. Here, our objective
is to determine whether an optimal threshold can be used for more accurate and consistent
quantification of emphysema for each pulmonary lobe. At the same time, we also assess
how CT densitometric measurements among these lobes correlate with the COPD severity
and the commonly used pulmonary function test (PFT) measurements (e.g. forced expiratory
volume in 1 s [FEV1]).

Materials and Methods

Study population

The study population consisted of 573 consenting subjects participating in an NIH-
sponsored Specialized Centre for Clinically Oriented Research (SCCOR) in COPD at the
University of Pittsburgh. SCCOR subjects were primarily recruited from the Pittsburgh
Lung Screening Study cohort. It is a tobacco-exposed cohort and includes a spectrum of
obstructive lung disease severity. Inclusion criteria for enrollment required an age > 40 years
and at least a 10 pack year history of tobacco use. The subjects underwent pre- and post-
bronchodilator spirometry and plethysmography tests, measurements of lung diffusion
capacity, impulse oscillometry, demographic and medical history questionnaires and a chest
CT examination. All subjects were smokers with an average smoking history of 58.3 pack-
years. These individuals were classified using a five-category classification, namely (1) non-
obstruction (None), (2) mild (GOLD 1), (3) moderate (GOLD lIl), (4) severe (GOLD Il1I) and
(5) very severe (GOLD IV) airflow obstruction categories. Subjects that have FEV1/FVC <
70% were classified into GOLD stages I-1V according to the Global Initiative for
Obstructive Lung Disease (GOLD) [15]. The subjects that do not meet the GOLD
classification were classified as “None”. All procedures were performed under a University
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of Pittsburgh Institutional Review Board-approved protocol (#0612016) and written
informed consent was obtained for each subject. The involved SCCOR subject
demographics are summarised in Table 1.

Acquisition of thin-section CT examinations

The CT examinations were performed using 64-detector CT (LightSpeed VCT, GE
Healthcare, Waukesha, WI, USA) with subjects holding their breath at end-inspiration. The
CT data-sets were acquired using a helical technique without contrast medium at the
following parameters: 32x0.625 mm detector configuration, 0.969 pitch, 120 kVp tube
energy, 250 mA tube current, and 0.4-s gantry rotation (or 100 mAs). Images were
reconstructed to encompass the entire lung field in a 512x512 pixel matrix using the GE
“bone” kernel at 0.625-mm section thickness and 0.625-mm interval. The “bone” kernel was
used because of its ability to analyze both the parenchyma and airways [16].

Quantification of the extent of emphysema

Computerised schemes were used to process the CT examinations objectively and
efficiently. The extent of emphysema at the levels of both the entire lung and individual
lobes was quantified. First, a three-dimensional (3D) adaptive border marching algorithm
described in Pu et al [17] was used to identify the entire lung volume. Second, pulmonary
fissures were detected using a computational geometry approach [18]. Third, individual
lobes were identified by representing the pulmonary fissures as implicit surface functions
[19]. Detailed descriptions of these computerised schemes have been reported elsewhere
[17-19]. The final segmentation results were carefully inspected and verified by three
independent image analysts. If the computerised schemes failed to accurately identify
individual lobes, we manually delineated or refined the pulmonary fissure before applying
the automated lobe segmentation scheme. Several examples in Fig. 1 are used to
demonstrate the performance of the identified lobe segmentation scheme in the presence of
severe emphysema.

In this study, the percentage of low attenuation area (LAA%) divided by lung or lobe
volume(s) was used as an index of the extent of emphysema [20-23]. A wide range of
thresholds, ranging from -850 HU to —1000 HU in intervals of 5 HU, were tested. The
upper bound of -850 HU was selected because of the weak correlation between emphysema
severity and LAA% at the threshold of —856 HU [24]. The lower boundary of -1000 HU
was chosen because the radiodensity of air is typically defined as —1000 HU [25]. LAA%
was computed at the levels of the entire lung, individual lobes (RUL: right upper lobe,
RML.: right middle lobe, RLL: right lower lobe, LUL: left upper lobe, LLL: left lower lobe),
the upper lobe (RUL+RML+LUL), the lower lobe (RLL+LLL), the left lung and the right
lung.

Statistical data analysis

All statistical analyses were performed using Excel (Microsoft Corp., Redmond, WA, USA)
and SAS (SAS Institute, Cary, NC, USA). We computed the mean volumes and the LAA%
for each individual lobe and the entire lung. These results are expressed as mean * standard
deviation (SD). Pearson correlation coefficients were used to assess the correlation between
LAA% under different thresholds in individual lobes or the whole lung and PFT measures.
In particular, we investigated whether the correlation would be different when the non-
COPD subjects were included or excluded. When assessing the correlation between the five-
category classification and LAA% under different cut-off thresholds, Spearman analysis was
used. In addition, the correlation between lobe volume and emphysema severity based on
our five-category classification were assessed. A Pvalue less than 0.001 was considered
statistically significant. The post-bronchodilator PFT measurements used in the correlation
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analyses include: 1) RV/TLC ratio, 2) RV % predicted, 3) FEV14) FEV; % predicted, 5)
FEV1/FVC ratio, and 6) DLco % predicted.

After the application of the lobe segmentation scheme to the collected 573 CT examinations
(Table 1), the volumes of each individual lobe, the upper lobe, the lower lobe, the left lung,
the right lung and the entire lung along their means (zSD) were summarised in Table 2. In
Table 2, the LAA and LAA% obtained at the threshold of —950 HU were also listed. The
LAA% ranged from 12.3% to 18.4%. In LAA%, there was no obvious difference between
the left lung and the right lung, but there were differences between the upper lobe and the
lower lobe. The average LAA% for each individual lobe under different thresholds were
shown in Fig. 2, and the average LAA% for the upper lobe, the lower lobe, the right lung,
the left lung and the entire lung under different thresholds were shown in Fig. 3.

The Spearman’s correlations between LAA% under different thresholds for individual lobes
and the five-category classification were shown in Fig. 4, demonstrating a strong association
between LAA% and the five-category classification regardless of the threshold. It can be
seen that the thresholds corresponding to the highest correlation vary for each lobe. For
example, for RUL, the optimal threshold is —935 HU (r = 0.649, £< 0.001); for RML, the
optimal threshold is —945 HU (r = 0.521, £< 0.001). The computed results at different
thresholds of the above correlations at the level of the upper lobe, the lower lobe, the left
lung, the right lung and the entire lung were shown in Fig. 5, demonstrating a strong
association for all thresholds (r > 0.631, all #values < 0.001). It can be seen that the LAA%
of the upper lobe and the right lung have a slightly higher association with the five-category
classification than the LAA% of the lower lobe and the left lung at the same thresholds. The
differences between the highest correlation coefficients and those at —950 HU were
summarised in Table 3.

The computed Pearson correlation coefficients between the LAA% and the PFT
measurements are listed in Table 4. The LAA% showed strong correlations with airflow
obstruction measurements, such as FEV1% predicted (r = 0.578 ~ 0.726, £< 0.001), FEV1/
FVC ratio (r = 0.634 ~ 0.795, £< 0.001) and DLc0% predicted (r = 0.528 ~ 0.707, P<
0.001). For lung capacity-related measures, such as RT/TLC ratio and RV% predicted, the
LAA% only showed moderate associations. Conversely, the LAA% of RML showed
comparatively weak correlations with the PFT measures compared with the other lobes. It
can be seen that the highest correlation coefficients and their corresponding cut-off
thresholds were similar no matter whether the non-COPD subjects were excluded or not.

Similar to the first correlation analysis between the LAA% and the five-category
classification, the thresholds corresponding to the highest correlation coefficients ranged
from —925 HU to —965 HU, and the differences between the highest correlation coefficients
and those computed at the threshold of —950 HU were summarised in Table 5. In addition,
the significances (P values) of the differences between the highest correlation coefficients
and those computed at —950 HU were also provided in Table 3 and 5. Lastly, the
correlations between lobe volumes and emphysema severity indexed in terms of five-
category classification were shown in Fig. 6.

Discussion

The density mask method has been commonly used to assess the severity of COPD. Here,
we systematically investigated the impact of threshold selection on the accuracy of assessing
the extent of emphysema. This study has a number of unique merits. First, a relatively large,
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diverse dataset was used. To the best of our knowledge, few investigations have used a
dataset as large as ours. A large dataset enables a robust investigation of the underlying
relationship between density mask and emphysema extent. Second, the correlations between
emphysema extent at different thresholds and pulmonary functions are studies not only at
the level of the entire lung but also at the level of individual lobes. This regional analysis
may verify whether a uniform threshold is sufficient to quantitatively assess the extent of
emphysema. As a result, the ultimately determined optimal threshold may facilitate a more
accurate assessment of emphysema extent. Third, our study verified that using a single cut-
off threshold for emphysema assessment could achieve a reasonable accuracy. Finally,
compared with previous investigations, this study considers a larger number of PFT
measures.

In this study, not only the LAA% of each individual lobe but also the LAA% of the entire
lung were computed. We found that the five-category classification was strongly correlated
with the percentage of low attenuation area (LAA%) under thresholds ranging from -850 to
—1000 HU. There were slight variations in the optimal thresholds corresponding to the
highest correlation coefficients for individual lobes. However, the highest correlation
coefficients and those obtained at 950 HU do not vary significantly, and the percentage
difference ranges from 0.2% to 0.3% (Table 3). This may suggest that the threshold of —950
HU is appropriate for emphysema quantification at the level of individual lobes. We arrive
at the same threshold of —950 HU when similar analysis is repeated between the LAA% and
pulmonary function (the percentage difference ranges from 0% to 2.0%). In fact, our results
verified the conclusion reported in Pescarolo et al [26], where the authors explained that
there was significant correlation (r = -0.7, £< 0.001) between the five-category
classification and the extent of emphysema. However, in Pescarolo et al's study [26], only
43 CT examinations were used.

When studying the correlation between emphysema extent and pulmonary function, Saitoh
et al [10] showed a strong correlation in upper lobes, and Matsuo et al [13] found that the
LAA% of RLL and LLL had stronger correlations with VC, FEV; and DLco. However, in
our study with a relatively large dataset, we failed to observe obvious difference in
correlation coefficients between the upper lobes and the lower lobes, although the
correlation coefficients for the upper lobes were also higher than those for the lower lobes.
The small sample sizes (i.e. 7=50 in Saitoh et al [10] and /7= 111 in Matsuo et al [13]) may
heavily skew the results towards predominantly emphysematous lobes. Nevertheless, we
observed that the average LAA% of the RUL and the LUL were slightly higher than those of
the RLL and the LLL. This is in agreement with the results obtained by Mohamed Hoesein
et al [14]. In particular, we observed that the five-category classification and the PFT
measurements showed weak correlations with the LAA% of the RML. This weak correlation
had been reported previously by other investigators [10, 13] and may be largely attributed to
the relatively small size of the RML. When studying the relationship between the five-
category classification and the lobe volumes, as shown in Fig. 6, we found that the volume
of the RML did not statistically correlate with the five-category classification (r = -0.001, P
= 0.976). This may indicate that the RML inflation is only minimally affected when the
severity of emphysema increases. A possible explanation is that the RML is less prone to
emphysema. This may be explained by the fact that the average LAA% of RML was smaller
than those of the other lobes within the range of =920 to —1000 HU (Fig. 3). In particular,
we observed that CT emphysema measurements correlated significantly with the diffusing
lung capacity of carbon monoxide (DLco) at levels of both individual lobes and the entire
lung. Our results are in consistence with those in [10, 27, 28], suggesting that DLco might
be a useful measurement for emphysema diagnosis.
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We are aware of the limitations of this study. First, despite the relatively large size of the
dataset, the CT examinations in this study are not equally distributed in each category. We
note that it is very difficult to have a dataset that can meet such a criterion in practice.
Fortunately, our conclusions may not be affected in this study because of the large number
of CT examinations in each category. Second, it has been shown that the CT acquisition
protocols, such as dose, image reconstruction kernels, and equipment, may have an impact
on CT-based quantification [8, 25, 29]. In our study, we did not consider the details in the
CT acquisition protocols. For example, the “bone™ kernel used in this study may alter the
displayed Hounsfield unit number. However, we had shown that the differences in
correlation coefficients were very small under the threshold range —925 HU to —965 HU. In
addition, Boedeker et al [30] demonstrated that the “bone" kernel might shift the obtained
density mask volume by 2.4% as compared to the “standard" kernel. The underlying
implication is that even under different image acquisition protocols we should draw similar
conclusions. Nevertheless, this study could be improved by using datasets acquired under
different protocols. Third, the CT examinations used in this study were acquired at the end
of full inspiration. It is likely that the lung density will vary when chest CT examinations are
acquired at the end of full expiration, thereby leading to a completely different optimal
threshold for the quantification of emphysema extent. In clinical practice, the CT for
emphysema assessment is typically acquired at the end of full inspiration. It may be
interesting, however, to investigate the optimal thresholds for emphysema assessment when
CT examinations are acquired at other respiratory stages (e.g. full expiration).

In summary, our study investigated the optimal threshold for computerised tomographic
assessment of the extent of emphysema using a large dataset consisting of 573 CT
examinations. The density mask method was not only applied to the entire lung but also to
each individual lobe. Our results show that the single threshold of —950 HU is optimal for
CT densitometry analysis of emphysema when the CT examinations are acquired at full
inspiration.
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Fig. 1.

Examples demonstrating the performance of the computerised schemes [16-18] in lobe
identification in the presence of severe emphysema (GOLD = 4 for all three examples). Each
row shows a different CT examination. Column 1 shows the axial view, column 2 the
sagittal view and column 3 the coronal view
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Fig. 2.
Average LAAY% for each individual lobe under different thresholds
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Fig. 3.
Average LAA% for the upper lobe, the lower lobe, the left lung, the right lung and the entire
lung under different thresholds
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Fig. 4.

Correlations between the LAA% and the five-category classification under different
thresholds for each individual lobe. Highest correlation coefficient r and the corresponding
threshold: 1) RUL, r = 0.649 (=935 HU); 2) RML, r = 0.521 (=945 HU); 3) RLL, r = 0.617
(=940 HU); 4) LUL, r = 0.623 (-940 HU); and 5) LLL, r = 0.596 (-945 HU). < 0.001 for
all r values.
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Fig. 5.

Correlations between the LAA% and the five-category classification under different
thresholds for the upper lobe, the lower lobe, the left lung, the right lung and the entire lung.
The highest correlation coefficient r and the corresponding threshold: 1) the upper lobe, r =
0.649 (=940 HU); 2) the lower lobe, r = 0.631 (=940 HU); 3) the left lung, r = 0.657 (-945
HU); 4) the right lung, r = 0.677 (-940 HU) and the entire lung, r = 0.676 (-940 HU). P<
0.001 for all r values.
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Fig. 6.

Correlations between the five-category classification and lobe volumes. 1) RUL: r = 0.386,
P<0.001; 2) RML: -0.001, P=0.976; 3) RLL: 0.135, A< 0.001; 4) LUL: 0.269, P< 0.001;
and 5) LLL: r=0.200, A< 0.001.
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Table 1

Subject Demographics (7= 573)

Parameter Mean (+ std) or count (%)
Sex male 310 (54.1%)
Age 63.9 (+5.4)
Pack years 58.3 (+ 33.0)
Height(cm) 169.4 (£ 9.4)
Weight(kg) 80.0 (+15.95)
RV % predicted 127.6 (£ 53.2)
RVITLC % 44.2 (£12.7)
FEV(litre) 2.15 (+ 0.94)
FEV, % predicted 74.8 (£ 28.5)
FEV,/FVC % 60.8 (+ 17.7)
DLco % predicted 66.4 (+22.9)
Five-category classification
NONE 222 (38.7%)
GOLD | 83 (14.5%)
GOLD Il 141 (24.6%)
GOLD Il 63 (11.0%)
GOLD IV 64 (11.2%)

Page 24

Abbreviations. TLC - total lung capacity, RV - residual volume, FVVC - functional vital capacity, FEV1 — forced expiratory volume in one second,

DLcO - diffusing lung capacity of carbon monoxide.
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Volume, low attenuation area (LAA), and the percentage of LAA (LAA%) for each individual lobe, the upper

lobe, the lower lobe, the left lung, the right lung and the entire lung

Volume LAAQ LAA%D
RUL 1.17+#0.36 0.24+0.22 18.4+12.2
RML 0.51+0.18 0.08+0.06 15.5+8.7
RLL 1.28+0.36 0.18+0.16 13.0+9.5
LUL 1.37+£0.37 0.25+0.19 17.3+10.3
LLL 1.20+0.37 0.16%0.15 12.3%9.3
Upper Lobe  3.04+0.79 0.57+0.44 17.6+10.6
Lower Lobe 2.48+0.69 0.34+0.30 12.849.2
Left Lung 257+0.65 0.41+0.32 15.2+9.4
Right Lung  2.95+0.68 0.49+0.38 15.9+10.1
Entire Lung  5.52+1.30 0.91+0.68 15.6+9.7

All numerical values denote mean + standard deviation in litres

aLAA was calculated at =950 HU

bLAA% (index of emphysema) was calculated at =950 HU

Eur Radiol. Author manuscript; available in PMC 2014 April 01.



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Wang et al.

Comparison of the highest correlation coefficients and those at —950 HU.

Table 3

Correlation r between LAA% and five-category classification

Highest -950 HU  Differences (pct., significance)
RUL 0.649, -935 HU 0.647 0.002 (0.3%, P=0.476)
RML 0.521, -945 HU 0.520 0.001 (0.2%, P=0.492)
RLL 0.617, -940 HU 0.615 0.002 (0.3%, P=0.480)
LUL 0.623, -940 HU 0.622 0.001 (0.2%, P=0.488)
LLL 0.596, -940 HU 0.594 0.002 (0.3%, P=0.480)
Upper Lobes  0.649, -940 HU 0.648 0.001 (0.2%, P=0.488)
Lower Lobes  0.631, -940 HU 0.629 0.002 (0.3%, P=0.476)
Left Lung 0.657, -945 HU 0.656 0.001 (0.2%, P=0.488)
RightLung  0.677,-940HU  0.675 0.002 (0.3%, P= 0.476)
Whole Lung  0.676, -940 HU 0.674 0.002 (0.3%, P=0.476)

All P-value < 0.001
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