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Summary

Maternal immune responses during pregnancy are critical in programming
the future health of a newborn. The maternal immune system is required
to accommodate fetal immune tolerance as well as to provide a protective
defence against infections for the immunocompromised mother and her
baby during gestation and lactation. Natural immunity and antibody
production by maternal B cells play a significant role in providing such
immunoprotection. However, aberrations in the B cell compartment as a
consequence of maternal autoimmunity can pose serious risks to both the
mother and her baby. Despite their potential implication in shaping preg-
nancy outcomes, the role of B cells in human pregnancy has been poorly
studied. This review focuses on the role of B cells and the implications of B
cell depletion therapy in pregnancy. It highlights the evidence of an associa-
tion between aberrant B cell compartment and obstetric conditions. It also
alludes to the potential mechanisms that amplify these B cell aberrances
and thereby contribute to exacerbation of some maternal autoimmune
conditions and poor neonatal outcomes. Clinical and experimental evidence
suggests strongly that maternal autoantibodies contribute directly to the
pathologies of obstetric and neonatal conditions that have significant impli-
cations for the lifelong health of a newborn. The evidence for clinical benefit
and safety of B cell depletion therapies in pregnancy is reviewed, and an
argument is mounted for further clinical evaluation of B cell-targeted thera-
pies in high-risk pregnancy, with an emphasis on improving neonatal out-
comes and prevention of neonatal conditions such as congenital heart block
and fetal/neonatal alloimmune thrombocytopenia.
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The implications of maternal B cells in
pregnancy outcomes

An individual’s lifetime health is critically programmed
during the gestational period. During pregnancy, the mater-
nal immune system is required not only to accommodate
the allogeneic fetus but also to maintain protection against
harmful infections in the otherwise immunocompromised
mother and immuno-incompetent fetus [1]. The roles of
innate and cell-mediated immunity, including natural killer,
T helper type 1 or 2 (Th1/Th2) cells and regulatory T cells
(Treg) are well documented in pregnancy [2,3]. In contrast,
there has been little focus on the role of B cells and
antibody-mediated immunity. This is surprising, given the

fundamental role of B cells as effectors and regulators of
both innate and adaptive immune responses [4,5]. Maternal
B cells also provide a vital source of antibody-mediated
protective immunity for the mother and her baby during
both pregnancy and lactation [6]. However, some maternal
autoimmune conditions can be exacerbated during preg-
nancy and the production of deleterious autoantibodies
by autoreactive maternal B cells can contribute directly to
pregnancy complications that pose serious risks of morbid-
ity and mortality to the mother and the fetus. In-utero
exposure to these autoantibodies due to placental crossing
can also result in permanent impairment to fetal develop-
ment. These high-risk pregnancy conditions often result in
poor outcomes such as preterm birth and low birth weight
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that also increase significantly the predisposition of a
newborn to developmental disability and chronic diseases
later in life [7–10].

B cell depletion therapy has proven clinical benefits in the
management of autoimmune conditions outside pregnancy.
In this review, we will examine the available evidence of the
possible contribution of B cells in shaping pregnancy out-
comes and discuss the implication of B cell depletion in the
clinical management of high-risk pregnancy.

B cell subsets and their functions

B cells, while known primarily for antibody production,
also act as antigen-presenting cells and regulators of the
innate and adaptive immune systems [4,5]. The murine B
cell compartment consists of two general populations,
namely B1 and B2 cells. These cells have major differences
in their phenotypes, anatomical location and functional
characteristics [11,12]. In humans, the existence of a human
B1 subset is still a contentious subject, and the distinctions
between B1 and B2 cells remain undefined [12]. Neverthe-
less, both murine B1 and human B1-like cells have been
characterized as B cell subsets that spontaneously secret
large amounts of polyreactive natural antibody IgM against
double-stranded DNA (dsDNA), phosphorylcholine (PC)
and low-density lipoproteins [11–14]. In the mouse, B1 cells
have been characterized by a pattern of surface markers of
B220low, immunoglobulin (Ig)Mhi, IgDlow, CD5+/–, CD43+ and
CD23– expression, whereas B2 cells generally express B220hi,
IgMhi/lo, IgDhi, CD43– and CD23+ markers but not CD5
markers, although B2 cells have been shown to express low
levels of CD5 following activation in vitro and in some
studies CD5 expression has been shown on anergic B2 cells
[12,13]. In humans, CD5 expression has been described on
both B1-like and activated B2 cells [12]. Recently, it has
been suggested that the human B1-like cell population may
include the circulating CD5+/–CD20+CD27+CD43+IgM+IgD+

B cell subset [14]. However, the definitive markers for the
general human B1 cell population remain to be determined.
B2 cells are known as conventional B cells, which make up
the majority of the splenic B cell population. Unlike B1
cells, which appear in fetal liver tissue as early as mid-
gestation and are regenerated by self-renewal processes in
the peritoneal cavity, B2 cells emerge from bone marrow
stem cells during the late neonatal period and their clones
are selected by a stringent process of clonal deletion and
expansion in the germinal centre of the spleen [12,13].
Murine and human B2 cells act mainly as effectors of adap-
tive immune responses by differentiating into the mature
marginal zone and follicular B cell populations that then
develop into antibody-secreting memory B cells and plasma
cells. In contrast, B1 cells are considered as specialized B
cells of innate immunity [12]. The murine B1 and human
B1-like cells secrete mainly natural IgM antibodies that are
often polyreactive and low affinity in nature. These natural

antibodies, while autoreactive, mediate protective immune
surveillance and maintenance of tissue homeostasis by
facilitating clearance of dead cell bodies [12,13]. Conversely,
antibodies produced by murine and human B2 cells are less
likely to be autoreactive but are high in specificity and affin-
ity due to their ability to undergo affinity maturation,
somatic hypermutations and clonal selection via B cell
receptor (BCR) activation [15]. Mature murine and human
B2 cells can also undergo class-switch DNA recombination
(CSR) to give rise to the production of IgA, IgE and IgG
antibody subclasses [11,15]. Murine B1 cells are also gener-
ally more sensitive to BCR activation-induced apoptosis
when subjected to affinity maturation [12]. Thus, they
are often prevented from differentiating into autoreactive
memory B cells or plasma cells capable of secreting high-
affinity autoantibodies. However, murine B1 cells can
migrate to spleen, where they differentiate into splenic
marginal zone (MZ) B cell precursors that can undergo
somatic hypermutation and isotype switching to give rise to
antibody-secreting memory B cells and plasma cells [16]. In
addition, B1 cells have the capacity to respond and migrate
to distal sites of inflammation, where they act as phagocytic
cells or as immune regulators through the secretion of
cytokines [17–19].

B cell alterations in pregnancy

Alterations in B cell compartment during
normal pregnancy

B cell subsets during pregnancy are poorly studied. B cell-
deficient mice are not embryonic lethal and have normal
litter sizes, suggesting that B cells are dispensable for normal
murine pregnancy [20]. The treatment of mice and non-
human primates with B cell-depleting agents also does
not affect normal pregnancy [21–23]. During murine
pregnancy, the formation of B cell precursors is suppressed
selectively in the bone marrow [24]. This suppression
occurs at the early stage of B lymphopoiesis and is driven
by the pregnancy hormone oestrogen [24]. Maternal B cells
that express autoantibodies specific for fetal antigens are
also depleted during murine pregnancy, suggesting a
mechanism of maternal–fetal immune tolerance [25–27].
However, oestrogen also has a positive effect on the survival
of mature murine B cells [28], suggesting a compensatory
effect of oestrogen at different stage of development to
maintain a balance within the B cell compartment.

Similar changes in B cell compartment have been
reported in a number of human pregnancy studies [29–36].
The absolute numbers and frequencies of circulating CD5+

B cells are decreased in normal human pregnancy (Table 1),
and can persist for up to 1 month postpartum [29,33,
37,38]. Normal pregnancy can induce loss of responsiveness
of B cells to mitogens and infectious agents in both
human and animal studies [39–41]. Thus, these studies
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suggest that the overall B cell compartment and its func-
tions are suppressed partially during normal human preg-
nancy. The full biological significance of such suppression is
unclear, but is believed to enable immune tolerance.

Aberrations in B cell compartment in
adverse pregnancy

Aberrant B cell numbers and functions are associated with
obstetric complications [42–59]. Earlier studies have shown
that complicated pregnancies exhibit an abnormal increase
in the frequencies or absolute numbers of circulating mater-
nal B cells (Table 1). For instance, CD5+ B cell counts are
significantly higher in patients with anti-phospholipid syn-
drome (APS) and recurrent spontaneous abortion (RSA)
groups than in healthy controls [43,45–50]. This B cell
subset is also increased in placental tissues of RSA patients
[50]. The absolute number and percentages of CD19+ B
cells are also increased in pregnancy complications [43,51–
59], and a higher number of CD19+IgD+ B cell numbers are
observed in APS mothers with associated risks of throm-
botic events [42]. Increases in B cell activation markers and
functions have also been reported in pre-eclampsia, intrau-
terine growth restriction (IUGR) and pregnancy-induced
hypertension (PIH) cases in human studies [52,58,60,61].
Collectively, these studies present the evidence of an asso-
ciation between human pregnancy complications and an

abnormal increase in B cell-activated functions and/or
numbers.

Physiological factors of pregnancy may amplify
B cell aberrations

It is not exactly clear what causes these anomalies in the
B cell compartment of adverse pregnancies, and whether
they simply represent an exacerbation of the pre-existing
autoimmune conditions of the mother that is triggered by
the physiological state of pregnancy. Under normal condi-
tions, B lymphopoiesis is suppressed and autoreactive B
cells are deleted during pregnancy to maintain maternal–
fetal immune tolerance [25–27]. However, these normal
regulatory mechanisms are impaired in autoimmunity
leading to the expansion of autoreactive B cell subsets
and deleterious autoantibody production. This notion is
supported strongly by observations of an abnormally
increased number of CD19+CD5+, mature CD19+CD27+

and CD19+IgD+ B cells in a number of obstetric condi-
tions (Table 1). Indeed, these B cell subsets are well-
known producers of autoantibodies such as rheumatoid
factors, anti-thyroid, anti-ssDNA, anti-histone and anti-
phospholipid autoantibodies [14,43,48,62–65]. In par-
ticular, the autoantibody-producing CD19+CD5+ B cell
populations, which possibly include both human B1-like or
activated B2 cells, are often expanded in autoimmune con-
ditions such as APS, systemic lupus erythematosus (SLE)
and primary Sjögren’s syndrome [43,65,66], which are
often exacerbated by pregnancy and linked strongly to risks
of obstetric complications [9,10]. Thus, the strong link
between CD19+CD5+ B cells and autoimmunity make them
a prime candidate for further investigation in pregnancy
conditions.

The underlying mechanisms that exacerbate autoimmu-
nity during pregnancy are still unclear. Evidence from both
animal models and human studies suggest that the elevated
female sex hormone levels and a Th2-biased immunological
state in pregnancy play a major role in promoting the
expansion of autoreactive B cells. In mouse models of
human SLE, both oestrogen and prolactin can exacerbate
and accelerate autoimmune conditions by exerting a posi-
tive influence on the survival, proliferation, maturation and
autoantibody production of the mature B cell population
[28,67–70]. Such findings from animal models strongly
reflect the evidence in human clinical studies where
female populations have a significantly higher ratio of
autoantibody-mediated autoimmune conditions (including
SLE, APS, Grave’s disease, myasthenia gravis, scleroderma
and Sjögren’s syndrome) than males, and these conditions
are often exacerbated during pregnancy, where elevated
levels of the female sex hormones occur [70]. The Th2-
biased state of pregnancy, which is influenced positively
by high levels of oestrogen during pregnancy, is also well
known to promote B cell proliferation, activation and

Table 1. Evidence of alterations in human B cell populations during

normal pregnancy and obstetric complications.

Pregnancy

conditions B cell markers

Reported changes

in percentages or

absolute numbers Ref.

Normal CD5+ Decreased† [29,30]

CD19+ Decreased† [31,32]

CD20+ Decreased† [33]

Ia+/Ig+ Decreased† [34–36]

Post-partum CD19+ Decreased§ [33,37,38]

CD19+CD5+ Decreased§ [29]

APS CD19+CD27-IgD+ Increased‡ [42]

CD19+CD5+ Increased‡ [43]

RSA CD19+ Increased‡ [44]

CD19+CD5+ Increased‡ [45–47]

CD20+CD5+ Increased‡ [48–50]

Pre-eclampsia CD19+ Increased‡ [51]

CD19+CD27+ Increased‡ [52]

Preterm birth CD19+ Increased‡ [53–55]

IUGR CD19+ Increased‡ [56–58]

PIH Ig+ Increased‡ [59,60]

†Compared to healthy non-pregnant women. ‡Compared to

gestational-match normal pregnant women. §Compared to normal

gestation period. APS: anti-phospholipid syndrome; IUGR: intra-

uterine growth restriction; PIH: pregnancy-induced hypertension;

RSA: recurrent spontaneous abortion; Ig: immunoglobulin.
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antibody production in experimental animal models [70].
Evidence from animal studies and human B cell models
show that the expansion and activation of autoreactive B
cells can be amplified by mutual positive regulatory feed-
back loops between the oestrogen-receptor alpha (ER-a)
pathway and other autoimmune-promoting cytokines such
as interferon (IFN)-a and B cell-activating factor (BAFF) to
promote survival, maturation and expansion of autoreac-
tive B cells [71,72]. Data from animal models, in conjunc-
tion with evidence from human studies, suggest that these
co-operative signalling pathways can also promote the anti-
body class-switching of polyreactive natural antibody IgM
to a more pathogenic IgG autoantibody production by B1
cells [13,70–74]. The positive feedback loop and the pro-
duction of IFN-a and BAFF may be activated and amplified
through the innate pathways mediated by endogenous
ligands and Toll-like receptors (TLRs) on B cells, monocytes
and dendritic cells. Such endogenous ligands may consist of
self-antigens, including lipoproteins, glycoprotein, single-
stranded RNA (ssRNA) and dsDNA materials that are gen-
erated as a by-product from placental tissue-shedding
during pregnancy. These endogenous ligands also provide a
readily available source of autoantigens for the positive
selection and activation of autoreactive B cell clones
through BCR signals as well as the activation of TLR-
mediated innate responses that contribute further to the
exacerbation of the maternal autoimmunity and expansion
of pathogenic autoantibody production.

The implications of maternal antibodies in
pregnancy outcomes

Evidence from epidemiological, clinical and experimental
studies has established that autoantibodies produced by
maternal B cells contribute directly to adverse pregnancy
outcomes [9,10]. The transplacental transfer of maternal
autoantibodies is implicated as a causative factor in a
number of obstetric and neonatal conditions (Table 2).
Such maternal immunological imprinting and in-utero
exposure of the fetus resulting in adverse pregnancy out-
comes are best exemplified in pregnancies with autoim-
mune conditions such as APS, SLE, myasthenia gravis and
primary Sjögren’s syndrome.

APS

Patients with APS often have anti-phospholipid autoanti-
bodies that are reactive against phospholipid proteins, such
as b2-glycoprotein, cardiolipin, tissue plasminogen activa-
tor, thrombin, protein C and platelet antigens. The patho-
genicity of anti-phospholipid autoantibodies is often
associated with IgG classes and they target proteins that are
involved in thrombosis, platelet and complement pathway
activation, monocyte and endothelial cell functions [75].
These autoantibodies can be either agonistic or antagonistic Ta
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in nature. They contribute to the pathologies of APS by
promoting thrombotic events, impairing endothelial cell
function and provoking overt inflammatory responses in
the maternal circulation and placental tissues. This may lead
to vasoconstriction, impaired endothelial function and pla-
cental dysfunction that restrict blood supply to the placenta
and result in placental ischaemia and/or hypertensive disor-
ders. Such a cascade of events can lead to a range of poor
pregnancy outcomes such as RSA, IUGR, pre-eclampsia or
stillbirth. Mild to moderate thrombocytopenia is common
in APS, and this can worsen in pregnancy [9]. The causes of
APS-associated thrombocytopenia are poorly understood:
unlike immune thrombocytopenia (ITP), specific antibod-
ies against the major platelet adhesion receptors (GPIIb-IIIa
or GPIb-V-IX) are uncommon.

SLE

Pregnant women with SLE carry not only a risk of maternal
and fetal morbidity, but also risks of long-term disability to
the newborn. The immunopathologies of SLE pregnancy
display several features of those seen in APS. Thus, it is not
surprising that SLE pregnancy shares many of the adverse
risks and poor outcomes of APS, such as maternal morbid-
ity, IUGR, pre-eclampsia, stillbirth or preterm birth [9]. In
addition, the autoimmune conditions of SLE and APS are
often exacerbated during pregnancy and contribute further
to the disease burden and dysfunction of the maternal cir-
culation and renal system. The deposition of anti-nuclear
proteins, anti-dsDNA, anti-basement membrane autoanti-
bodies and autoreactive antibodies in kidney glomeruli can
cause nephritis that results in further damage to the already
compromised kidney function. This, in turn, exacerbates
the hallmark signs of pre-eclampsia, such as hypertension
and proteinuria. In addition, neonates of mothers with SLE
or primary Sjögren’s syndrome are at risk of developing
neonatal lupus syndrome and congenital heart block [9,10].
These neonatal conditions often occur in mothers who are
seropositive for anti-Ro/SSA and/or anti-La/SSB autoanti-
bodies. Although the risk of congenital heart block in a
fetus from a seropositive mother is only 3–5%, suggesting
that other co-factors may be involved, and the risk of recur-
rence in the same mother increases to 15–20%, clinical and
experimental studies have demonstrated the causative role
of the placental transfers of maternal IgG autoantibodies
specific for Ro/SSA and /or La/SSB in the pathogenesis of
these neonatal conditions [76,77]. In addition, children who
are born to APS or SLE mothers have a significantly higher
risk of developmental and neurological abnormality, with
an increased rate of learning disabilities [78,79].

Myasthenia gravis

The disease is exacerbated more frequently during the first
trimester of pregnancy and is believed to be due to the

effects of oestrogen on Th1 and autoreactive B cells [67,80].
Mothers with myasthenia gravis have autoantibodies that
are specific for maternal acetylcholine receptor (AChR) at
the neuromuscular junction. These autoantibodies target
fetal AChR preferentially. The placental transfer of these
autoantibodies results in a severe developmental abnormal-
ity that causes arthrogryposis multiplex congenita. This
condition causes joint contracture in the fetus, resulting in a
lack of movement in utero and, in severe cases, leading to a
high risk of fetal death or stillbirth [67,81].

Other antibody-mediated conditions

Autoimmune diseases are not the only source of patho-
genic autoantibodies that pose significant risks of maternal
and neonatal complications. Women who are asympto-
matic of autoimmune disease but seropositive for autoan-
tibodies such as anti-nuclear proteins, anti-dsDNA and
anti-thyroid antibodies also carry a similar risk of obstetric
complications such as IUGR and pre-eclampsia [9,10]. The
presence of anti-fetal human leucocyte antigen (HLA)
antibodies in the maternal circulation is associated signifi-
cantly with risk of preterm placental abruption [82]. The
agonistic autoantibodies against the angiotensin receptor
from pre-eclampsia mothers can directly induce hyperten-
sion and proteinuria in pregnant mice, suggesting their
contribution to the pathologies of human pregnancy con-
ditions [83,84]. Transplacental transfer of inhibitory anti-
bodies against factor VIII from a haemophilic mother can
cause life-threatening acquired haemophilia or the fetal/
neonatal alloimmune thrombocytopenia (NFAIT) condi-
tion in her baby [85]. Children from healthy mothers who
are seropositive for maternal antibodies reactive to fetal
brain proteins have a higher incidence of autism [86,87].
Injection of pooled maternal antibodies from mothers
with autistic children into pregnant mice or non-human
primates cause neurodevelopmental and neurobehavioural
abnormalities similar to those of an autistic child in their
progenies, and thereby demonstrate directly a pathogenic
role of in-utero exposure to maternal antibodies in human
autism [88,89].

Protective immunity during gestation and lactation

Not all exposure to maternal antibodies is detrimental to
the health of the baby. In fact, there is a wealth of evidence
from animal and human studies demonstrating the benefits
of in-utero exposure to maternal antibodies and in early
infancy by providing protective immunity against infection
and reducing the risks of developing certain allergies and
autoimmune immune conditions [90–92]. Contrary to
animal models, children exposed to anti-islet autoantibod-
ies from mothers with type 1 diabetes mellitus (T1DM)
during pregnancy have a marginally reduced incidence of
developing anti-islet autoantibodies and T1DM later in life
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[93,94]. Placental and breast-feeding transfer of maternal
antibodies provides vital protective immunity for neonates
during the first 6 months of life, where infants are immuno-
logically defenceless against deadly pathogens such as
tetanus, measles, pertussis and influenza [95–98]. In murine
models, postpartum transfer of immunoglobulin through
breast feeding prevents neonatal death and growth retarda-
tion of pups [21]. Interestingly, maternal antibodies can
transfer protective immunity, yet can also suppress vaccina-
tion responses in early infants [99]. Breast milk antibodies
can either inhibit or facilitate transmission of the human
immunodeficiency virus (HIV) to infants [100]. Taken
together, these studies demonstrate clearly that exposure
to maternal antibodies can carry some potential clinical
benefits as well as burdens on pregnancy and the health
outcome of a newborn.

Clinical evidence of B cell depletion in pregnancy

B cell depletion therapy with rituximab (Genentech, San
Francisco, CA, USA), a chimeric monoclonal antibody
directed against B cells surface antigen CD20, has been used
successfully to treat B cell malignancies and a number of
autoimmune conditions. Rituximab is combined routinely
with chemotherapy in the treatment of high-grade lympho-
mas, and used as a single agent to prolong remissions in
low-grade lymphoma. Rituximab has been used as a single
agent to treat severe antibody-mediated conditions, and
also combined with immunosuppressive agents, such as
cyclophosphamide, corticosteroids and plasmapheresis. The
clinical benefits of rituximab result from severe and sus-
tained depletion of the B cells that leads to a reduction in
serum levels of some autoantibodies and suppression of
generic T cell responses [101].

B cell depletion therapy has shown promising benefits in
the clinical management of high-risk pregnancies. Early evi-
dence of the clinical benefits of rituximab in high-risk preg-
nancy has been demonstrated in non-Hodgkin lymphoma
(NHL) to maintain aggressive B cell lymphomas in remis-
sion until delivery [102]. Since then, there have been more
reports of rituximab in the clinical management of B cell
lymphoma and autoimmune conditions in high-risk preg-
nancies (Table 3). Currently, there have been 21 known
reported uses of rituximab in the clinical management of
high-risk cases of established pregnancies that involve
Burkitt’s lymphoma, NHL, diffuse large cell B lymphomas,
autoimmune haemolytic anaemia, thrombotic thrombocy-
topenic purpura (TTP) and ITP [102–112]. Gestational
exposure to rituximab has been reported in all three trimes-
ters [112]. Of the 21 known reported cases of antenatal
rituximab, all but three cases were administered during the
second or third trimesters [112]. In the majority of cases,
maternal autoimmune conditions were managed success-
fully during pregnancy with reports of the reduction of risk
of maternal morbidity and mortality. Ta
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The initial concern of B cell depletion is the potential for
adverse effects on pregnancy outcomes due to a severe and
sustained suppression of B cell numbers that may compro-
mise the immunological defence of the mother and disrupt
the finely balanced immunological state of pregnancy,
resulting in unforeseeable consequences on pregnancy.
However, accumulated data from the number of reports so
far have eased this concern. Although the numbers of
reported cases are still limited, the pregnancy outcomes for
neonates exposed to rituximab during gestation have been
encouraging [112]. There have been no reports of fetal
losses, congenital malformations or serious infection. The
majority of newborns in published case studies were
reported to be healthy and normal (Table 3). Of the 21
known reported cases of antenatal rituximab, 15 babies
were delivered with normal birth weight and at full term,
with the remaining cases being delivered at between 31 and
35 weeks [112]. There is still little information on the effect
of the timing of gestational exposure to rituximab on the
newborn’s immune system. There are three reported cases
of placental transfer of antenatal rituximab, including one
case that was received as early as week 16 [106], which were
detected in cord or neonatal blood at birth [112]. The pla-
cental transfer of rituximab can therefore lead to depletion
of neonatal B cells and may also explain the low neonatal B
cell counts in several reported cases [102,105,108–110]. Of
the 21 cases of antenatal rituximab, there are 11 reported
cases of neonatal cytopenias that include B cell depletion,
low white blood cells, neutropenia, lymphopenia, thrombo-
cytopenia and anaemia [102,105–107,112]. Most cytopenia
cases appeared to be transient and recovered spontaneously
within 12–16 weeks in follow-up studies [105–107,112].
Despite the high incidence of haematological disturbance
and significant reduction in B cell counts in neonates, there
has been no report of infections associated with these cyto-
penia cases. All babies developed normally with an intact
vaccine response [112].

Despite the possible clinical benefits of rituximab in
high-risk pregnancy, exposure to rituximab during preg-
nancy is not recommended, except in the case of life-
threatening refractory diseases, because of the very limited
data available on safety and efficacy [113]. From the limited
data available, confounding factors such as concomitant
exposure to other medications in reported cases also make
it difficult to make a sound interpretation and recommen-
dation on the efficacy and safety of rituximab in pregnancy
[112]. Adverse drug infusion reactions and severe infections
remain a concern with the general prescription of rituxi-
mab. Although the incidence is rare and dependent on the
types of diseases being treated, B cell depletion with rituxi-
mab has a known risk of reactivating latent John Cunning-
ham (JC) viral infection in treated patients, leading to the
potentially fatal condition of progressive multi-focal leu-
coencephalopathy (PML) [114]. Sustained suppression of
the B cell compartment can lead to impairment of T cell

responses, resulting in a prolonged immunosuppressive
state with an increased risk of vertical transmission of
cytomegalovirus (CMV) infection from mother to fetus
[112]. Pan-specific depletion of B cells can deplete autoanti-
bodies as well as protective natural antibodies and regula-
tory B cell subsets [5]. Therefore, it is clear that carefully
planned clinical trials are needed to evaluate the full ben-
efits and harms of rituximab in pregnancy before it can be
recommended for wider use in pregnancy.

Conclusion and future perspectives

The evidence presented in this review has clearly high-
lighted the important role of B cells in shaping pregnancy
outcomes that have implications for long-term human
health. Despite this, there are still limited data detailing the
changes in the human B cell compartment, and the role of B
cell subsets in pregnancy outcomes is poorly studied. This is
due to the limited number of B cell markers used in earlier
studies to describe changes in B cell subsets during preg-
nancy. Recent advances in B cell biology indicate clearly that
these markers alone are not adequate in describing their full
functions in human pregnancy. Further efforts should be
dedicated to delineate the contribution of these B cell
subsets in the maintenance of a healthy pregnancy as well as
their roles in pregnancy complications.

In light of the potential benefits of rituximab in depleting
autoreactive B cells and the emerging safety profile of
rituximab in pregnancy, it is anticipated that B cell deple-
tion therapies will eventually be trialled in obstetric compli-
cations that involve autoantibodies such as APS, SLE or ITP.
It is reasonable to expect that rituximab will make some
advances in the treatment of refractory conditions in preg-
nancy and provide a viable option that spares the use of
high doses of chemotherapeutics and steroids in high-risk
pregnancy to reduce risk of fetal toxicity [115], and thereby
allows the pregnancy a better chance to develop to full term.
Future pilot studies into the safety and efficacy of rituximab
in pregnant patient cohorts are needed to provide a rational
basis for larger studies. Although B cell depletion has dem-
onstrated clinical benefits for maternal conditions in high-
risk pregnancies, its potential benefits and risks for neonatal
outcomes have not yet been investigated fully. It remains to
be determined whether or not B cell depletion can improve
neonatal outcomes on preterm birth, low birth weights,
congenital malformations and their associated long-term
health consequences. The potential benefit of B cell deple-
tion therapy on neonatal outcomes will probably depend
upon whether it can deplete autoreactive B cells and sup-
press placental transfer of maternal autoantibodies such as
anti-platelet antibodies in maternal ITP or anti-Ro/SSA
and/or anti-La/SSB autoantibodies, as well as co-culprit
factors such as inflammation or other autoantibodies, in
SLE and primary Sjögren’s syndrome. This effect will
depend probably on the properties of B cell-depleting
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agents and the susceptibility of autoreactive B cell clones to
the immunomodulatory activities of these agents. Equally
important is the timing of the administration of B cell-
depleting agents, whereby it can deplete the pool of autore-
active B cells early enough before these cells develop into
plasma or memory B cells which are capable of producing
high levels of pathogenic autoantibodies of IgG classes that
can cross the placental barrier in sufficient quantities to
reach a threshold that can cause damage to the fetal tissues.
Such effects may have a novel clinical application in pre-
venting life-threatening conditions such as NFAIT or con-
genital malformations such as congenital heart block, a
long-term condition that is currently unpreventable. The
development of new B cell-targeted therapies may also
improve the specificity of depletion of autoreactive B cells
while sparing the beneficial regulatory B cell subsets and the
protective natural antibody responses to maximize the ben-
efits and minimize the risks of sustained suppression of the
B cell compartment [116–118]. Therefore, lessons from
future clinical studies and new developments in B cell-
targeted therapies are important and necessary to give the
newborn of a high-risk pregnancy a better chance at a
healthy start to life.

Review criteria

Our literature review was performed by searching in
MEDLINE and PubMed database using search terms
‘Autoimmune’, ‘B cell’, ‘B-cell depletion’, ‘Pregnancy’ and
‘Rituximab’. All included articles were in English-language,
full-text papers published between 1975 and May 2012. We
also searched reference list of these articles.
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