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Evaluating the physiological significance of respiratory
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Key points

• Respiratory sinus arrhythmia (RSA) is the variation of heart rate with breathing: heart rate
increases during inspiration and decreases during expiration.

• RSA is seen in many species including humans where it is strongest in the young and fit. The
loss of RSA has been linked with cardiac mortality; however, the function of RSA is presently
unknown.

• One hypothesis proposed previously is that RSA allows for more efficient gas exchange between
the lungs and the blood.

• Our theoretical study does not support this hypothesis. Instead, a new hypothesis is proposed
and tested using computational tools – that RSA helps the heart do less work while maintaining
healthy levels of blood gases.

• Of course, this new hypothesis needs to be further tested both experimentally and by using
more sophisticated mathematical models, but if correct, it could explain why inducing RSA
artificially in patients with cardiovascular disease improves their health.

Abstract We conducted a theoretical study of the physiological significance of respiratory sinus
arrhythmia (RSA), a phenomenon used as an index of cardiac vagal tone and wellbeing, whereby
the heart rate (HR) increases during inspiration and decreases during expiration. We first tested
the hypothesis that RSA improves gas exchange efficiency but found that although gas exchange
efficiency improved with slow and deep breathing and with increased mean heart rate, this was
unrelated to RSA. We then formulated and tested a new hypothesis: that RSA minimizes the work
done by the heart while maintaining physiological levels of arterial carbon dioxide. We tested the
new hypothesis using two methods. First, the HR for which the work is minimized was calculated
using techniques from optimal control theory. This calculation was done on simplified models
that we derived from a previously published model of gas exchange in mammals. We found that
the calculated HR was remarkably similar to RSA and that this became more profound under slow
and deep breathing. Second, the HR was prescribed and the work done by the heart was calculated
by conducting a series of numerical experiments on the previously published gas exchange model.
We found that cardiac work was minimized for RSA-like HR functions, most profoundly under
slow and deep breathing. These findings provide novel insights into potential reasons for and
benefits of RSA under physiological conditions.
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Introduction

In fit, healthy subjects, the heart rate (HR) is coupled to the
respiratory cycle: the HR increases during inspiration and
decreases during expiration. This phenomenon, known as
respiratory sinus arrhythmia (RSA), is used as an index of
cardiac vagal tone and contributes to heart rate variability
(Grossman & Taylor, 2007). The mechanism of RSA and
the factors affecting it have been studied extensively (Anrep
et al. 1936; Taha et al. 1995; Paton et al. 2005, 2006), yet the
physiological significance of RSA remains controversial
(Larsen et al. 2010). It has been suggested by Hayano
et al. (1996) that the physiological function of RSA is
to match ventilation and perfusion in the lungs and thus
optimise oxygen uptake and carbon dioxide removal. This
hypothesis was supported by their experimental results for
dogs where they induced RSA, inverse RSA and no RSA
by clustering the heart beats during inspiration, during
expiration and by evenly spreading the heart beats across
the respiratory cycle. They showed that, in the presence
of RSA, the dead space-to-tidal volume ratio and intra-
pulmonary shunt fraction decreased and that the oxygen
uptake was enhanced (although this last result may not
be statistically significant given that under control O2

consumption was 71.9 ± 5.7 ml min−1 and under artificial
RSA it was 74.7 ± 9.6 ml min−1). Hayano & Yasuma
(2003) hypothesized that RSA is an intrinsic resting
function of the cardiopulmonary system and suggested
that matching ventilation to perfusion via RSA decreases
the energy expenditure of the cardiopulmonary system
by reducing the number of heart beats during expiration
(Yasuma & Hayano, 2004). However, these additional
suggestions were not explored further or tested directly.

Giardino et al. (2003) measured the ventilatory
equivalents of CO2 (V̇E/V̇CO2 ) and O2 (V̇E/V̇O2 ) during
paced breathing in 10 healthy human volunteers and
concluded that gas exchange efficiency increased with RSA.
In contrast, Sin et al. (2010), compared the ventilatory
equivalents of CO2 and O2 in patients with fixed-rate
cardiac pacemakers against healthy control subjects during
fast and slow paced breathing. They showed similar
trends between the two groups and concluded that the
improvements in gas exchange efficiency are unrelated to
RSA in humans.

Motivated by the controversy of RSA, and given the
abundance of experimental animal and human data, we
decided to conduct a theoretical study of the physio-
logical significance of RSA using mathematical models.
As far as we know, such a theoretical study has not been
conducted previously. While mathematical models that
can mimic RSA exist, they are either phenomenological
(McGuinness et al. 2004; Shiogai et al. 2010) and cannot
be used to study gas exchange efficiency, or large scale (Lu
et al. 2001; Kotani et al. 2002; Ursino & Magosso, 2003;
Batzel et al. 2007; Cheng et al. 2010) and have been used

to study other phenomena such as periodic breathing, the
Valsalva manoeuver, regulation of heart period variability
or cardio-respiratory synchronization. Many existing
mathematical models take respiratory and cardiac control
mechanisms into account (e.g. large scale models) or have
an embedded hypothesized mechanism for the appearance
of RSA (e.g. phenomenological models). These models
make it impossible to separate the question of what
the physiological function of RSA is from how RSA is
generated.

We used a previously published model of gas exchange
in mammals (Ben-Tal, 2006) to calculate gas exchange
efficiency during fast, normal and slow paced breathing,
but found that while gas exchange efficiency improved
with slow and deep breathing and with increased mean
HR, this was unrelated to RSA. In an attempt to
find physiological conditions under which gas exchange
efficiency improved directly due to RSA, we simplified the
Ben-Tal (2006) model. Serendipitously, the new simpler
model provided novel insights into the physiological
function of RSA. We found that RSA minimizes the work
done by the heart while maintaining physiological levels
of the partial pressure of CO2. The optimization problem
we formulated was solved using techniques from optimal
control theory and gave an optimal HR function that
was remarkably similar to RSA. Inspired by this, we next
conducted a series of numerical experiments using the
Ben-Tal (2006) model with prescribed HR functions and
computed the work done by the heart as well as the
volumes of O2 and CO2 taken up or removed by the blood.
These studies were compared with previously published
experiments on both humans and dogs.

Methods

The theoretical study in this paper was conducted in
two parts. Each part of the study was performed using
different mathematical techniques and different models.
The variables and parameters encountered in the paper
are given in Appendix A.

Part I

In this part of the study the HR function was
calculated using techniques from optimal control theory
(Lenhart & Workman, 2007). This was performed by
converting an optimization problem that consists of
a quantity to be minimized and several equations
to be satisfied simultaneously (called constraints) into
a larger set of differential equations with boundary
conditions (these are conditions at the start and end
of the respiratory cycle). These equations were solved
numerically using the bvp4c subroutine in MATLAB
(see http://www.mathworks.com/products/matlab/index.
html).

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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The optimal procedure requires mathematical models
in which the HR is a continuous function. We therefore
simplified a model published previously by Ben-Tal (2006)
(see Appendix B) in which the blood flow is pulsatile (and
therefore HR is a discrete function) and constructed a
simplified model in which the HR (and therefore blood
flow) is continuous. We derived four models with various
simplified assumptions. The simplest model was used
to derive the optimization problem and illustrate the
mathematical technique used for solving it. The other
models were used to calculate the optimal HR function
under more realistic conditions. The models and their
underlying assumptions are presented in the Results
section and in Appendix C. All our calculations in this
part were performed using typical parameters for humans
(see Appendix A).

Part II

In this part of the study a series of numerical experiments
were conducted whereby the Ben-Tal (2006) gas exchange
model was solved as a system of differential equations
with initial values (these are conditions at the start
of the numerical simulation) using the subroutine
radau5 (see http://www.unige.ch/∼hairer/software.html),
and the work done by the heart was calculated for
various prescribed input HR functions. The prescribed
HR functions increased linearly during inspiration and
decreased linearly during expiration. In the first set of
experiments, for a given HR variability, the mean HR was
changed until the simulated mean arterial tension of CO2

or O2 reached a desired value. This set of experiments
was performed using human parameters (see Appendix A
and Ben-Tal, 2006 for references). In the second set of
experiments, for a given HR variability and a given mean
HR, gas volumes were calculated. This set of experiments
was performed using typical parameters for humans and
dogs (see Appendix A for references).

Results

Part I

Reduced physiological models. The reduced models were
derived by simplifying a model described by Ben-Tal
(2006). The full model equations are given in Appendix B
for convenience. Model 1a and Model 1b (described
below) were obtained by assuming that the respiratory
exchange ratio is one (that is, the flux of CO2 from the
blood into the lungs is the same as the flux of O2 from
the lungs into the blood). This assumption leads to a
decoupling of the equations for O2 and CO2 (that is, the
equations for O2 can be solved without any knowledge
of CO2 tensions and vice versa). We also assumed that
the alveolar pressure and the lung volume are constant,

ignoring any variation in these variables, but kept the air
flow as a function of time. In Model 2, we relaxed the
assumption of a constant respiratory exchange ratio and
coupled the equations for O2 and CO2. Then, in Model 3,
we allowed the alveolar pressure and the lung volume to
vary. The equations for Model 2 and Model 3 are given in
Appendix C.

Model 1a. The equations for this model are as follows
(see Appendix C for the derivation):

dp ao

dt
= Pm − p w

Vo

{
Do (p̄ o − p ao)

+ qin(t)

(
1 − VD

VT

)(
f om − p ao

Pm − p w

)}
,

dp̄ o

dt
= Do

CuVcσ
(p ao − p̄ o)

− HR(t)
4Th

σ

{
f̃ [p o (TL)] − f̃ [p o(0)]

}
, (1)

where pao is the alveolar partial pressure of O2, p̄ o is the
averaged blood partial pressure of O2 (over one heart
period), Pm is the atmospheric pressure, pw is water vapour
pressure at body temperature, V o is the mean alveolar
volume, Do is the oxygen diffusion capacity, qin(t) is the
inspired air flow, V D is the dead-space volume, V T is the
tidal volume, f om is the fractional dry concentration of O2

in the atmosphere, Cu is a unit conversion factor, V c is
the capillary volume, HR(t) is the heart rate as a function
of time, Th is the haemoglobin concentration, σ is the
solubility of O2 in blood plasma, f̃ [p o(TL)] is the value
of the haemoglobin saturation function at the end of the
capillaries and f̃ [p o(0)] is the value of the haemoglobin
saturation function when the blood enter the lungs.

Model 1b. This model is similar to Model 1a but applies
to CO2 (see Appendix C for the derivation of these
equations):

dp ac

dt
= Pm − p w

Vo

{
D c (p̄ c − p ac)

− p ac

Pm − p w

(
1 − VD

VT

)
qin(t)

}
,

dp̄ c

dt
= D c

CuσcVc
(p ac − p̄ c) + HR(t)

r2

�2h
[p c(0) − p̄ c(t)] ,

(2)

where pac is the alveolar partial pressure of CO2 and p̄ c is
the averaged blood partial pressure of CO2 (over one heart
period). The recurring parameters in this model are the
same as in Model 1a. The additional parameters are: Dc is
the carbon dioxide diffusion capacity, σc is the solubility of
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CO2 in blood plasma, r2 is the dehydration reaction rate,
�2 is the hydration reaction rate and h is the concentration
of H+ ions.

Model 2. This model is described by four differential
equations (see Appendix C) with pao, p̄ o, pac and p̄ c as
the variables. The respiratory exchange ratio could take
any value (not just one as in Models 1a and 1b) and
therefore O2 and CO2 are coupled. However, the alveolar
pressure and the lung volume are still taken as constants
as in Models 1a and 1b.

Model 3. This model is described by four differential
equations for the same variables as in Model 2 (see
Appendix C) except that now the alveolar pressure and
the lung volume can oscillate.

Hydrodynamic analogy – gaining insight into the
physiological relevance of RSA

Model 1a and Model 1b can be written more simply as
follows (the equivalent symbols are given in Table 1):

dh1

dt
= D1 (h2 − h1) + Aqin(t) (α1 − α2h1) ,

dh2

dt
= D2 (h1 − h2) − Bu(t) (β1 + β2h2) . (3)

The values for β1 and β2 in Model 1a were obtained
by noting that near po = 104 mmHg, the saturation
curve is almost flat and therefore the difference between
the saturation values at the start and end of the
capillaries, f̃ [p o(TL)] − f̃ [p o(0)], can be approximated
by a constant.

If α2 = β2 = 0, eqn (3) can be thought of as a hydro-
dynamic model (Fig. 1) where two water containers of
fixed cross-sectional area are connected by a pipe at their
base, with flow into the left-hand container and flow out
of the right-hand container. The equations for the hydro-

Table 1. Equivalent symbols in the simpler version of Model 1a
and Model 1b

Symbol O2 (Model 1a) CO2 (Model 1b)

h1 pao pac

h2 p̄ o p̄ c

u(t) HR(t) HR(t)

D1
Pm − p w

Vo
Do

Pm − p w

Vo
Dc

D2
Do

CuVcσ

Dc

CuVcσ

A
Pm − p w

Vo

(
1 − VD

VT

)
Pm − p w

Vo

(
1 − VD

VT

)

B
4Th

σ
− r2

hl2

α1 f om 0

α2
1

Pm − p w

1

Pm − p w

β1 0.2113 pc(0)

β2 0 –1

dynamic model are given by:

A 1
dh1

dt
= Ãqin − D (h1 − h2) ,

A 2
dh2

dt
= D (h1 − h2) − B̃u(t), (4)

where h1 and h2 are the heights of the water in the
left and right containers, respectively, A1 and A2 are
the cross-sectional areas of the left and right containers,
respectively, D = D1A1 = D2A2, Ã = Aα1A 1 and B̃ =
Bβ1A 2.

Consider the case when water is poured into the left
container periodically, such that the flow into the left
container is positive in the first half of the cycle and zero in

Figure 1. The hydrodynamic model analogy of gas
transport
The left container represents the lungs and the right
container represents the pulmonary capillaries.
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the second half (this is analogous to inspired air flow). The
flow out of the right container is controlled by a pump on
the end of the outlet pipe. Assuming that the system must
be in steady state, we asked the question of whether there
is any advantage in operating the pump (or equivalently,
changing the heart rate) in a particular way? By defining
what this advantage is, we provide a possible answer to the
question ‘what is the physiological significance of RSA?’.
In the hydrodynamic model it is easy to see that in steady
state, the volume of liquid that comes into the system
over one cycle has to come out in the same time period
(conservation of mass), and that therefore, the way the
pump is controlled (or equivalently, the choice of HR) will
not affect the volume of water that flows out of the right
container – this is strictly determined by the input flow
function Ãqin. In other words, in this particular model
of gas exchange, the amount of oxygen taken up by the
blood (in steady state) cannot be affected by the heart
rate, and therefore gas exchange efficiency cannot change
due to the presence of RSA (or any other form of heart
rate variability such as inverse RSA). However, as we show
in the next section, one can choose a control function
u(t) (representing the action of opening and closing the
pump) such that a given amount of water (or equivalently,
oxygen) is transported using less energy and that, inter-
estingly, the optimal u(t) looks very much like RSA. This
leads us to the formulation of a new hypothesis regarding
the physiological significance of RSA, which we define
mathematically in the next section.

Optimization problem

We assume that the heart pumps out a volume V c at
pressure P in a time interval TL and that Rb is the resistance
to flow, so that q = P/Rb is the blood flow. The volume
of blood can then be calculated as follows:

Vc =
∫ TL

0

q dt =
∫ TL

0

P

Rb
dt = PTL

Rb
,

from which we can find an expression for the pressure
applied by the heart as a function of the volume: P =
RbVc

TL
= RbVcHR, where HR = 1/TL is the heart rate. For

an adiabatic process (that is, a process where there is no
heat transfer), the work per heart beat is WHB = PVc =
V2

c Rb HR, the work per second is Wsec = WHBHR =
V2

c Rb HR2and the work per respiratory cycle with period

T is given by WT = ∫ T

0 V2
c RbHR2 dt.

We assume that V c and Rb are constants and therefore
minimizing WT is the same as minimizing E (defined
below). While WT is obviously a crude simplification,
multiplying it by a constant will not change the results
of the optimal control problem stated below. Moreover,
we show later that the results do not change qualitatively
in the more general case (representing a more complex

relationship between the heart work and rate) where
WT = V2

c Rb

∫ T

0 HRndt and n has values other than 2 (we
checked values for 1.5 < n < 3).

We can now state the optimal control problem:
Find HR(t) such that E = ∫ T

0 HR2(t)dt is minimized
subject to the following constraints:

1. The differential equations of the mathematical model
are satisfied.

2. The system is in steady state.
3. The blood partial pressure of either O2 or CO2 has a

given value on average over one breathing period.

The differential equations referred to in point 1 could
be those of Model 1a, 1b, 2 or 3. To impose the steady state
constraint in point 2 we require that the solution is peri-
odic (i.e. the partial pressures at the start and at the end
of the respiratory cycle are the same). The third constraint
results in an additional equation ¯̄p x = ∫ T

0
¯̄p x(t)dt

where x represents oxygen or carbon dioxide, ¯̄p x is the
blood partial pressure and ¯̄p x is the average of ¯̄p x over
one breathing period and has a given value. The problem
formulated above can be solved for each of the four models
(1a, 1b, 2 and 3) using standard techniques from optimal
control theory described in Appendix D. The results are
given in the next section.

Calculating the optimal HR function

In all the calculations that are shown here, qin(t) is defined
as (see also Fig. 2, top panel):

qin (t) =
⎧⎨
⎩

πVT

T
sin(2πt/T), 0 ≤ t < T/2

0, T/2 ≤ t < T

where V T is the tidal volume and T is the period of
respiration. This choice gives

∫ T

0 qin dt = VT. We chose
the inspiration/expiration ratio (T I/TE) to be 1:1 as in
Hayano et al. (1996) and Sin et al. (2010). The effect of
other inspiration/expiration ratios is explored in Fig. 7 (see
below for more details).

Typical outputs of the optimal calculation for Models
1a and 1b are shown in Fig. 2. The optimal HR is shown
in the second panel. The continuous line shows the HR as
calculated by using Model 1a and the dashed line shows
the HR as calculated by using Model 1b. The third panel
in Fig. 2 shows the blood and alveolar partial pressures
of O2 as calculated by Model 1a and the fourth panel
shows the blood and alveolar partial pressures of CO2

as calculated by Model 1b. It can be seen in Fig. 2 that
the optimal HR function has an RSA-like shape (Taha
et al. 1995) – it increases during inspiration and decreases
during expiration – and also that the variation in HR is
greater in Model 1b. The difference between pao and p̄ o (the

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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alveolar and arterial partial pressures of O2) seen in the
third panel is about 10 mmHg, which is not physiologically
realistic (these two partial pressures are expected to have
close values at the end of the capillaries). This difference
persists in Models 2 and 3 but does not exist in the Ben-Tal
(2006) model on which the reduced models are based. In
the Ben-Tal (2006) model the blood partial pressures are
initialized every heart beat. In the case of oxygen, the
partial pressure falls to 40 mmHg (venous blood) every
heart beat and takes a significantly longer time (compared
with CO2) to equilibrate again with the alveolar pressure
before the next heart beat. The flux of oxygen from the
lungs to the blood as a function of time in the Ben-Tal
(2006) model thus deviates from the averaged, reduced
models. A similar observation was made by Topor et al.
(2004) who also reported a 10 mmHg difference in their
averaged model. In many other averaged models this is not
a problem because the assumption pao = p̄ o is embedded
in the model.

By plotting the inverse of the optimal HR we obtain the
R-R interval (time-dependent heart beat period). Figure 3
shows such a plot for the optimal R-R interval calculated
using Models 1b, 2 and 3 when the averaged p̄ c was
constrained. The shape of the R-R function as well as its
magnitude look similar to reported measurements of RSA
(see Discussion for more details). This feature as well as

the reduction in the R-R interval during inspiration and
increase in the R-R interval during expiration is preserved
by all three models.

Figures 4–6 show how the optimal HR is affected by
changing several physiological parameters: the averaged
arterial partial pressure for CO2 (Fig. 4, bottom three
curves), the averaged arterial partial pressure for O2

(Fig. 4, top three curves), the tidal volume (Fig. 5) and the
respiratory period (Fig. 6). In Figs 5 and 6 we show only
one example of the calculation performed using Model 1a
to illustrate that the variation in the HR for Model 1b is
greater. Figures 4–6 show that an increase in the desired
levels of CO2, in the tidal volume or in the respiratory
period lead to an increase in the mean value and the
variation of HR. This could be understood intuitively
when thinking about the hydrodynamic analogy (and
reversing the direction of flow): an increase in the amount
of water that enters the left container will require an
increase in the outflow (and therefore an increase in u(t),
or HR) if the average levels of water in the right container
need to stay the same.

Figure 7 shows the effect of changing the inspiration/
expiration ratio (while keeping minute ventilation the
same) on RSA. A decrease in T I/TE (and an increase in tidal
volume) leads to a stronger RSA. Interestingly, an increase
in T I/TE also leads to a growing phase-shift between the

Figure 2. Typical calculations of optimal heart rate and partial pressures in Models 1a and 1b
The inspired ventilation, qin, is the same for both models (top panel). The shaded areas show the inspiration
period. The averaged arterial partial pressure of O2 (po) was constrained to 104 mmHg, the averaged arterial
partial pressure of CO2 (pc) was constrained to 41 mmHg, and VT = 0.5 l. All other parameters are the same as
in Appendix A. Heart rate (HR) calculated for Model 1a – continuous line, HR calculated for Model 1b – dashed
line. T I and TE are the inspiration and expiration periods, respectively. Note that O2 and CO2 are uncoupled.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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time when maximum heart rate is reached and the end of
inspiration.

Figure 13 shows that the calculation of the RSA-like
heart rate is robust and is not affected qualitatively by
changes to the expression of the work done by the heart.

Part II

Solving the model with a prescribed HR function. In this
section we solve the Ben-Tal (2006) model (described in
Appendix B) numerically when the HR function is pre-
scribed. The HR in the Ben-Tal (2006) model is discrete
but we can use a continuous function to calculate the times
when the variables pc, po and z need to be reinitialized
(see Appendix B). The prescribed HR function increases
linearly during the first half of the respiratory cycle and
decreases linearly during the second half. Mathematically,
this is expressed as follows:

HR (t) =

⎧⎪⎪⎨
⎪⎪⎩

m − �

2
+ 2�

T
t, 0 ≤ t <

T

2

m + 3�

2
− 2�

T
t,

T

2
≤ t ≤ T

where m is the mean HR and � is the HR variability (the
difference between the highest and lowest HR values – see
Fig. 8 for the continuous HR and Fig. 9 for the analogous
pulsatile HR). In the first set of numerical experiments, for
a given value of �, we estimate the value of m for which
the average arterial partial pressure of CO2 or O2 reaches a

Figure 3. The RSA-like shape of the R-R interval is preserved
by all three models
The calculation of the R-R interval for the different models was
performed using the optimal control technique described in
Appendix D and taking the inverse of the optimal heart rate.
VT = 1.0 l, T = 10 s, the averaged arterial partial pressure of CO2

was constrained to 41.5 mmHg. T I and TE are the inspiration and
expiration periods, respectively. The shaded area shows the
inspiration period.

desired value (this is done by repeating the simulation for
several values of m and interpolating). We then calculate
E at that point as:

E =
∫ T

0

HR2(t)dt = T
(
m2 + �2/12

)
(5)

Note that our calculation is true when the HR function is
continuous. When the HR is discrete one can calculate the
energy using numerical integration. Both calculations give
the same results qualitatively (see Supplementary Fig. S4)
but eqn (5) is easier to use and provides more insight.

In the second set of experiments, the model is solved
numerically for given values of � and m and the volumes
of O2 and CO2 taken up or removed by the blood are
calculated:

VO2 =
∫ T

0

Do(p ao − p o) dt

and

VCO2 =
∫ T

0

D c(p c − p ac) dt.

Figures 10 and 11 show the normalized energy as a
function of � for three different types of breathing
(with the same minute ventilation): normal breathing
(squares with dashed line, T = 5 s, V T = 0.5 l), shallow

Figure 4. Stronger RSA as a result of increased average
arterial partial pressure of CO2
The optimal heart rate (HR) was calculated for Model 1a (top three
curves) and Model 1b (bottom three curves) with VT = 0.5 l. In
Model 1b, the averaged arterial partial pressure of CO2 was
constrained to three values: 39 mmHg (dashed–dotted line),
40 mmHg (dashed line), 41 mmHg (continuous line). In Model 1a,
the averaged arterial partial pressure of O2 was constrained to:
100 mmHg (dashed–dotted line), 104 mmHg (dashed line),
108 mmHg (continuous line). T I and TE are the inspiration and
expiration periods, respectively. The shaded area shows the
inspiration period.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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and fast (diamonds with dashed–dotted line, T = 2.5 s,
V T = 0.25 l) and slow and deep (circles with continuous
line, T = 10 s, V T = 1.0 l). Figure 10 also shows a
simulation with a small increase in minute ventilation
(triangles with a dotted line, T = 10 s, V T = 1.08 l). In
Fig. 10 the average pc was kept constant and in Fig. 11
the average po was kept constant (by ‘constant’ we mean
to the extent that was practical numerically – very small
variations do exist). As can be seen in Fig. 10, there is a
clear association between increased RSA and a reduction
in the energy consumed by the heart; moreover, there is an
obvious optimum. Figure 10 also shows that RSA increases
under slow and deep breathing and that a small increase
in the minute ventilation leads to increased RSA and a
further reduction in energy consumption (bringing the
total energy saving to 3%). We repeated the numerical
experiment seen in Fig. 10 with a sinusoidal HR and the
same trends are seen (see Supplementary Fig. S3). One
piece of information concealed in Fig. 10 is the value
of m, the average HR. It is clear from the equation
E = T(m2 + �2/12) that the value of m has to decrease
when E decreases (with increasing �). We found, however,
that the variation in m along the curve is much smaller than
the variation between curves. Under normal breathing
m was around 60 beats min−1, under shallow and fast
it was around 18 beats min−1, under slow and deep it
was around 120 beats min−1 and for the triangles with a

Figure 5. Stronger RSA with increased tidal volume when the
arterial partial pressure of CO2 is controlled (Model 1b)
The optimal heart rate (HR) was calculated for Model 1a (labelled
‘O2’ ) and Model 1b (remaining three curves). The inspired
ventilation, qin, is the same for both models (top panel). In Model
1b, the averaged arterial partial pressure of CO2 was constrained to
40 mmHg. In Model 1a, the averaged arterial partial pressure of O2

was constrained to 104 mmHg. Tidal volume took on the following
three values: VT = 0.4 l (dashed–dotted line), VT = 0.7 l (dashed
line), VT = 1.0 l (continuous line). Only the case of VT = 1.0 l is
shown for Model 1a. T I and TE are the inspiration and expiration
periods, respectively. The shaded area shows the inspiration period.

Figure 6. Stronger RSA with slow and deep breathing
The optimal heart rate (HR) was calculated for Model 1a (labelled
‘O2’) and Model 1b (remaining three curves). The shaded areas show
the inspiration period for each breathing pattern. Only one cycle is
shown. The inspired ventilation, qin, is the same for both models
(top panel). In Model 1b, the averaged arterial partial pressure of
CO2 was constrained to 41 mmHg. In Model 1a, the averaged
arterial partial pressure of O2 was constrained to 104 mmHg.
Respiratory period and tidal volume were: T = 2.5 s, VT = 0.25 l
(dashed–dotted line); T = 5 s, VT = 0.5 l (dashed line); T = 10 s,
VT = 1 l (continuous line). The minute ventilation was the same for
all simulations: VT /T = 0.1 l s−1 = 6 l min−1. Only the case T = 10 s,
VT = 1 l is shown for Model 1a.

dotted line (increase in minute ventilation) it was around
150 beats min−1. The trend of increased mean HR with
increased RSA was seen in part I and reported in Tzeng
et al. (2007).

In Fig. 11 RSA does not give an energy advantage under
any breathing regime (there is an insignificant reduction

Figure 7. Increased T I/TE ratio leads to a weaker RSA and a
growing phase-shift between the maximum heart rate and
the end of inspiration
The calculation was performed using Model 1b. The shaded areas
show the inspiration period for each case. The respiratory cycle is 5 s
and VT = 0.5 l in all cases. All other parameters are as in Appendix
A. In blue T I/TE = 1:1, in red T I/TE = 1:2, and in black T I/TE = 2:1.
The inspired ventilation, qin, is shown in the top panel.
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Figure 8. A saw-tooth HR function used to mimic RSA
The parameter � governs the degree of RSA while m is the
mean heart rate (HR). Here we took m = 1.2 Hz =
72 beats min−1, � = 0.2 Hz = 12 beats min−1. The shaded
area shows the inspiration period.

in energy for inverse RSA when breathing is slow and
deep). This result is in agreement with our calculations in
part I and further support the hypothesis (see Discussion
below).

Figure 12 summarizes the second set of experiments
and shows V̇O2 /V̇E and V̇CO2 /V̇E as a function of � for both
humans and dogs, under three breathing patterns (normal,
fast and shallow, and slow and deep) and three mean HR
values (low, normal HR and high). The particular values
differ between humans and dogs (e.g. what is meant by
‘normal’ HR). Gas exchange efficiency improves with slow
and deep breathing and with increased mean HR but this
change is hardly affected by � (nevertheless, we can see

Figure 9. Mimicking pulsatile blood flow (discrete heart rate)
The arterial partial pressure of CO2 (pc, middle panel) and the
arterial partial pressure of O2 (po, top panel) are initialized for every
heart beat. The heart rate shown here is taken at the minimum of
the continuous curve in Fig. 10 with � = 0.84 Hz, mean
HR = 1.9605 Hz. T I and TE are the inspiration and expiration
periods, respectively. The shaded areas show the inspiration period.

a very small improvement when � is increased). This is
consistent with the experimental results of Sin et al. 2010.
Figure 12 also shows that the results for dogs and humans
are qualitatively the same although the changes in V̇CO2 /V̇E

as a function of � are more visible for dogs.

Discussion

The physiological function of RSA is studied theoretically
in this paper for the first time. The study was performed
in two parts. First, the optimal HR was calculated using
techniques from optimal control theory. Second, the HR
function was prescribed and the cardiac work, as well as
the volumes of O2 and CO2 taken up or removed by the
blood, respectively, were calculated. The calculations in
each part of this study were performed using different
mathematical techniques and slightly different models, yet
they give consistent results. Here, we discuss important
novel features of our study and compare them with
published animal and humans experiments.

The physiological significance of RSA

In this study we proposed a new hypothesis for the
physiological function of RSA – that RSA minimizes
the work done by the heart while maintaining a desired
average partial pressure of CO2. We compared it with the
previously suggested hypothesis that RSA optimizes gas
exchange efficiency by matching ventilation and perfusion
in the lungs (Hayano et al. 1996; Yasuma & Hayano, 2004;
Sin et al. 2010). In the first part of our study we showed
that, using a simple model, the new hypothesis can be
defined precisely and solved as an optimization problem
while the previous hypothesis cannot. In the second
part of our study we conducted a series of numerical
experiments on a more physiologically realistic model
(Ben-Tal, 2006) and showed that gas exchange efficiency
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improved with slow and deep breathing and with increased
mean HR but that this was unrelated to RSA. This result
is consistent with Sin et al. (2010) but distinct to Hayano
et al. (1996). Our numerical experiments support the new
hypothesis that RSA minimizes the work done by the
heart while maintaining a desired average partial pressure
of CO2 (as shown in Fig. 10 for linearly increasing and
linearly decreasing HR and in Supplementary Fig. S3,
for sinusoidal HR). One might argue that the idea of
energy saving due to RSA is not new. It has been suggested
before (Yasuma & Hayano, 2004; Sin et al. 2010) that RSA
decreases the energy expenditure of the cardiopulmonary
system by matching ventilation to perfusion, and that
the association between low heart rate variability and
increased cardiac mortality is due to diminished cardiac
energy efficiency. However, our hypothesis is different in
that it emphasizes the need to maintain certain levels
of blood partial pressure of CO2 rather than to match
ventilation and perfusion and it has been substantiated by

Figure 10. A minimum in the work done by the heart is
associated with RSA and increases under slow and deep
breathing when CO2 is constrained
Simulations are performed with the Ben-Tal (2006) model, using
prescribed HR functions. Positive � represents RSA, negative �

represents inverse RSA, constant heart rate is marked by a cross at
� = 0. E/E0 curves are plotted as functions of � (E is calculated with
eqn (5), E0 is the value of E at � = 0), constraining the partial
pressure of CO2 along each curve. Data points are obtained from the
simulation, and the continuous lines are least-squares quadratic fits.
Data points represented by circles (fitted with a continuous line)
were taken with T = 10 s, VT = 1.0 l, constraining the averaged
arterial partial pressure of CO2 to 38.7124 mmHg and normalizing E
by 39.98 Hz. Squares with a dashed line were taken with T = 5 s,
VT = 0.5 l, constraining the averaged arterial partial pressure of CO2

to 38.5611 mmHg and normalizing E by 4.968 Hz. Diamonds with
dashed–dotted line were taken with T = 2.5 s, VT = 0.25 l,
constraining the averaged arterial partial pressure of CO2 to
38.5004 mmHg and normalizing E by 0.2225 Hz. Triangles with a
dotted line were taken with T = 10 s, VT = 1.08 l, constraining the
averaged arterial partial pressure of CO2 to 38.5995 mmHg and
normalizing E by 62.482 Hz.

calculations using optimal control theory and numerical
simulations in several models.

Our calculations gave an energy saving of 3% (calculated
over one breath) of the work done by the heart. This
translates to a saving of at least 35 cal h−1 (at rest, an
average person consumes about 70 kcal h−1; 1/6 of this
is used by the heart and 10% of the energy used by
the heart is translated into cardiac output; Vogel, 1992).
This gives an estimate of 1.16 kcal h−1 for the work done
by the heart at rest, and 35 cal h−1 saving due to RSA).
Note that in our model we found that under slow and
deep breathing the energy required to maintain the same
levels of CO2 as under normal breathing is higher. To put
this saving in perspective, 35 cal = 146.5 Joules which is
equivalent to about four punches delivered each by a 3 kg
mass moving at 5 m s−1. It might mean that RSA gives an
evolutionary advantage. Energy saving due to RSA might
also explain why chronic vagal nerve stimulation improves
heart function (De Ferrari et al. 2011).

Controlling blood partial pressure: CO2 versus O2

When we defined the optimization problem we had to
introduce the constraint that the blood partial pressure

Figure 11. Insignificant energy saving when O2 is constrained
Simulations are performed with the Ben-Tal (2006) model, using
prescribed HR functions. Positive � represents RSA, negative �

represents inverse RSA, constant heart rate is marked by a cross at
� = 0. E/E0 curves are plotted as a function of � (E is calculated by
eqn (5), E0 is the value of E at � = 0), constraining the partial
pressure of O2 along each curve. Data points are obtained from the
simulation, and the continuous lines are least-squares quadratic fits.
Data points represented by circles (fitted with a continuous line)
were taken with T = 10 s, VT = 1.0 l, constraining the averaged
arterial partial pressure of O2 to 105.7143 mmHg and normalizing E
by 13.2576 Hz. Squares with a dashed line were taken with T = 5 s,
VT = 0.5 l, constraining the averaged arterial partial pressure of O2

to 105.8179 mmHg and normalizing E by 4.974 Hz. Diamonds with
dashed–dotted line were taken with T = 2.5 s, VT = 0.25 l,
constraining the averaged arterial partial pressure of O2 to
105.1352 mmHg and normalizing E by 1.069 Hz.
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of CO2 (or O2) has a given value on average (over
one breathing period). Without this constraint the
optimization problem cannot be solved mathematically
because there could be more than one solution that
satisfies the other two constraints (i.e. satisfies the model
differential equations and the steady state requirement).
Alternatively, one could have specified an initial value for
the blood partial pressure or the alveolar partial pressure
but this makes less sense physiologically for reasons we
discuss below. The solution of the uncoupled systems
(Models 1a and 1b) required the specification of the blood
partial pressures of both O2 and CO2. However, once O2

and CO2 are coupled, only the partial pressure of one of
them can be specified – constraining both partial pressures
is impossible mathematically (except in the particular case
when the solution is known in advance). We calculated
the optimal HR in part I of our study and conducted the
numerical experiments in part II for both cases – once
when the partial pressure of CO2 was constrained and

once when the partial pressure of O2 was constrained. We
found that constraining CO2 gave stronger RSA in part I
of the study and a greater energy saving in part II. This
is consistent with several physiological observations as we
now discuss:

1. CO2 is the primary substance affecting the chemical
control of breathing at rest and at sea level (Guyton &
Hall, 2000) – small deviations from normal levels of CO2

in the blood have an immediate effect on ventilation, while
levels of O2 in the blood need to drop by a relatively
larger amount before ventilation is affected. It therefore
makes sense physiologically to constrain the average value
of the blood CO2 partial pressure rather than the O2 partial
pressure.

2. Tzeng et al. (2007) measured RSA in spontaneously
breathing humans under hypercapnia, hypoxaemia and
control. They found that hypercapnia, not hypo-
xaemia, was associated with an increase in RSA
amplitude.

Figure 12. Gas exchange efficiency improves with slow and deep breathing and with increased mean
heart rate but this is unrelated to RSA
Volumes of O2 (left panels) and CO2 (right panels) taken up or removed by the blood over a minute normalized
by the minute ventilation and converted to percentage, calculated with prescribed heart rate functions (shown in
Fig. 8). Upper panels are done with human parameters, and for these, data in dark grey (blue online) have T = 10 s,
VT = 1 l, data in light grey (red online) have T = 5 s, VT = 0.5 l, and data in black have T = 2.5 s, VT = 0.25 l.
The minute ventilation was the same for all these simulations: VT /T = 0.1 l s−1 = 6 l min−1. Data represented
by circles connected with a continuous line have m = 0.6 Hz, squares with dashed line have m = 1.2 Hz, and
diamonds with dashed–dotted line have m = 2.4 Hz. Lower panels are performed with dog parameters, and
for these, data in dark grey (blue online) have T = 8 s, VT = 0.42 l, data in light grey (red online) have T = 4 s,
VT = 0.21 l, and data in black have T = 2 s, VT = 0.105 l. The minute ventilation was the same for all these
simulations: VT /T = 0.1 l s−1 = 3.15 l min−1. Data represented by circles connected with a continuous line have
m = 0.5 Hz, squares with dashed line have m =1.0 Hz, and diamonds with dashed–dotted line have m =2.0 Hz.
All other parameters are given in Appendix A.
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3. Kotani et al. (2000) measured RSA in paced breathing
human subjects and monitored the end-tidal CO2 partial
pressures. They reported that these partial pressures were
maintained at their eucapnic values.

The last two observations support our hypothesis that
one of the functions of RSA is to maintain physiological
levels of arterial CO2.

The optimized HR function

The time-dependent changes of the HR calculated in part
I of our study are similar to measurements by Taha et al.
(1995). The time-dependent changes in the R-R interval
(obtained by plotting the inverse of the HR function) look
similar to measurements of RSA reported in Suder et al.
(1998), Kotani et al. (2000), Tzeng et al. (2007) and Kotani
et al. (2008). Interestingly, the initial increase in the R-R
interval (which corresponds to a decrease in HR during
inspiration) seen in Fig. 3 was also reported in Suder et al.
(1998) and is seen in some cases in Kotani et al. (2000),
Tzeng et al. (2007) and Kotani et al. (2008). In some plots of
the HR function (Figs 4–6), an initial decrease in the HR
(which corresponds to the initial increase in R-R inter-
val) gets stronger with increased RSA. In our calculations
the minimum of the R-R interval function occurs toward
the end of inspiration similar to Kotani et al. (2000) and
Kotani et al. (2008) but unlike Tzeng et al. (2007), where
the minimum occurs slightly later during expiration. The
amplitude of RSA in Fig. 3 is about 1.5 s. This is similar to
the values reported in the literature: 2.5 s in Suder et al.
(1998) and 0.8 s in Kotani et al. (2008).

Figure 13. The calculation of the RSA-like heart rate is not
affected qualitatively by changes to the expression of the
work done by the heart
The calculations were performed by minimizing E = ∫ T

0 HRn(t)dt
where n = 2 (dashed line), n = 1.5 (continuous line) or n = 3
(dashed–dotted line) and by using Model 1b.

The time-dependent changes in HR (or R-R interval)
did not change qualitatively when calculated using three
different models (Fig. 3), different inspiration/expiration
ratios (Fig. 7) and different expressions for the work done
by the heart (Fig. 13).

Mean HR and RSA

In all the calculations shown in the present study we found
that increased mean HR was associated with increased
RSA. This was the case when the pattern of breathing was
changed while keeping the minute ventilation the same
(part I and part II), when increasing the required average
value of the blood CO2 partial pressure in the constraint
(part I) and when increasing the tidal volume while
keeping the breathing frequency the same (part I). All
these observations could be understood intuitively when
thinking about the hydrodynamic analogy (and reversing
the flow direction): an increase in the amount of CO2 that
leaves the lungs over one breathing period will require an
increase in the inflow (and therefore an increase in HR)
if the average levels of CO2 in the blood are to stay the
same (or alternatively if the average blood levels of CO2

increase but the amount of CO2 that leaves the lungs stays
the same). The association between increased mean HR
and increased RSA is consistent with Tzeng et al. (2007)
who measured the effect of hypercapnia on spontaneously
breathing humans and reported that “the RSA amplitude
increase was associated with a paradoxical rise in HR”
as well as an increase in tidal volume. The response to
hypercapnia in humans (Sasano et al. 2002) when the
tidal volume and frequency were unchanged showed an
increase in RSA amplitude with increased hypercapnia
but a decrease or no change in mean HR. In contrast, in
our model, we see a decrease in both mean HR and RSA
under hypercapnia (this response is qualitatively similar
to the response seen in our model when the amplitude of
qin is reduced so is not shown here). We believe that this
difference in the results may be explained by an absence
of feedback mechanisms including peripheral and central
chemoreceptors in our model and is the subject of a future
study.

Ventilation pattern and RSA

Our calculations in both parts of the study show an
increase in RSA under slow and deep breathing (compared
with fast and shallow breathing when minute ventilation is
fixed) or under increased tidal volume (when the breathing
frequency is fixed). This is consistent with several human
experiments (Hirsch & Bishop, 1981; Taha et al. 1995; Sin
et al. 2010).
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Humans versus dogs

To eliminate the possibility that the controversy over
gas exchange efficiency is due to species differences, we
repeated some of our calculations using dog parameters
(given in Appendix A). We did not find qualitative
differences between dogs and humans. In both cases,
gas exchange efficiency improved with slow and deep
breathing and with increased mean heart rate but this
was unrelated to RSA.

Sensitivity to changes in parameters

It is important to emphasize that we did not fit any of the
parameters to get the results we show in this study. The
parameters are typical and were obtained based on physio-
logical, independent measurements. Since it is expected
that the parameters will vary from person to person and
over time, we checked the sensitivity of the results for
Model 1b to changes in parameters by changing the five
non-zero parameters in eqn (3) (D1, D2, Aα2, Bβ1, Bβ2).
The first three of these were varied by ±10%, and the last
two by ±1%. Since each of these parameters represents
a combination of physiological values, this tests a wide
range of possibilities. We found that our results are robust
with respect to changes in parameters (see Supplementary
Fig. S5). We also repeated our calculations in part I of the
study using dog parameters and found the same trends
(see Supplementary Figs S6–S10).

Limitations of the study

The mathematical models we used are crude
simplifications of reality. Some of the limitations of the
reduced models derived in part I of the paper have already
been pointed out – averaging the blood partial pressures
over the heart beats led to a difference of about 10 mmHg
between pao and p̄ o, which is not physiologically realistic
but consistent with another model of this kind (Topor
et al. 2004). This limitation, however, does not exist in
part II of our study. Other important limitations were that
the lung is represented by a single container, the physio-
logical and anatomical dead spaces are lumped together
and that CO2 binding to haemoglobin is not taken into
account. We found, however, that the results are robust
with respect to shifts in the haemoglobin saturation curve
(see Supplementary Fig. S1). The models we used do not
include any feedback mechanisms. This made it easier
to explore the physiological function of RSA, without
complicating matters with the question of how RSA is
produced (centrally generated and reflexively evoked RSA;
Anrep et al. 1936). A feedback mechanism is expected to
affect the shape of the respiratory pattern, so we calculated
the optimal HR for two other respiratory patterns. We
found that while there is a shift in the maximum value of

the HR, RSA persists (see Supplementary Fig. S2). All these
limitations could explain why some of our computational
outputs do not match all experimental observations
quantitatively. For example, the RSA amplitude is too
large in some of our calculations and the mean HR
seems too low when the optimal calculation is done using
Model 1b. Nevertheless, the models we used are based on
the main physiological principles that drive the system
and could therefore provide new insight into the physio-
logical function of RSA. Our study predicted correctly
several trends seen experimentally and these trends
persisted under changes in parameters, in the definition
of the energy function, in shifts of the haemoglobin
saturation curve and in inputs pattern (of both HR and
respiration).

Conclusions

We conducted a theoretical study of the physiological
function of RSA by formulating an optimization problem
and calculating the optimal HR function using techniques
from optimal control theory and by numerical simulations
of simplified models of gas exchange. Our study led us to
propose a new hypothesis for the physiological function
of RSA – that RSA minimizes the work done by the heart
while maintaining a desired average partial pressure of
CO2. This new hypothesis needs more verification by
mathematical models that take more physiological details
into account as well as by further in vivo experimental
studies.

Appendix A

Variables and parameters

Table 2 gives a list of most of the parameters encountered
in the paper; those that are not mentioned here are defined
in Appendix B. These parameters are typical for humans
and dogs (i.e. represent an average subject) and are used
as the default if an explicit value is not mentioned when
specific results are presented. All human values are taken
from Ben-Tal, 2006.

The values of po, pc and z (the blood partial pressure
of O2, the blood partial pressure of CO2 and the
concentration of HCO3

−, respectively) were initialized
every heart beat when the Ben-Tal (2006) model was
solved. These values were taken as po = 40 mmHg
(for humans) and 36 mmHg (for dogs; Calder, 1981),
po = 46 mmHg (for humans) and 42 mmHg (for dogs;
King, 2003) and z = p c(0)σcr2/(hl2) for both species.

All the values for dogs were obtained at a body mass of
17.5 kg. When a reference is not given for dog values, that
parameter is assumed to be the same as for humans.
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Table 2. Default parameter values for humans and dogs

Parameter Meaning Units Human value Dog value (reference)

Pm Atmospheric pressure mmHg 760 760
Vo Mean alveolar volume l 2.5 0.530 (Stahl, 1967)
Cu Unit conversion factor l mol−1 25.426 25.507 (calculated at 38◦C)
TL Heart beat period s 60/72 60/70 (Hayano et al. 1996)
Pw Water vapour pressure at

body temperature
mmHg 47 49.750 (Lemmon, 2011)

fom Dry atmospheric O2

fractional
concentration

0.21 0.21

fcm Dry atmospheric CO2

fractional
concentration

0 0

VT Tidal volume l 0.4 0.21 (Hayano et al. 1996)
VD Dead-space volume l 0.15 0.07 (calculated as VT/3)
Vc Capillary volume/heart

stroke volume
l 0.07 0.014 (Hayano et al. 1996)

R Airway resistance to flow mmHg s−1 l−1 1 1.6 (Stahl, 1967)
E Lung elastance mmHg l−1 2.5 14 (Stahl, 1967)
T Respiratory period s 5 4 (Hayano et al. 1996)
ω Respiratory angular

frequency
rad s−1 2π/5 2π/4 (Hayano et al. 1996)

Do O2 diffusion capacity l mmHg−1 s−1 3.5×10−4 2.7×10−4 (Jouasset-Strieder et al. 1966)
Dc CO2 diffusion capacity l mmHg−1 s−1 7.08×10−3 5.462×10−3 (calculated as 20.22∗Do)
σ O2 solubility in blood

plasma
mol l−1 mmHg−1 1.4×10−6 1.4×10−6

σc CO2 solubility in blood
plasma

mol l−1 mmHg−1 3.3×10−5 3.3×10−5

Th Capillary haemoglobin
concentration

mol l−1 2×10−3 2.283×10−3 (Hayano et al. 1996)

KT Equilibrium constant in
haemoglobin
saturation function

l mol−1 104 104

KR l mol−1 3.6×106 3.6×106

L 1.712×108 1.712×108

h Capillary H+ ions
concentration

mol l−1 10−7.4 10−7.4

r2 Dehydration reaction
rate

s−1 0.12 0.12

l2 Hydration reaction rate l s−1 mol−1 1.64×105 1.64×105

δ Reaction rate
acceleration factor due
to catalysing enzyme

101.9 101.9

Appendix B

Full model equations

Here we list the equations of the full model for
convenience. See Ben-Tal (2006) for a full derivation and
discussion of the model dynamics.

dPA

dt
= Pm E

PA
Q A + dPL

dt
(1B)

df o

dt
= 1

VA
[Do (p o − p ao) + (f oi − f o) qin

− f o (D c (p c − p ac) + Do (p o − p ao))] (2B)

df c

dt
= 1

VA
[D c (p c − p ac) + (f ci − f c) qin

− f c (Do (p o − p ao) + D c (p c − p ac))] (3B)
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dp o

dt
= Do

σVc

(
1 + 4Th

σ

df̃ (p o)

dp o

)−1

(p ao − p o) (4B)

dp c

dt
= D c

σc Vc
(p ac − p c) + δ l2

σc
h z − δr2 p c (5B)

dz

dt
= δr2 σc p c − δ l2 h z (6B)

where:

Q A = q + D c (p c − p ac) + Do (p o − p ao) , (7B)

q = Pm − PA

R
, (8B)

PL(t) = Pm − RVT

2
ω sin (ω t)

− E

[
Vo − VT

2
cos (ω t)

]
, (9B)

VA = PA − PL

E
, (10B)

p ao = f o (PA − p w) , (11B)

p ac = f c (PA − p w) , (12B)

f̃ (p o)= L K Tσp o (1+K Tσp o)3+K Rσp o (1+K Rσp o)3

L (1+K Tσp o)4+(1+K Rσp o)4 .

(13B)

Here t is time, PA is the alveolar total pressure, PL is
the pleural pressure, f o is the concentration of O2 in the
alveoli, f c is the concentration of CO2 in the alveoli, pao is
the alveolar partial pressure of O2, pac is the alveolar partial
pressure of CO2, po is the blood partial pressure of O2, pc

is the blood partial pressure of CO2, z is the concentration
of HCO3

−1, VA is the lung volume, q is the air flow,
qin is the inspired airflow and f̃ (p o) is the haemoglobin
saturation function. f oi and f ci are the inspired fractional
concentration of O2 and CO2, respectively. f oi is
calculated as follows (for the calculation of f ci replace
o by c):

f oi =

⎧⎪⎨
⎪⎩

f od, VT < VD

f odVD + f om (VT − VD)

VT
, VT ≥ VD

(14B)

where f od is the alveolar concentration of O2 at the end of
expiration. The meaning of all the other symbols as well
as their values and units are listed in Appendix A.

The blood variables po, pc and z are reset to venous
blood values after every time interval TL, which is the
transient time of blood in the lungs and is also assumed
to be the time between heart beats.

Appendix C

Full model reduction

In this appendix we show how Model 1a, Model 1b,
Model 2 and Model 3 were derived from the full model
described in Appendix B.

Model 1a

By differentiating both sides of eqn (11B) with respect to
time we get:

dPao

dt
= df o

dt
(PA − p w) + f o

dPA

dt
. (2C)

By assuming that D c(p c − p ac) = −Do(p o − p ao) (i.e. the
respiratory exchange ratio is one), and by linearizing
eqn (1B) near the equilibrium point PA = Pm we get
(Ben-Tal, 2006):

dPA

dt
= E

R
(Pm − PA) + dPL

dt
. (3C)

Since PL(t) is a given function (see Appendix B), eqn (3C)
can be solved directly. This leads to the steady-state
solution:

PA = Pm − Rω
VT

2
sin (ω t) , (4C)

which can be used to find a solution for V A:

VA = Vo − VT

2
cos (ω t) . (5C)

We now assume that the oscillations in PA and V A

are relatively small (Pm = 760 mmHg while Rω
VT

2
≈

0.25 mmHg and Vo = 2.5 l while V T/2 = 0.2 l under
normal conditions) and that therefore PA ≈ Pm and

V A ≈ V o. This means that the term f o
dPA

dt
in eqn (2C)

can be ignored. Using this, eqn (2B) and the assumption
that the respiratory exchange ratio is one we get:

dp ao

dt
= df o

dt
(PA − p w)

= 1

Vo
[Do (p o − p ao) + (f oi − f o) qin] (Pm − p w).

Assuming that V T ≥ V D, that f od ≈ f o and rearranging
eqn (14B) gives

f oi − f o =
(

1 − VD

VT

)
(f om − f o) .
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By rearranging eqn (11B) we can express f o as a function
of pao and arrive at the equation:

dp ao

dt
= Pm − p w

Vo

×
{

Do (p o − p ao) + qin(t)

(
1 − VD

VT

)

×
(

f om − p ao

Pm − p w

) }
.

(6C)

Now we need to simplify the equation for po. We begin by

rearranging eqn (4B) and noticing that
df̃

dp o

dp o

dt
= df̃

dt
.

This gives:

dp o

dt
= Do

CuVcσ
(p ao − p o) − 4Th

σ

df̃

dt
.

We now integrate both sides of the equation from 0 to TL

(the time between heart beats) and divide both sides by
TL. We then make the assumption that pao does not change
much during this short period of time and can be treated
as a constant for the duration of the interval. This leads to
the following equation:

dp̄ o

dt
= Do

CuVcσ
(p ao − p̄ o) − 1

TL

∫ TL

0

4Th

σ

df̃

dt
dt

= Do

CuVcσ
(p ao − p̄ o) − 1

TL

4Th

σ

× {
f̃ [p o (TL)] − f̃ [p o(0)]

}
,

where p̄ o = 1

TL

∫ TL

0

p odt. By taking HR(t) = 1/TL we get

the second equation for Model 1a. Note that the difference
between the saturation values at the start and end of the
capillaries, f̃ [p o(TL)] − f̃ [p o(0)], can be approximated
by a constant under normal conditions.

A similar integration process for eqn (6C) leads to the
first equation for Model 1a:

dp ao

dt
= Pm − p w

Vo

{
Do (p̄ o − p ao)

+ qin(t)

(
1 − VD

VT

)(
f om − p ao

Pm − p w.

)}

Model 1b

By differentiating both sides of eqn (12B) and making the
same assumptions as before (that in steady state, PA ≈ Pm

and V A ≈ V o, and that the exchange ratio is one, we get:

dp ac

dt
= df c

dt
(Pm − p w) .

Using eqns (3B) and (14B) for CO2, realizing that f cm = 0,
replacing f cd by f c, expressing f c through Pac, averaging
both sides of the equation and assuming that pac is much
slower than pc, we get the first equation for Model 1b:

dp ac

dt
= Pm − p w

Vo

{
D c (p̄ c − p ac)

− p ac

Pm − p w

(
1 − VD

VT

)
qin

}
,

where p̄ c = 1

TL

∫ TL

0

p cdt.

To get the second equation for Model 1b, we first couple
eqns (5B) and (6B):

dp c

dt
= D c

CuσcVc
(Pac − Pc) − 1

σc

dz

dt

We then average both sides of the equation and assume
that pac is much slower than pc. This leads to:

dp̄ c

dt
= D c

CuσcVc
(p ac − p̄ c) − HR(t)

σc
[z(TL) − z(0)] ,

where HR(t) = 1/TL and p̄ c = 1
TL

∫ TL

0 p cdt.

We also assume that most of the time
dz

dt
≈ 0 (this is

a reasonable assumption given the value of the reaction
rate acceleration factor δ). We can therefore express z

as a function of pc: z = r2σc

�2h
p c. We further assume that

p c(TL) = p̄ c(t) and we arrive at the second equation for
Model 1b:

dp̄ c

dt
= D c

CuσcVc
(p ac − p̄ c) + HR(t)

r2

�2h
[p c(0) − p̄ c] ,

where pc(0) is a constant (usually chosen as 46 mmHg).

Model 2

In Model 2 we relax the assumption of a constant
respiratory exchange ratio but we keep all the other
assumptions and approximations the same. This leads to
the following four equations:

dp ao

dt
= Pm − p w

Vo

{
Do (p̄ o − p ao)

+ qin(t)

(
1 − VD

VT

) (
f om − p ao

Pm − p w

)

− p ao

Pm − p w
(D c (p̄ c − p ac) + Do (p̄ o − p ao))

}
,
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dp̄ o

dt
= Do

CuVcσ
(p ao − p̄ o)

− HR(t)
4Th

σ

{
f̃ [p̄ o] − f̃ [p o(0)]

}
,

dp ac

dt
= Pm − p w

Vo

{
Dc (p̄ c−p ac)− p ac

Pm−p w

(
1− VD

VT

)
qin

− p ac

Pm − p w
(Do (p̄ o − p ao) + D c (p̄ c − p ac))

}
,

dp̄ c

dt
= D c

CuσcVc
(p ac − p̄ c) + HR(t)

r2

�2h
[p c(0) − p̄ c] .

Model 3

In Model 3 we allow the alveolar pressure and the lung
volume to oscillate but keep all the other assumptions the
same as in Model 2. This leads to the following equations
(note that we now need to add the right term in eqn (2C)):

dp ao

dt
= PA − p w

VA

{
Do (p̄ o − p ao)

+ qin(t)

(
1 − VD

VT

) (
f om − p ao

PA − p w

)

− p ao

PA − p w

(
D c (p̄ c − p ac)

+ Do (p̄ o − p ao)
)} + p ao

PA − p w

dPA

dt
,

dp̄ o

dt
= Do

CuVcσ
(p ao−p̄ o)

− HR(t)
4Th

σ

{
f̃ [p̄ o]− f̃ [p o(0)]

}
,

dp ac

dt
= PA − p w

VA

{
D c (p̄ c − p ac)

− p ac

PA − p w

(
1 − VD

VT

)
qin

− p ac

PA − p w
(Do (p̄ o − p ao) + D c (p̄ c − p ac))

}

+ p ac

PA − p w

dPA

dt
,

dp̄ c

dt
= D c

CuσcVc
(p ac − p̄ c)

+ HR(t)
r2

�2h
[p c(0) − p̄ c] ,

where PA and V A are approximated by eqns (4C) and
(5C) (one could instead add a fifth differential equation,
eqn (1B), which will give an accurate solution for PA and
V A).

Appendix D

Solution of the optimal control problem

In this appendix we first show how the optimal control
problem for Models 1a and 1b is solved. We then describe
some of the optimal control theory needed to justify the
solution. Recall that Model 1a and Model 1b can be written
more simply as:

dh1

dt
= D1 (h2 − h1) + Aqin(t) (α1 − α2h1) ,

dh2

dt
= D2 (h1 − h2) − Bu(t) (β1 + β2h2) .

(D1)

The optimal control problem is to find u(t) such that
E = ∫ T

0 u2(t)dt is minimized subject to the following
constraints:

1. The differential eqns (D1) are satisfied.
2. The system is in steady state. That is, h1(0) = h1(T)

and h2(0) = h2(T).
3. h2 has a given value on average. That is, 1

T

∫ T

0 h2(t)dt =
h̄2 where h̄2 is a constant.

By using the Fundamental Theorem of Calculus, the
third constraint can be written as the differential equation

dx

dt
= h2, (D2)

with the boundary conditions x(0) = 0, x(T) = Th̄2.
We now construct a new quantity (called the

Hamiltonian):

H = u2 + λ1
dh1

dt
+ λ2

dh2

dt
+ λ3

dx

dt
,

where λ1, λ2 and λ3 are some functions of time to
be determined (called the Lagrange multipliers) and
the derivatives dh1/dt , dh2/dt and dx/dt are given by
eqns (D1) and (D2). We then calculate the derivatives
∂H/∂u, ∂H/∂h1, ∂H/∂h2 and ∂H/∂x and use them to
construct three additional differential equations:

dλ1

dt
= − ∂H

∂h1
= λ1 (D1 + Aqinα2) − λ2D2,

dλ2

dt
= − ∂H

∂h2
= λ2 (D2 + Buβ2) − λ1D1 − λ3,

dλ3

dt
= −∂H

∂x
= 0.

(D3)

By setting
∂H

∂u
= 0 we can find u = λ2

B

2
(β1 + β2h2)

which can then be substituted into eqns (D3) and (D1).
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We now have six differential eqns (D1), (D2) and (D3)
which need to be solved simultaneously. To do that we need
six boundary conditions. These are: (1) h1(0) = h1(T), (2)
h2(0) = h2(T), (3) x(0) = 0, (4) x(T) = Th̄2, (5) λ1(0) =
λ1(T) and (6) λ2(0) = λ2(T). We solved this system of
equations numerically by using the bvp4c subroutine in
MATLAB.

Optimal control theory

The first four boundary conditions described above have
been defined by the problem. The last two were added
by us. To better explain why we made this choice of
boundary conditions we need to give some background on
the theory that leads to the equations constructed above.
The derivation below is based on Lenhart & Workman
(2007) and is done for one state variable, x(t). The control
problem is to find u(t) such that J = ∫ T

0 f (t, x, u) dt is
minimized while still satisfying the differential equation
dx

dt
= g(t, x, u) (this is the constraint).

We assume that the optimum exists, denote it by
ū(t) and let x̄(t) be the corresponding solution of
the differential equation (that is, the solution obtained
when u(t) = ū(t)). Let h(t) be some arbitrary ‘variation’
function, and ε some small real number. Any non-optimal
u(t) can then be written as u(t, ε) = ū(t) + εh(t) and the
corresponding solution of the differential equation can be
regarded as x(t, ε). Let λ(t) be some unknown function.
We observe that:∫ T

0

d

dt
[λ(t)x(t, ε)] dt = λ(T)x(T, ε) − λ(0)x(0, ε),

and that therefore∫ T

0

d

dt
[λ(t)x(t, ε)] dt − λ(T)x(T, ε) + λ(0)x(0, ε) = 0.

This means that:

J =
∫ T

0

f (t, x, u)

=
∫ T

0

f (t, x, u) +
∫ T

0

d

dt
[λ(t)x(t, ε)] dt

− λ(T)x(T, ε) + λ(0)x(0, ε)

=
∫ T

0

{
f (t, x, u) + d

dt
[λ(t)x(t, ε)]

}
dt

+ λ(0)x(0, ε) − λ(T)x(T, ε)

=
∫ T

0

{
f (t, x, u) + dλ

dt
x(t, ε) + λ(t)g(t, x, u)

}
dt

+ λ(0)x(0, ε) − λ(T)x(T, ε)

= J (ε).

Recall that by assumption, u = ū and x = x̄ is an optimal
pair at ε = 0 and that therefore J (ε) is optimized at ε = 0
when

dJ

dε

∣∣∣∣
ε=0

= 0.

Differentiating J (ε) with respect to ε gives

dJ

dε
=

∫ T

0

{
∂ f

∂x

∂x

∂ε
+ ∂ f

∂u
h + dλ

dt

∂x

∂ε

+ λ

[
∂g

∂x

∂x

∂ε
+ ∂g

∂u
h

]}
dt

+ λ(0)
dx

dε

∣∣∣∣
t=0

− λ(T)
dx

dε

∣∣∣∣
t=T

and after rearranging the terms and setting ε = 0 we get:

dJ

dε

∣∣∣∣
ε=0

= 0 =
∫ T

0

∂x

∂ε

(
∂ f

∂x
+ ∂λ

∂t
+ λ

∂g

∂x

)

+ h

(
∂ f

∂u
+ λ

∂g

∂u

)
dt

+ λ(0)
dx

dε

∣∣∣∣
t=0

− λ(T)
dx

dε

∣∣∣∣
t=T

.
(D4)

For eqn (D4) to be satisfied the following conditions are
required:

1.
∂λ

∂t
= −(λ

∂g

∂x
+ ∂ f

∂x
) = −∂H

∂x
,

2.
∂ f

∂u
+ λ

∂g

∂u
= ∂H

∂u
= 0,

3. λ(0)
dx

dε

∣∣∣∣
t=0

− λ(T)
dx

dε

∣∣∣∣
t=T

= 0,

where H = f (t, x, u) + λ(t)g(t, x, u).
The first two conditions lead to the construction of

an additional differential equation (when there is more
than one state-variable, a similar procedure will lead to
the construction of more differential equations, see for

example eqn D3). If x(0) is a given number,
dx

dε
|t=0 = 0

(that is, no variations are allowed – the optimal solution
is required to satisfy the given boundary condition) and
λ(0) can be free (that is, its value can come out of the
calculation). If x(0) is free, λ(0) needs to be set to zero.
Similarly for x(T): if it has a given value, λ(T) is left free, if
x(T) is free, λ(T) needs to be set to zero. This was the case
for boundary conditions 3 and 4 in the example above.
However, when the boundary conditions are periodic as is
the case for boundary conditions 1 and 2 in the example
above, we can no longer say that the variation at the
boundary is zero (because we do not know what the exact
value is, it has to be the result of the optimal calculation
and therefore be allowed to vary). We can, however, expect

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society



J Physiol 590.8 Respiratory sinus arrhythmia function 2007

that
dx

dε
|t=0 = dx

dε
|t=T because the solution is periodic and

smooth and therefore require that λ(0) = λ(T) as we did
for boundary conditions 5 and 6 in the example above.
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