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Abstract
Asthma is a chronic inflammatory disease of the airways that leads to various degrees of recurrent
respiratory symptoms affecting patients globally. Specific subgroups of asthma patients have
severe disease leading to increased healthcare costs and socioeconomic burden. Despite the
overwhelming prevalence of the asthma, there are limitations in predicting response to therapy and
identifying patients who are at increased risk of morbidity. This syndrome presents with common
clinical signs and symptoms; however, awareness of subgroups of asthma patients with distinct
characteristics has surfaced in recent years. Investigators attempt to describe the phenotypes of
asthma to ultimately assist with diagnostic and therapeutic applications. Approaches to asthma
phenotyping are multifold; however, it can be partitioned into 2 essential groups, clinical
phenotyping and molecular phenotyping. Innovative techniques such as bipartite network analysis
and visual analytics introduce a new dimension of data analysis to identify underlying mechanistic
pathways.
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Introduction
Asthma is a chronic inflammatory disease characterized by inflammation of the airways
leading to variable airflow obstruction and airway hyper-responsiveness affecting close to
300 million people globally [1]. Severe asthma, accounting for up to 15% of asthmatic
patients, consumes extensive health care costs and is an immense economic burden to
society [2]. In industrialized countries, despite 1% to 2% of health care expenditure in
management of asthma, clinicians continue to struggle with treatment of severe asthma
because response to current therapy is often variable and unpredictable [3, 4].

The mechanism of airway inflammation in asthma has been extensively studied; however,
the underlying pathophysiology of asthma requires further investigation [5], as it is
heterogeneous. Such mechanistic heterogeneity may underlie important clinical phenotypes,
sometimes called ‘endotypes’. Technological advances in proteomics, genomics, and
computer science in the recent era have led to ongoing studies to explore the inflammatory
pathways and signaling mechanisms associated with asthma. Numerous research techniques
have been utilized to characterize the multiple phenotypes of asthma to assist with therapy
and prognostication. The latest investigations attempt to use methods of classification that
rely less on a priori assumptions in an attempt to create distinct subsets of patients.
Ultimately, the objective of defining the clear phenotypes of asthma includes prediction of
response to therapy, calculation of the clinical trajectory, and reduction of clinical
heterogeneity in clinical trials.

Asthma is a heterogeneous clinical disorder with variable ages of onset, duration of disease
process and extent of airway obstruction [6]. Over the past decade, despite the commonality
of some clinical signs and symptoms, an awareness of subgroups of asthma patients with
distinct characteristics has surfaced [7]. The ‘phenotype’ represents the patients’ observed
characteristics and, given the heterogeneity of asthma, this becomes a complex task to
undertake. Approaches to asthma phenotyping are multifold; however, it can be partitioned
into 2 essential groups, clinical phenotyping and molecular phenotyping. Clinical
phenotyping attempts to utilize the clinical presentations, characteristics, and results of
common diagnostic tests to subgroup patients. In contrast, molecular phenotyping attempts
to demystify the complex pathways in an attempt to classify the pathophysiologic process at
a molecular level, based in patterns of expression of proteins or nucleic acids.

Clinical Phenotypes
Allergic Asthma

In the spectrum of clinical phenotypes, several subtypes are noteworthy. First, the allergic
asthma phenotype is a syndrome used frequently by clinicians to describe the constellation
of airway hyperesponsiveness to various stimuli, excessive mucus production, airway
eosinophilia, positive skin test responses to aeroallergens, and elevated serum
immunoglobulin E (IgE) [8, 9]. The airway inflammation is mediated by the T cell
differentiation to the TH2 cellular pathway and production of inflammatory mediators,
specifically interleukin 4 (IL-4), interleukin 5 (IL 5), and Interleukin 13 (IL-13) [10]. The
term allergic asthma gained popularity in the clinical arena by general practitioners and
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subspecialists to describe the seasonal respiratory decompensation associated with allergens,
or persistent disease associated with perennial allergens.

Exercise Induced Asthma
Second, exercise induced asthma (EIA) is well described entity, but the pathophysiology is
controversial. The presentation of EIA is focused on the sudden onset of asthma symptoms,
typically shortness of breath and wheezing, which occurs after the onset of exercise [11].
Patients will exhibit dyspnea and bronchoconstriction, often manifested to the greatest
extent after 10 minutes of exercise, or shortly following its cessation. Most patients recover
within 60 minutes of cessation of exercise [12]. Both the thermal and osmotic theories have
attempted to uncover the mechanism of EIA, but this is yet to be entirely clarified. The
thermal theory suggests that the airway cooling and subsequent rewarming sets off an
inflammatory cascade. On the other hand, the osmotic theory proposes cellular volume
changes as the trigger for inflammatory mediator release [13]. Clinicians have used exercise
induced asthma to describe the dyspnea associated with exercise in known asthmatics, and
this entity can be observed in close to half of the patients with asthma [14]. It is often
important to distinguish patients with exercise as one of several triggers of asthma
symptoms from those whose exclusive trigger is exercise.

Despite the heterogeneity of asthma, underlying chronic airway inflammation is the
hallmark of this disease process. Thus, therapy with inhaled corticosteroids has been the
standard of care for symptom control, often leading to reduction of inflammatory mediators
and reduced airway obstruction [7], improvements in quality of life, and reduction in
exacerbations of asthma. Interestingly, clinicians have recognized a subset of patients with
severe or refractory asthma, accounting for about 5%–7% of patients with asthma [6], who
have a decreased response to steroids and have increased symptoms. Although this clinical
phenotype is small in number, these patients utilize 50% of health care cost for asthma
secondary to the frequent exacerbations, uncontrolled symptoms, and requirement for
hospitalization [15, 16].

Clinical Clusters
Given the significant morbidity and lack of understanding of this subset of asthma patients,
the National Heart, Lung, and Blood Institute (NHLBI) established the Severe Asthma
Research Program (SARP) made up of several academic institutions to further investigate
this group of patients. Several seminal papers have emerged from this effort, but relevant to
the question of phenotyping, SARP studies revealed 5 clinical phenotypes of asthma by
using unsupervised modeling suggesting that different pathophysiologic mechanisms likely
leads to the clinical presentations. The recent SARP publication [17••] notes that close to
1600 asthma patients and over 500 severe asthma patients have been evaluated with the
SARP collaborative network.

Using the extensive researched clinical variables recorded on the patients, agglomerative
cluster analysis was used to classify patients into 5 distinct clusters [18]. The first cluster
encompasses patients with mild allergic asthma with early onset and history of atopy. These
patients generally have normal lung function and have less health care utilization. The
largest group of asthma patients are in Cluster 2, who have mild to moderate allergic asthma.
This group exhibits atopy and early onset but are different than Cluster 1 due to the
borderline low FEV1 values. Cluster 3 patients are older, very late onset, and have a higher
BMI. They are distinct from Clusters 1 and 2 secondary to the less atopic nature, frequent
need for systemic corticosteroids, and greater than 3 controller medications. One-third of the
patients belong to Clusters 4 and 5, who have longer durations of disease compared with the
other clusters. These 2 clusters differ in pulmonary function tests and response to
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bronchodilators. Patients in Cluster 4 have a less reduced FEV1 with reversibility to almost
normal range with bronchodilators (albuterol). However, Cluster 5 patients have more
severely reduced FEV1 with much reduced response to bronchodilators.

Induced Phenotype
These 5 clinical phenotypes give clinicians a framework to categorize patients, but do not
provide much help in predicting response to therapy. The presence of comorbidities or
modifying factors such as smoking, gastroesophageal reflux disease and sinusitis frequently
encountered in clinical practice leads to constraints in classifying patients into these clusters.
Inhaled corticosteroids continue to be the mainstay of chronic therapy for asthma; however,
the response to this therapy remains inconsistent. Response to corticosteroids is an “induced
phenotype,” and physicians use the degree of response to tailor therapy. Early identification
of these induced phenotypes is vital as corticosteroid-resistant patients have increased
morbidity and mortality [17••]. Further investigations in genetic analysis, molecular science,
and imaging attempt to expose the mechanisms underlying airway inflammation and,
furthermore, to understand the variable response to therapy.

One common theme in the methods to classify asthma thus far is that divisions are based on
grouping of patients with similar characteristics, be it molecular or clinical data. These
independent divisions do not necessarily correlate across the spectrum for a universal
asthma classification schema. This disconnect has prompted investigators to develop novel
methods to classify asthma phenotypes, based on molecular markers or inflammatory
pathways.

Molecular Phenotype
Molecular phenotypes of asthma have been investigated with great vigor in an attempt to
shed light on the fundamental pathways leading to the clinical presentations of asthma. The
putative link between the distinct mechanism and the variation in clinical presentation needs
further exploration. Molecular phenotyping has the advantage of incorporating knowledge of
the fundamental pathways of disease. This understanding is essential to development
biomarkers, diagnostic strategies and therapeutics. Historically, airway inflammation in
asthma is thought to be T-helper type 2 (Th2) mediated and the cells involved include
basophils, eosinophils, and mast cells [19]. Cytokines, including IL-4, IL-5, and IL13 play a
prominent role in the inflammatory cascade [20, 21].

Cellular Phenotype
In this subdivision of molecular phenotypes, the cellular phenotypes are noteworthy. As
early as the 1990s, Wenzel et al conducted sputum analysis and bronchoscopic evaluation on
severe asthmatics, and 2 subtypes of SA were identified: eosinophilic and non-eosinophilic
[21]. Further work continued to focus on the cellular component of airway inflammation.
Eosinophilic airway inflammation in generally associated with airway hyper-responsiveness
and chronic asthma. With continued investigation of induced sputum, elevated numbers of
neutrophils were noted in asthmatic patients with increased airflow obstruction [21].
Subsequent studies supported these results that a neutrophilic phenotype correlates with the
chronic narrowing of the airways [22], lower eosinophilic counts, and poor response to
inhaled steroids [23]. In addition, it is well known that during acute asthma exacerbations,
airway neutrophilia is present [24]. Ongoing studies continue and infectious etiologies of the
neutrophilic phenotype have been suggested.
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Gene Expression
Woodruff and colleagues extended the molecular investigations to gene expression profiling
of airway epithelial brushings. They noted that a group of up-regulated genes were enhanced
by IL 13 suggesting that IL-13 likely is an activator of epithelial cells in asthma. However,
there was variability in IL-13 expression in patients with asthma, and there is a subgroup of
asthmatics with low levels of IL-13 despite similar symptoms. Their work revealed a distinct
group of up-regulated genes in asthmatics and additionally noted that elevated expression of
a set of genes, CLCA1, periostin, and serpinB2, was associated with enhanced response to
corticosteroids [25]. Further investigations elucidated that asthmatic patients can be
classified into “Th2 high” and “Th2 low” groups suggesting different degrees of airway
inflammation [26]. The 2 observations were key because of the concept that a panel of genes
or proteins may be a better index of molecular phenotype than any single molecule could be.

Studies conducted by Brasier et al [27] explored phenotypes at a molecular level in depth
using the assistance of the SARP database and biobank. The clinical clusters described by
SARP suggest that severe asthma patients have different inflammatory processes and likely
have distinct airway inflammatory mediators. This observation led to the hypothesis that
cytokine expression in the airway might discriminate severe from non-severe asthma. Thus
airway cytokine expression patterns in bronchoalveolar lavage (BAL) from matched group
of patients with non-severe and severe asthma were analyzed using multiplex cytokine
arrays. The data revealed 18 cytokines that have measurable concentrations in the BAL.
Unsupervised agglomerative hierarchical clustering was performed and this identified 4
asthma phenotypes. Importantly, Group 1 had a significantly reduced FEV1, FVC, and
FEV1 improvement after bronchodilator therapy compared with the other groups, and 60%
of these patients were classified as severe asthma by SARP investigators. Group 2,
interestingly, had the best preservation of lung function and predominantly composed of
non-severe asthma patients. The findings revealed that BAL cytokine patterns were
informative distinguishing asthma phenotypes, but did not per se provide much information
about the underlying mechanisms of inflammation. Hence, further studies at the proteomic
and advanced analytic levels were required to understand the relationship between protein
expression patterns and variable asthma presentations.

Machine Learning Methods to Predict Asthma Phenotypes
Brasier et al [27] undertook an analysis of BAL protein expression patterns with the
intermediate phenotypes of bronchial responsiveness to methacholine, beta-agonist
bronchodilator response, airway eosinophilia, and airway neutrophilia. In the SARP dataset,
these intermediate phenotypes had little overlap. Additional analysis of the protein
expression patterns demonstrated that each the intermediate phenotype was associated with a
distinct protein expression pattern. It is perhaps not surprising that cellular inflammation
(neutrophilic or eosinophilic) was related to cytokine and chemokine expression. However,
it was of considerable interest that protein expression patterns also related to physiologic
variables of methacholine responsiveness and β-2 agonist bronchodilator responses. The
observations hint at the power of protein expression profiling.

Brasier et al [28] have tested the accuracy of four different statistical (machine) learning
methods to predict each intermediate phenotype. The authors classified 1048 subjects
enrolled in the U.S. severe Asthma Research Program (SARP) into 4 distinct
clinicopathologic subsets, heuristically derived from pathophysiologic phenotypes of these
patients. BAL cellularity determined 2 groups based on ‘eosinophil rich’ or ‘neutrophil rich’
pathology while physiologic response to albuterol (bronchodilators) and methacholine
(hyper-responders) comprised of the other two groups. Using logistic regression (LR),
multivariate adaptive regression splines (MARS), classification and regression trees (CART)

Pillai et al. Page 5

Curr Allergy Asthma Rep. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and random forest (RF) methods, cytokine data from the BAL fluid was analyzed for
prediction of the above defined subtypes.

This approach led to the identification of LR and MARS as optimal statistical learning
approaches for phenotyping of asthma. The method described in the article attempts to find
the optimal statistical technique capable of working with molecular data (cytokines) and
predicting a clinical phenotype.

The advantage of this method allows for prediction of asthma type based on molecular data.
Another advantage was the molecular cytokine data supported the empiric grouping and
strengthened classification architecture by finding cytokine profiles that were unique enough
to distinguish the a priori classified patient subsets. Moreover, one could surmise that this
method is clonally applicable to a similar data set in other disease conditions.

One drawback that this method has in common with others is the heuristic grouping of
patients into defined phenotypes. A change in the defining conditions could lead to a
different set of patient subgroups, leading to a new classification, which may then have its
own unique statistical method capable of predicting the phenotype. Thus, the emergent
classification would be ‘condition based’. Moreover, subsets based on the assumption that
the defining characteristic is a ‘fixed attribute’ for that group may not apply in situations
with high fluxes. Patients with rapidly evolving pathology or in the case where there is
change from eosinophilic to neutrophilic infiltrate and vice-versa would not fall into any one
category. Another difficulty of this methodology is that just as patient subgroups are
predefined, so are the choices of statistical models used, leading to lack of nonexclusivity in
choice of machine learning methods.

One way to let the information reveal patterns of disease is to use Network analysis.
Information gleaned from statistical learning approaches can be supplemented with a
network based approach.

Network Analysis Methods
Network Basics

Network analysis is a discipline of network science and a part of graph theory in
mathematics. A network is formed by a set of nodes connected in pairs by “edges” (Fig. 1).
Networks have been used to analyze a wide range of datasets, including gene–disease
interactions [29] and disease–gene associations [30]. A molecular unipartite (single variable)
association network of asthma with 129 SNP has been published by Renkonen et al [31].
Though asthma classification was not attempted, important associations between subgroups
of protein classes like Toll-like receptors and chemokines were demonstrated. Recently,
networks have also been used to determine if quantitative proteomics of bronchial biopsies
from asthmatics can distinguish biological functions [32]. Though networks analyses are
finding increasing use in the published literature to analyze a wide range of scientific data
such as social networks, occurrence of comorbidities and gene–gene interactions [33•], these
unipartite analyses show only one part of a bipartite (eg, subject–cytokine) relationship.

Bipartite Networks
In contrast to the unipartite networks used in previous studies, bipartite networks contain 2
sets of nodes such as subjects and cytokines, and edges can connect only nodes from
different sets. This approach is ideal for the representation of bipartite relationships, which is
both more powerful and considerably more complex. Bhavnani et al [34] used this
representation to conduct a secondary analysis of the SARP cytokine data. This analysis of
the SARP data differed from previous attempts to classify asthma patients, as it did not
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assume an a priori classification of either patients based on phenotypic (severe vs non-severe
or hyper-responsive vs normal), or molecular information.

Application of Bipartite Networks
For a bipartite network analysis to reveal patterns of meaningful relations between variables
being studied, the tabular data need to be converted into a network representation. In this
case, asthma patients and cytokines were represented as nodes and their normalized cytokine
expression values, (Fig. 2), represented as edges connected each patient to each cytokine.
Furthermore, in common with network principles, graphical elements like node size
(proportional to total expression value of the connecting edges, in this study) and edge
thickness (proportional to normalized cytokine expression values in this study) allowed for
an information-rich representation in addition to affecting the network architecture.
Application of force-directed algorithms (eg, Kamada-Kawai algorithm [35] used in this
case) to the layout pushes together nodes that have a similar profile, and pushes apart nodes
that do not. Thus, patients who had a higher cytokine expression value for a particular
cytokine were spatially closer compared with those who have lower cytokine expression
value for the same cytokine. Once the topological relationships are established, the next step
is to contrast the real network to random permutations of the network. This is done by
comparing the variance, skewness, and kurtosis of the dissimilarities (either between
patients, or between cytokines) in the ‘real’ network, to 1000 permutations of the same data.
Validation of a pattern is based on the principle that the probability of the observed pattern
in the network could not have occurred by random chance.

Bipartite Networks in Asthma
As an example (Fig. 2) using this technique, the authors demonstrated that eotaxin and IL-4
(cytokine nodes) were placed close to each other. Exploratory visual analysis of the force-
directed layout revealed topological characteristics, which can denote important
relationships. Exploratory visual analysis in the SARP bipartite network also revealed 3
patient clusters based on their cytokine profiles and the nature of their relationship with the
rest of the patient–cytokine network. The next step was to quantitatively verify the
boundaries and the members of the individual clusters, which was done by using
agglomerative hierarchical clustering.

Biologic Implications of Bipartite Networks in Severe Asthma
The significance of such exploratory visual and bipartite network analysis comes from the
biological implications of clustering effect of cytokines with patients. In this study, the
finding of co-occurrence of eotaxin and IL4 (cytokine cluster 1) with patient cluster 1
allowed for authors to infer the pathology of the pathways responsible for the phenotype.
Similarly, the specific grouping of cytokines in cluster 2 suggested the presence of a shared
NFkB mediated innate response (IL5, IFNγ, MIP1a, MIG, IL-17, and MIP-1b), which is
distinct from the cluster 1-Th2 mediated inflammatory pathways. The third cluster of
patients, with the weakest cytokine expressions, also had the largest differences in
obstructive measures of lung functions and lowest responsiveness to methacholine. By
analyzing the clinical variable associated with this subgroup, the authors inferred that this
subgroup had preserved lung function and less inflammatory pathway activation. Thus, this
molecular information-based patient classification using bipartite networks revealed groups
of asthma patients with distinct pathologic mechanisms. Moreover, the comparison of the
above classification of patients to the severe/non-severe classification did not show a
concordance, suggesting a shortcoming in using a single variable to classify patients.

Application of this methodology is still in its early stages when it comes to analysis of
disease patterns in patient phenotypes. Using this method for asthma classification presents
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an exciting precedent for other diseases and pathologic states. Although bipartite networks
are a powerful technique, they are limited in the number of variables that can be
simultaneously represented through graphical properties such as color, size, and shape.
However, the strengths include a unified representation of both sides of a bipartite
relationship (for example, patients and cytokines) in addition to the nature of each
relationship through the edge weights. In addition, visualizing the data using 3-dimensional
layouts is possible [36], allowing for an extension of analytical capabilities. Another
advantage of this method is that it guides the selection of appropriate quantitative measures
(eg, cluster analysis if such a pattern exists in the data) that match the underlying structure of
the data.

There are other instances where bipartite networks have proven to be useful. Lu et al have
done bipartite analysis of human microRNAs and disease associations [37] and discovered
patterns of microRNA associated with disease, while other authors have extended network
analysis of microRNA data to oncogenic pathways [38] and even protein complexes and
drug interactions [39].

Conclusions
Asthma is a chronic disease affecting a large segment of the population. There has been an
explosion of information, processes, and data regarding asthma pathogenesis. Discovery of
new information permits characterization of the disease in a new light. Apt classification and
characterization of asthma will help in providing the most appropriate care to patients with
diverse underlying pathophysiology. Network analysis of biomedical data is a relatively new
technique of analyzing data. This robust method allows for visualization of emergent
patterns in seemingly complex information dense data sets.
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Fig. 1.
Network basics. A simple network is composed of nodes and edges. Here the network
attempts to describe the relationship between the drug and clinical reaction. Red nodes
denote the drug. The white nodes denote the reaction. The edges connect the nodes. White
nodes (reaction) are distributed in space according to their degree of association to the red
nodes (chemical agent). By this representation subsets of reactions and drugs can be
identified. For example, it appears that DDT, Hepatachor, and Dieldrin can lead to similar
side effects
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Fig. 2.
Network analysis of asthma patients and cytokines. The network reveals cytokine and
patient clusters
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