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Abstract
For more than a century, electrophysiologists, cardiologists, and engineers have studied the
electrical activity of the human heart to better understand rhythm disorders and possible treatment
options. While the depolarization sequence of the heart is relatively well characterized, the
repolarization sequence remains a subject of great controversy. Here we study regional and
temporal variations in both depolarization and repolarization using a finite element approach. We
discretize the governing equations in time using an unconditionally stable implicit Euler backward
scheme and in space using a consistently linearized Newton-Raphson-based finite element solver.
Through systematic parameter-sensitivity studies, we establish a direct relation between a normal
positive T-wave and the non-uniform distribution of the controlling parameter, which we have
termed refractoriness. To establish a healthy baseline model, we calibrate the refractoriness using
clinically measured action potential durations at different locations in the human heart. We
demonstrate the potential of our model by comparing the computationally predicted and clinically
measured depolarization and repolarization profiles across the left ventricle. The proposed
framework allows us to explore how local action potential durations on the microscopic scale
translate into global repolarization sequences on the macroscopic scale. We anticipate that our
calibrated human heart model can be widely used to explore cardiac excitation in health and
disease. For example, our model can serve to identify optimal pacing sites in patients with heart
failure and to localize optimal ablation sites in patients with cardiac fibrillation.
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1. Introduction
For more than a century, the electrocardiogram has served as a cheap, non-invasive, highly
accurate, and easily reproducible diagnostic tool to monitor the electrical activity of the
human heart. In the healthy heart, the electrocardiogram consists of three characteristic
segments: a small hump, the P-wave, associated with atrial depolarization; a sharp dip-rise-
dip sequence, the QRS-complex, associated with ventricular depolarization; and a small
hump, the T-wave, associated with ventricular repolarization (Noble and Cohen 1978;
Keener and Sneyd 1998), see Figure 1. While the depolarization sequence and the QRS-

© 2011 Taylor & Francis
*Corresponding author. dhurtado@ing.puc.cl.

NIH Public Access
Author Manuscript
Comput Methods Biomech Biomed Engin. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
Comput Methods Biomech Biomed Engin. 2014 July ; 17(9): 986–996. doi:
10.1080/10255842.2012.729582.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



complex are relatively well characterized, the repolarization sequence and the T-wave
remain poorly understood (Opthof et al. 2009; Patel et al. 2009). However, the clinical
significance of the T-wave cannot be underestimated: Inverted T-waves can indicate
coronary ischemia, Wellens’ syndrome, left ventricular hypertrophy, or central nervous
system disorders; tall and narrow symmetrical T-waves can indicate hyperkalemia; flat T-
waves can indicate coronary ischemia or hypokalemia (Klabunde 2005). In the healthy
heart, the T-wave is positive in all three limb leads. Positive T-waves reflect the fact that the
last cells to depolarize are the first to repolarize (Franz et al. 1991). The central hypothesis
of this work is that we can incorporate this regional information through a novel non-
uniform material parameter, the refractoriness, and that the heterogeneity of this parameter
is critical to accurately capture the T-wave profile in the electrocardiogram.

Within the past three decades, computer models of the heart have gained increasing
popularity (Clayton et al. 2011). Computer models have the potential to visualize regional
depolarization and repolarization sequences of the heart (Kotikanyadanam et al. 2010), to
localize disturbances (Bacharova et al. 2011), to identify optimal locations for intervention,
and to virtually probe different treatment options. Conceptually speaking, we can distinguish
two classes of electrophysiological models: Ionic models and phenomenological models.

Ionic models characterize the electrophysiological behavior by explicitly considering the
transport of charged ions across the cell membrane (MacLachlan et al. 2007; Wong et al.
2011). Their major advantage is that they are mechanistic in origin, providing detailed
information about ion concentrations and ion channel dynamics. However, their inherent
disadvantages are their high computational cost and their large number of material
parameters. Because of the inherent lack of human tissue samples, the calibration of these
parameters is traditionally based on experiments with non-human cells, usually under
conditions that barely represent the full physiological regime (Pullan et al. 2005).

Phenomenological models characterize the electrophysiological behavior by capturing
empirical observations on the macroscopic scale. One inherent advantage is their low
computational cost. As such, they have played a significant role in advancing the frontiers of
computer simulation in cardiac electrophysiology. The majority of cardiac cell models
derive from the Hodgkin-Huxley model of the giant squid axon (Hodgkin and Huxley 1952).
Simplified two-variable versions of the Hodgkin-Huxley model, e.g., the FitzHugh-Nagumo
model (Fitzhugh 1961; Nagumo et al. 1962), have enabled further progress in the
mathematical analysis and numerical simulation of cardiac electrophysiology. A
modification of the FitzHugh-Nagumo model, the Aliev-Panfilov model for cardiomyocytes
(Aliev and Panfilov 1996), has shown excellent agreement with all the salient features of the
depolarization and repolarization cycle of individual cardiomyocytes, including the
dependance of action potential duration on cycle length.

The major disadvantage of phenomenological models is that they typically introduce several
material parameters, which lack a direct physiological interpretation. In general, those
parameters are calibrated by tuning the proposed model to fit available experimental data.
To simplify the calibration process, a common assumption in cardiac electrophysiology is to
consider a uniform distribution of the model parameters throughout the entire cardiac
domain (Clayton et al. 2011). In reality, however, electrophysiological properties of
cardiomyocytes may display large regional variations, sometimes also referred to as
dispersion. The observed heterogeneity can be attributed to locally varying densities of gap
junctions, ion channels, pumps, and exchangers to name but a few (Burton and Cobbe
2001). Spatial heterogeneities gives rise to non-uniform conduction velocities and non-
uniform action potential durations. Experimental evidence supports the heterogeneity of the
action potential duration, both regionally and transmurally (Antzelevitch et al. 1991;
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Viswanathan et al. 1999; Stoll et al. 2008). In particular, the last regions to depolarize are
commonly known to be the first to repolarize, giving rise to positive T-waves in the
electrocardiogram (Franz et al. 1987; Cowan et al. 1988; Conrath and Opthof 2006).

Mathematical models of electrophysiology have been solved numerically using finite-
difference methods (Panfilov and Keener 1995; Winslow et al. 2000), finite-volume
methods (Johnston 2010) and finite-element methods (Rogers and Mc Culloch 1994). In
addition to their complete geometric flexibility, finite-element methods have the advantage
of seamlessly coupling the primary potential field with other fields, e.g., with a second
potential field in bidomain models (Dal et al. 2012), with a mechanical field in excitation-
contraction coupling (Göktepe and Kuhl 2010), or with an optical field in optogenetics
(Abilez et al. 2011; Wong et al. 2012). Furthermore, they allow us to use existing finite
element infrastructures, e.g., adaptive time stepping schemes, which can reduce the
computational time down to the order of minutes or seconds (Wong et al. 2011). Here, we
make use of yet another benefit of finite element schemes that comes at almost no additional
cost: Finite element algorithms allow us to extract computational electrocardiograms in a
simple, standard post-processing step (Bacharova et al. 2011; Kotikanyadanam et al. 2010;
Okada et al. 2011).

In this work, we use a novel robust, stable, and efficient finite element algorithm to
systematically explore how the regional variation of cellular action potential profiles affects
the repolarization sequence in a human heart. After briefly summarizing the continuous
problem of cardiac excitation in Section 2, we illustrate the algorithmic realization in
Section 3. In Section 4, we identify a functional relation between the local action potential
duration and a phenomenological model parameter, which we introduce as the
refractoriness. In Section 5, we utilize this relation to calibrate our model by means of
clinically measured action potential durations at different locations in the human heart. We
confirm our simulations by computational electrocardiograms which display a normal
positive T-wave. Finally, we demonstrate the potential of our model by comparing
computationally predicted and clinically measured depolarization and repolarization profiles
across the left ventricle. We conclude with a brief discussion and outlook in Section 6.

2. CONTINUOUS PROBLEM OF CARDIAC EXCITATION
In what follows, we model the excitation of cardiac tissue through a coupled system of
equations (Fitzhugh 1961; Nagumo et al. 1962), which characterize the electrical response
through the action potential φ and the biochemical response through the recovery variable r
(Aliev and Panfilov 1996; Göktepe and Kuhl 2009). To account for the propagating nature
of excitation waves, we introduce a flux term in the electrical conservation law, while the
recovery variable r remains strictly local and governed by local kinetics.

2.1 The global electrical problem
We model the electrical problem through the spatio-temporal evolution of the action
potential φ, initiated by the flux div q and by the source fφ,

(1)

The flux term characterizes the propagating nature of excitation waves,

(2)
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parameterized in terms of the second order diffusion tensor D = disoI + danin ⊗ n, which can
account for both isotropic diffusion diso and anisotropic diffusion dani along a preferred
direction n. The source term characterizes the local action potential profile,

(3)

parameterized in terms of a cubic polynomial, c φ [φ − α][1 − φ], and a coupling term, r φ,
introducing the recovery variable r. Herein c is a scaling parameter and α is the oscillation
threshold. While positive α values characterize stable non-pacemaker cells, negative α
values characterize oscillatory pacemaker cells. Experimentally, we can calibrate the global
flux term q using microelectrode array recordings (Chen et al. 2012) and the local source
term fφ using single cell patch clamp experiments (Abilez et al. 2011).

2.2 The local biochemical problem
While we assume that the electrical signal φ can propagate in space, we model the
biochemical problem through the temporal evolution of the recovery variable r, initiated
exclusively by the source fr,

(4)

The source term characterizes the slow features of the action potential profile,

(5)

parameterized in terms of the weighting factor [γ + r γ̄] with γ̄ = μ1/[ μ2 + φ] and the
additional phenomenological parameter b. The parameters μ1 and μ2 are essential to
calibrate the shape of the restitution curve. In this manuscript, we adopt common parameter
values from the literature for the standard FitzHugh-Nagumo parameters c, α, and b
(Fitzhugh 1961; Keener and Sneyd 1998) and for the non-standard parameters μ1 and μ2
(Aliev and Panfilov 1996). In what follows, we focus in particular on the parameter γ, its
physiological interpretation, and its role in cardiac excitation across the scales.

Remark—To simulate physiological values of the transmembrane potential and of the time,
it is common to scale the non-dimensional field φ and the non-dimensional time t using the
following the expressions,

This implies that the transmembrane-potential Φ will range from −80 mV to +20 mV and a
typical action potential will last a real time τ of 200 ms to 300 ms, which is in agreement
with the physiological values for healthy human hearts.

3. DISCRETE PROBLEM OF CARDIAC EXCITATION
For an efficient and robust computational solution of the governing equations (1) and (4), we
follow (Göktepe and Kuhl 2009) and use a finite difference scheme for time discretization
and a finite element scheme for the spatial discretization. For the sake of completeness, we
summarize the formulation and key aspects of the method in the following. We introduce the
action potential φ as -continuous global degree of freedom on each finite element node and
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the recovery variable r as -continuous internal variable on the integration point level. To
solve the resulting system of equations, we apply an incremental iterative Newton-Raphson
solution strategy, which allows us to adopt an adaptive time stepping scheme (Wong et al.
2011).

3.1 The global electrical problem
On the global level, we transform the electrical problem (1) into its residual format
evaluated in the domain , and complement it with the corresponding boundary conditions
on the Dirichlet and Neumann boundary ∂  and ∂ , respectively,

(6)

By multiplying the residual equation (6.1) by admissible test functions, integrating it over
the domain , applying the standard integration by parts, and including the Neumann
boundary conditions (6.3), we obtain the weak form of the electrical residual. For the spatial
discretization, we discretize the domain of interest  with nel finite elements  as

 and apply the standard isoparametric concept to interpolate the trial functions
φh and the test functions δφh,

(7)

Here, N are the standard shape functions on the element level and i, j = 1, …, nen are the
element nodes. For the temporal discretization, we partition the time interval of interest 

into nstp subintervals [tn, tn + 1] as  and apply a standard backward Euler
time integration scheme in combination with a finite difference approximation of the first
order time derivative φ̇,

(8)

Here, we have introduced the common abbreviation Δt: = t − tn > 0 for current time
increment. For the sake of clarity, we omit the index (∘)n+1 of the current time point of
interest. With the discretizations in space (7) and time (8), the discrete algorithmic residual

 takes the following explicit representation,

(9)

The operator A symbolizes the assembly of all element contributions at the element nodes i
= 1, …, nen to the overall residual at the global node points I = 1, …, nnd. To solve the
discrete system of nonlinear equations (9), we apply an incremental iterative Newton
Raphson solution scheme based on the consistent linearization of the residual (9), which
introduces the global iteration matrix,
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(10)

For each incremental iteration step, we update the global vector of unknowns

 at all I = 1, …, nnd global nodes. In the following subsection, we
illustrate the iterative calculation of the source term fφ(φ, r) required to evaluate the global
residual (9) and the calculation of its sensitivity with respect to the action potential φ,

(11)

required to evaluate the global iteration matrix (10). We end this section by noting that all
integrals in (9) and (10) are calculated using standard numerical quadrature techniques,
where values of φ at quadrature points for time t = tn+1 result from evaluating the
corresponding finite-element interpolation (7).

3.2 The local biochemical problem
On the local level, we introduce the recovery variable r as an internal variable and store it
locally at each integration point. For the temporal discretization, we apply a finite difference
approximation

(12)

combined with a classical implicit Euler backward time integration scheme. With the
discretization in time (12), the discrete residual Rr of the recovery equation (4) takes the
following representation

(13)

Its consistent linearization

(14)

defines the iteration scheme for the incremental update of the recovery variable r ← r −
Kr − 1 Rr on the integration point level. At local equilibrium, we finally compute the source
term fφ from equation (5) for the global electrical problem (9) and its consistent algorithmic
linearization dφf φ from equation (11) for the global Newton iteration (10). To evaluate this
linearization, we calculate the sensitivity

(15)

where Kr is the tangent (14) at local equilibrium, and ∂φRr is the sensitivity of the residual,

(16)

with ∂φγ̄ = −μ1/[μ2 + φ]2. Within a classical finite element setting, these source and tangent
terms are passed to the higher scales, from the biochemical problem (13) and (14) at the
integration point level to the electrical problem (9) and (10) at the node point level. Once the
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global Newton iteration has converged, we store the updated recovery variable r on the
integration point level.

4. Local excitation of individual cells
In this section, we study the temporal evolution of the local action potential to gain insight
into the excitation of individual cardiac muscle cells. This implies that we can neglect the
diffusion term divq in (1). The local electrical and biochemical equations (1) and (4) reduce
to the following set of ordinary differential equations,

with γ̄ = μ1/[μ2 + φ], which we solve numerically using standard integration schemes. The
dynamics of this system and the role of the standard FitzHugh-Nagumo parameters c, α, and
b have been studied intensely in the past (Fitzhugh 1961; Keener and Sneyd 1998). Here, we
have added the non-standard parameters μ1 and μ2 to calibrate different restitution curves
(Aliev and Panfilov 1996). The additional parameter γ controls the action potential duration.
To date, this parameter has not been thoroughly explored, although it plays a critical role in
cardiac repolarization, as we will demonstrate in the sequel. Since the action potential
duration directly controls the effective refractoriness of the system (Conrath and Opthof
2006), from now on, we will refer to the parameter γ as the refractoriness.

To quantify the relation between the action potential duration and the refractoriness γ, we
solve the local excitation problem and systematically vary the refractoriness γ. In all
simulations, we choose c = 8, α = 0.05, b = 0.15, μ1 = 0.2, μ2 = 0.3, which are common
parameter values for human cardiomyocytes (Aliev and Panfilov 1996; Kotikanyadanam et
al. 2010). As initial conditions, we choose Φ|t=0=−50mV and r|t=0=0, such that the
cardiomyocyte is excited with a transmembrane potential slightly above the critical
excitation threshold. Figure 2, left, displays the sensitivity of the action potential profile with
respect to the refractoriness γ. Despite the inherent nonlinearity of the underlying system of
equations, the only property affected by changes in γ is the duration of the action potential
itself, while all other features, i.e., the slope of the upstroke, the slope of the recovery, and
the baseline voltage at the resting stage, remain virtually unchanged. Figure 2, right, displays
the corresponding action potential duration APD90, i.e., the time until the cardiomyocyte is
repolarized by 90%. The curve suggests that the functional relation between APD90 and γ
can be approximated by the following logarithmic expression,

Using a least-squares linear regression, we obtain the values acell = −30.5 and mcell = −150.6
for the constants of this model, see Figure 2, right. In further sensitivity studies, we
confirmed that these model constants are insensitive to the initial conditions of the boundary
value problem.

5. Global excitation of a human heart
Next, we study the spatio-temporal evolution of the action potential to gain insight into the
baseline excitation pattern of a human heart. In the healthy heart, the last cells to depolarize
are the first to repolarize. As anticipated in section 1, this characteristic depolarization-
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repolarization pattern explains the positive T-wave in normal electrocardiograms. This
observation has also been confirmed by electrophysiological studies in human hearts (Cohen
et al. 1976; Franz et al. 1987). By mapping the transmembrane potential in different regions
of the left and right ventricles, both in the endocardium and epicardium, clinical studies have
revealed a linear relation between action potential duration and activation time (Cowan et al.
1988; Franz et al. 1987). This empirical relation can be summarized by the following linear
expression,

(17)

where tact is the activation time, i.e., the interval between the onset of the QRS-complex and
the upstroke of the individual action potential. The constants aheart and mheart are determined
from a least-squares fit of expression (17) to the experimental data. Typical values for the
slope mheart range from −0.83 to −2.11, with a mean of −1.32 and a standard deviation of
0.45, for healthy patients with positive T-waves (Cowan et al. 1988; Franz et al. 1987).

Motivated by these clinical observations, we partition the geometry of a patient-specific
human heart (Kotikanyadanam et al. 2010) into subdomains according to their activation
times. To this end, we solve the global electrical and biochemical equations (1) and (4)
described in Section 3 using a finite-element implementation. The elements in the atrio-
ventricular node region are electrically excited, generating wavefronts that travel throughout
the entire heart domain. As the initial wavefront propagates, it activates cells in different
locations at different times. The time elapsed between the excitation of the elements in the
atrio-ventricular node and the activation of a particular element defines its activation time
tact. We then partition the domain into ten subdomains and assign each element its
corresponding subdomain according to its local activation time tact, see Figure 3. For each
subdomain, we calculate the average APD90 using the empirical relation APD90 = aheart +
mheart · tact with aheart = 360 and mheart = −1.8 (Cowan et al. 1988; Franz et al. 1987). For
each APD90, we calculate the refractoriness γ using the local equation APD90 = acell +mcell ·
log10(γ) with acell = −30.5 and mcell = −150.6. Finally, for each refractoriness γ, we define
an individual cell type and assign it to the corresponding subdomain. In a finite element
setting, this assignment is performed simply via introducing individual material groups, see
Figure 3. Table 1 summarizes the average activation times tact, the action potential durations
APD90, and refractoriness parameters γ considered for all ten subdomains.

Once the refractoriness is assigned to the different regions in the heart domain, we proceed
to solve the electrical propagation problem using the finite element formulation described in
section 3. The parameters c, α, b, μ1 and μ2 are considered uniform in the domain of
analysis, and take the same values reported in section 4. The isotropic and anisotropic
conduction parameters have been set to diso = 2mm2/ms and dani = 8mm2/ms, respectively.
The tetrahedral mesh consist in 11,347 elements and 3,129 nodes (Kotikanyadanam et al.
2010), where linear shape functions have been selected as the interpolation basis. We set Φ
= −80mV in the entire domain as initial conditions. Boundary conditions reflect the flux-free
condition q · n = 0 at the domain surface. The time step is set to Δt = 5ms.

Figure 4 illustrates the action potential profile at different locations in the left ventricle for
simulations considering a uniform and a non-uniform distribution of the refractoriness γ,
respectively. In the uniform case shown in Figure 4, left, the action-potential duration is
similar for all cardiomyocytes, irrespective of their location and their activation time. In the
non-uniform case shown in Figure 4, right, the action-potential duration varies with location
and time, in keeping with experimental observations where last regions to depolarize are the
first to repolarize. Action potentials in cells immersed in an aggregate can differ from the
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behavior of single isolated cells. In particular, one is to expect some differences in the action
potential durations for these cases. Since we have established a relation between the
refractoriness and APD90 based on single-cell simulations, we assessed the error between
the target APD90 described in Table 1 and the APD90 obtained from biventricular
simulations. To this end, we computed the APD90 from curves in Figure 4, right, and
compared them to their corresponding target values in Table 1, and found a maximum
relative error of 8%. Thus, we can use activation time, the empirical relation between
activation time and action potential duration, and the relation that defines the refractoriness
to calibrate our model on the microscopic cell. We will now elaborate how this microscopic
calibration translates into clinically relevant macroscopic readouts.

Using the non-uniform distribution of the refractoriness γ as summarized in Table 1, we
simulate the excitation of a healthy human heart (Kotikanyadanam et al. 2010) based on our
fully-implicit finite element algorithm (Göktepe and Kuhl 2009). In an additional post-
processing step, we compute the electrical flux q from the diffusion-weighted
transmembrane potential gradient ∇φ, and integrate it numerically over the entire domain to
obtain the mean electrical vector q♡, also known as the heart vector,

To calculate the chest electrocardiogram, we project the heart vector q♡ onto the standard
six chest leads (Kotikanyadanam et al. 2010) characterized through the six vectors n as
illustrated in Figure 3,

The first set of vectors, i.e., the vectors between the left and the right arm nI, between the
left leg and the right arm nII, and between the left leg and the left arm nIII characterizes the
limb leads I, II, and III. The second set of vectors, i.e., naVR, naVL, and naVF, characterizes
the augmented limb leads, aVR, aVL, and aVF, which are linear combinations of the
standard limb leads.

Figure 5, left, displays the electrocardiogram simulated with the uniform parameter
distribution according to Figure 4, left. The uniform-parameter model nicely captures the
QRS-complex, i.e., the downward-upward-downward sequence at the beginning of the
cardiac cycle associated with a normal depolarization wave. However, the model generates a
markedly inverted T-wave, i.e., a negative hump at time τ ~ 300 ms associated with a
disturbed repolarization wave. We conclude that the uniform-parameter model is capable of
correctly predicting the depolarization phase of a healthy human heart, but that it is
incapable of correctly predicting the repolarization phase.

Figure 5, right, displays the electrocardiogram simulated with the non-uniform parameter
distribution according to Figure 4, right. The non-uniform-parameter model nicely captures
the QRS-complex, i.e., the downward-upward-downward sequence at the beginning of the
cardiac cycle associated with a normal depolarization wave. In contrast to the uniform-
parameter model, the non-uniform-parameter model generates a normal T-wave, i.e., a
positive hump at time τ ~ 300 ms associated with a normal repolarization wave. We
conclude that the non-uniform-parameter model is capable of correctly predicting the
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electrophysiology of the healthy human heart, both in the depolarization and repolarization
phases.

Finally, to validate our model, we compared the sequences of cardiac depolarization and
repolarization in the lateral left ventricular wall with clinically measured sequences averaged
over ten patients with healthy hearts and normal T-waves (Cowan et al. 1988). Figure 6
shows the clinically measured and the computationally predicted depolarization sequences,
top row, and repolarization sequences, bottom row. During the depolarization phase, the
action potential propagates bottom-up and inside-out across the left ventricular free wall.
The computational simulations agree nicely with these findings and closely match the
clinical excitation pattern. During the repolarization phase, the action potential returns to its
resting state top-down and outside-in. The last regions to depolarize are the first to
repolarize. Since the repolarization time is the sum of activation time and action potential
duration, in contrast to the depolarization pattern, the repolarization pattern is rather
uniform. Again, the computational simulations are in excellent agreement with the clinical
observations. Unfortunately, the clinical measurements do not include data on the
repolarization of the septum. Our simulations indicate that the cardiomyocytes in the septal
region repolarize later than the cardiomyocytes in the ventricular free walls. Overall, this
repolarization sequence results in the formation of a positive T-wave characteristic for the
electrocardiogram of healthy human hearts.

6. Concluding Remarks
In the healthy heart, the last cells to depolarize are the first to repolarize. This implies that
the action potential durations display significant regional and transmural variations. Here we
reinterpret a phenomenological scaling parameter as the refractoriness, and establish a
functional relation between the local action potential duration and this material parameter.
We then utilize this function to calibrate our model by means of clinically measured action
potential durations at different locations in the human heart. Our calibrated model displays
the major characteristic features of a healthy human heart; in particular, it correctly
reproduces the normal positive T-wave. When mapped across the left ventricle, its
depolarization and repolarization sequences are in excellent agreement with its clinically
measured counterparts.

Transmural variations of action potential durations (Myles et al. 2010; Tsamis et al. 2011)
have recently been incorporated into numerical simulations of cardiac electrophysiology to
obtain more realistic electrocardiograms (Boulakia et al. 2010). In particular, the
experimentally observed linear relation between action potential duration and activation
time (Franz et al. 1987) has been successfully integrated into computational models to
assure an upright T-wave (Winslow et al. 2000). However, to date, the importance of non-
uniform action potential durations has only been recognized phenomenologically, and the
regional assignment of the corresponding model parameters has been rather heuristic. Using
the concept of a non-uniform refractoriness, our proposed approach offers an elegant
framework to calibrate phenomenological models by means of clinically measured
excitation sequences obtained under physiological conditions.

Although the relation between global T-wave polarity and local action potential durations
has been recognized more than a century ago (Mines 1913), the heterogeneity of cardiac
repolarization remains largely controversial (Opthof et al. 2009; Patel et al. 2009). In
particular, the relative contributions of regional and transmural action potential variations to
the genesis of a positive T-wave are still a matter of ongoing debate (Bakker and Opthof
2002; Conrath and Opthof 2006). There is strong experimental evidence, which supports
that action potential duration and activation time are closely correlated under physiological
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conditions, irrespective of the location in the heart (Cowan et al. 1988; Franz et al. 1987;
Myles et al. 2010). The proposed model could help to further elucidate this hypothesis by
using a high-resolution patient-specific model with a non-uniform refractoriness
distribution. Numerical simulations would then allow us to study the complex interplay
between regional and transmural action potential durations, and assess their role in the
formation of positive T-waves in electrocardiograms of healthy individuals (Okada et al.
2011; Winslow et al. 2000). We anticipate that our correctly calibrated baseline model of the
human heart has the potential to be widely applicable to explore cardiac excitation profiles
in health and disease.
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Figure 1.
Schematic of electrocardiogram sequence for a healthy human heart, showing the P-wave,
QRS-complex and T-wave.
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Figure 2.
Sensitivity of the action potential profile Φ with respect to the refractoriness γ, left, and
functional relation between the action potential duration APD90 and the refractoriness γ,
right. The refractoriness γ affects the duration of the action potential, but not the slopes of
the upstroke, nor the slope of the repolarization, and neither the baseline voltage at the
resting stage.
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Figure 3.
Human heart model partitioned into ten subregions based on activation times obtained from
simulation. The color code indicates that the dark blue regions depolarize first, while the
dark red regions depolarize last. In the healthy heart, the regions to depolarize last are the
ones to repolarize first. This is modeled through a heterogeneous refractoriness γ with
largest values in the red regions and smallest values in the blue regions. Notation: RV =
right ventricle, LV = left ventricle, AV = atrioventricular node, nI, nII, nIII = limb leads,
naVR, naVL, naVF = augmented limb leads.
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Figure 4.
Action potential profiles for seven representative subregions in the heart. Uniform
distribution of refractoriness γ, left, generates similar action potential profiles at all
locations. Non-uniform distribution of refractoriness γ, right, generates spatially varying
action potential profiles, where the regions to depolarize last are the ones to repolarize first.
Notation: usw = upper septal wall, msw = mid septal wall, lsw = lower septal wall, va =
ventricular apex, lvw = lower ventricular lateral wall, mvw = mid ventricular lateral wall.
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Figure 5.
Electrocardiogram for a representative cardiac cycle with limb leads I, II, and III and
augmented limb leads aVR, aVL, and aVF. Uniform distribution of refractoriness γ, left,
generates an inverted T-wave, i.e., a negative hump in leads I and II at time τ = 300 ms.
Non-uniform distribution of refractoriness γ, right, generates a normal T-wave, i.e., positive
hump in leads I and II at time τ=300 ms. The QRS-complex, i.e., the downward-upward-
downward sequence at the beginning of the cardiac cycle, is captured nicely by both models,
left and right.
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Figure 6.
Depolarization and repolarization sequences in the healthy human heart. The experimental
sequences, top rows, represent the depolarization and repolarization of the left ventricle,
averaged over ten healthy individuals, where grey regions indicate activated epicardium;
reprinted with permission from (Cowan et al. 1988). The computational sequences, bottom
rows, represent the depolarization and repolarization of a healthy human heart, where the red
regions indicate activated myocardium.
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Table 1

Regional variation of refractoriness γ in a healthy human heart model. The heart is partitioned into ten
subdomains. For each subdomain we calculate the average activation time tact using the global electrical and
biochemical equations. For each activation time tact, we calculate the average APD90 using the global equation
for the action potential duration. For each APD90, we calculate the refractoriness γ using the local equation for
the action potential duration.

material group region [−] average activation time tact [ms] action potential duration APD90 [ms] refractoriness γ [−]

1,11 7.5 346.5 0.0031

2 17.5 328.5 0.0041

3 27.5 310.5 0.0055

4 37.5 292.5 0.0072

5 47.5 274.5 0.0095

6 57.5 256.5 0.0124

7 67.5 238.5 0.0164

8 77.5 220.5 0.0216

9 87.5 202.5 0.0284

10 97.5 184.5 0.0374
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