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How different levels of biological organization interact to shape each other’s

function is a central question in biology. One particularly important topic in

this context is how individuals’ variation in behaviour shapes group-level

characteristics. We investigated how fish that express different locomotory

behaviour in an asocial context move collectively when in groups. First,

we established that individual fish have characteristic, repeatable locomotion

behaviours (i.e. median speeds, variance in speeds and median turning

speeds) when tested on their own. When tested in groups of two, four

or eight fish, we found individuals partly maintained their asocial

median speed and median turning speed preferences, while their variance

in speed preference was lost. The strength of this individuality decreased

as group size increased, with individuals conforming to the speed of the

group, while also decreasing the variability in their own speed. Further, indi-

viduals adopted movement characteristics that were dependent on what

group size they were in. This study therefore shows the influence of social

context on individual behaviour. If the results found here can be generalized

across species and contexts, then although individuality is not entirely lost

in groups, social conformity and group-size-dependent effects drive how

individuals will adjust their behaviour in groups.
1. Introduction
How the behaviour of individuals and the interactions between them produce

group-level behaviour is at the heart of collective behaviour research [1].

Group-level properties, such as the collective movements of animal groups,

emerge when individuals respond to the location and movements of their near

neighbours [2–4]. This responsiveness to the behaviour of neighbours allows con-

sensus to be reached over the timing and direction of group movements [5,6]. This

in turn allows groups to maintain their coherence and enables group members to

realize the benefits of group living [7]. To date, however, most studies of collective

behaviour have assumed that group members are identical in their movements

and responses to their neighbours [2–4] (but see [8–10] for theoretical predictions

and [11,12] for empirical observations about individual differences in groups).

This common assumption of homogeneity contrasts with a large and growing

body of work documenting consistent inter-individual differences in behaviour

[13–18] and evidence that differences in the social affiliations between group

members, and individual differences, can affect leadership and the collective

decision-making process [12,19,20].

But if groups composed of heterogeneous agents are to function effectively

and cohesively, then group members may need to limit or even sacrifice some

of their individuality in order to align their behaviour with that of their group

mates. In some groups, for example, subordinate group members conform to

the decisions of lead individuals, thereby suffering consensus costs [21],

while in others, individuals alternate between leadership roles [22]. This
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pressure to conform is likely to increase with group size, as

the number of interactions with different individuals increa-

ses over time. However, complete conformity can stifle

innovation and detract from the advantages of group living

[23], hence maintenance of some individuality is likely to

be advantageous [24,25]. So how do group members balance

their own individuality against the need to conform, and how

is this balance affected by group size and group composition?

Understanding this inter-relationship of the individual

and the group is fundamental to our appreciation of the

mechanisms of collective behaviour.

Using a combination of fine-scale movement data of a

shoaling species of fish (mosquitofish, Gambusia holbrooki),
we tested whether fish retained individuality in their move-

ment patterns, a term we name ‘movement signatures’, in

groups. We first demonstrate that these fish exhibit consistent

individual movement signatures in an asocial context over

time. We show this using classical linear statistics comparing

quantifiable movement parameters such as the fish’s median

speed and median turning speed. In practice, however, an

individual’s movement signature is a combination of these

movement parameters, and therefore we complement our

analysis using Markov chain models to analyse how the

movement signatures of individuals changed between trials.

We go on to determine whether individuals retain these

individual movement signatures when placed into groups

and asked whether this was dependent on group size. We

determined if individuals self-assorted to occupy specific

positions in the group that were dependent on their individ-

ual signatures. Further, we asked whether individuals moved

in particular ways depending on what group size they were

in, even if they did retain some of their individual movement

signatures. Finally, we determined whether the median speed

of a group’s centroid was correlated with the asocial speeds

of its component group members.
2. Material and methods
(a) Study species and experimental methods
Female mosquitofish (Gambusia holbrooki) (22 mm + 4; mean + 1

s.d.) were collected from Lake Northam (33853007 S, 151811035 E),

Sydney, Australia. For each day of trials, an experimental arena

(730 � 730 � 150 mm) made of 10 mm acrylic was filled to a

depth of 70 mm with dechlorinated water. A further 2 l of

water, taken from a housing tank containing over 50 mosquito-

fish, was poured into the arena in an attempt to keep the

amount of chemical cues between trials constant, although

the presence or absence of conspecific cues has little effect on

the exploratory behaviour of fish [26]. Two columnar stones

were placed 240 mm from two corners of the arena. A frame

with an opaque black plastic curtain visually isolated the arena

to prevent external disturbances to the fish. The arena was lit

using fluorescent lights. In one corner of the arena was a trans-

parent door, which could be remotely lifted with a poly-nylon

cord. Fish could therefore be held in this holding-corner

(behind the door) prior to the start of trials. Above this

holding-corner, we placed a Nikon G10 digital video camera,

which filmed the fish as they left the holding-corner into the

main arena. These films were of high quality (macro-setting;

640 � 480 pixels, 30 fps) so that we could individually identify

each fish from their elastomer tags (see electronic supplementary

material). For each trial, we placed fish (depending on the treat-

ment, singularly, or in groups of two, four or eight; see below) in

the holding-corner for 5 min in order to acclimate the fish to the
arena. Following these 5 min, we raised the door allowing the

fish to enter the arena. A web-cam (Logitech Pro 9000) placed

directly over the centre of the arena filmed the fish as they

explored the arena for 5 min.

An ‘asocial trial’ consisted of trialling an individual on its

own in the arena. A first set of 65 fish were given two asocial

trials each (with two weeks between trials) in order to determine

how consistent an individual’s movements were in the absence

of conspecifics. Subsequently, we used a different set of fish to

record individuals’ behaviours in an asocial trial and a social

trial (individuals in a group). No individuals from the first set

of trials were reused for this second set of trials. We selected

group sizes of two, four and eight fish (12 replicates of each

group size, n ¼ 168 fish). All individuals in each group had

been trialled in asocial trials. To control for the order of trials,

half of the replicates were done with groups tested first, and sub-

sequently the individuals in these groups were trialled on their

own. For the other half, we trialled the individuals first, and

then subsequently placed these individuals into the different

group sizes. Again, we left two weeks before re-trialling individ-

uals. The same fish were not reused in different group sizes.

Using the automated tracking software CTRAX (v. 0.1) and

the associated manual correction package FIXERRORS GUI in

MATLAB, we obtained consistent tracks and coordinates (x, y)

of each individual in each trial. From these data, we calculated

each fish’s median speed, variance in speed and median turning

speed across each trial (see electronic supplementary material,

figure S1 for details of calculations and average values for

different group sizes). We chose to measure these parameters

(i) because they are associated with behaviours such as explora-

tion, navigation and foraging [27,28], (ii) because they are

important in the social interactions between shoaling fish [2,4],

and (iii) because they are easily quantifiable between the two

contexts of interest. We calculated each group’s average polariz-

ation [9] over the course of the trial (see electronic supplementary

material). When groups were reasonably aligned (individuals

being normally distributed about the mean direction of travel

with a standard deviation of approx. 38.38), we calculated the

mean normalized position score of each individual in a group.

Individuals that were always at the front of the group would

have a score of zero, while individuals always at the back of

the group would have a score of one (see electronic supplemen-

tary material). We also calculated the speed of each group’s

centroid. Finally, we calculated the mean distance of group mem-

bers to the group’s centroid over the course of a trial, which we

used as a measure of the group’s cohesiveness.
(b) Generalized linear mixed models and PCA
To determine whether individuals were consistent in their move-

ment signatures between asocial trials, we analysed whether an

individual’s first asocial movement score (e.g. its median

speed, variance in speed or median turning speed) could predict

that movement score in its second asocial trial using linear

models in R v. 2.13.0 [29].

We hypothesized that when in groups, individuals would

behave more uniformly together, compared with when those

same individuals had been tested on their own. Hence, we pre-

dicted that the variance in median speeds of individuals within

a group would be reduced in the social context relative to the

variance in median speeds of those same individuals in an aso-

cial context. We call this group-level conformity. To test this,

we used a linear mixed-effects model to assess the effect of con-

text (social or asocial) and group size (two, four or eight as a

categorical variable), and their interaction on the overall log var-

iance in speed of individuals within a group (i.e. one data point

per group per context). Group ID was added as a random factor

to control for the repeated-measures nature of the data.



rspb.royalsocietypublishing.org
ProcR

SocB
280:20122564

3
The response variable (variance in speed) was logged to improve

the normality of model residuals.

Next, we hypothesized that the variance in an individual’s

speed (i.e. variance measured at the level of the individual, not

the group as above) would also decrease in a group compared

with that individual’s variance in speed when tested on its

own. Hence, individuals would be swimming with more uni-

form speeds in groups than when on their own. We call this

individual-level conformity. To test this, we analysed the effect

of context (social or asocial), group size (two, four or eight as a

categorical variable) and average nearest-neighbour distance

(NND), and their two- and three-way interactions on individual

variance in speed using a linear mixed-effects model. Neighbour

distance was included to account for the possibility that the level

to which an individual adjusts its behaviour may depend on its

proximity to neighbours. Individual ID, nested within group ID,

was added to the model as random factors to account for the

repeated-measures nature of the data and non-independence of

individuals within a group. Non-significant interactions were

removed in a stepwise fashion following Crawley [30], leaving

a model containing only main effects (all interaction terms

were non-significant).

We then investigated whether fish maintained their asocial

movement parameter preferences in their social trials. We pre-

dicted that if individual signatures were maintained, a fish’s

behaviour (median speed, variance in speed and median turning

speed) in its asocial trial would predict the same signature in its

social trial. To do this, we used general linear mixed-effects

models, incorporating body size as a covariate and group size

as a fixed factor (categorical variable), to investigate the effect

of movement parameters in an asocial setting (median speed,

variance in speed or median turning speed) on movement

parameters in a social setting. Group ID was included as

a random factor to account for the non-independence of individ-

uals within a group. We removed all non-significant interactions

in a stepwise manner, leaving all main effects, whether signifi-

cant or not, and significant interactions [30]. It is important to

note that although the different movement parameters are

correlated, principle components analysis is not appropriate

here, because the weighting for the principle components

generated for one context (asocial or social) would not directly

map to the other context. This means analysing each response

variable separately is more appropriate in this case (G. Ruxton

2011, personal communication).

We hypothesized that if some individuals had consistent indi-

vidual signatures between asocial and social contexts, this could be

because of some individuals leaving the group and behaving inde-

pendently of other group members. If this were the case, we

predicted that individuals at greater distances from their group

members should show greater similarity between their social

and asocial movement scores. To test this, individual consistency

scores were calculated and defined as the absolute value of the

difference between movement score in the social and asocial

trials. Two movement scores were investigated: median speed

and median turning speed. We assessed the effect of mean near-

est-neighbour distance and group size (fixed effect), and their

interaction, on the square root of individual consistency scores

(square root transformation was necessary to normalize the data),

using linear mixed-effects models. Group ID was added as a

random factor to account for the non-independence of individuals

within groups. We predicted that, if individuals are leaving the

group and behaving independently, we would see a significant

correlation between consistency and mean nearest-neighbour dis-

tance, with those individuals showing the highest levels of

consistency (smallest consistency values) to be those that were

further from their neighbours and so isolated from the group.

Finally, we investigated whether swimming behaviour could

be used to predict the position an individual occupied in a
group. Here, we were able to use PCA to reduce the three swim-

ming variables (and body size) to a single measure of behaviour

as we are not comparing directly between the social and asocial

context, and although the weightings of the variables on the

components differed between contexts, this does not affect our

analysis. PCA analysis on each context separately revealed one

significant component for each context (see the electronic

supplementary material). We investigated the effects of the

social or asocial principle component, group size (categorical

variable) and their interaction on normalized position score

using linear mixed-effects models. Again, group ID was added

as a random factor to account for non-independence of individ-

uals in a group, and non-significant interactions were removed.

(c) Markov chain modelling technique
We also used a Markov chain modelling technique to detect indi-

vidual signatures between asocial trials, individual signatures in

social trials, and general movement signatures depending on the

group size. Markov chain models allow the description and

classification of dynamic patterns by assigning probabilities to

sequences of events, where the probability of an event only

depends on the immediately preceding event. If we assume

that in a sequence of actions of an individual the probability of

some action is largely determined by the preceding action,

Markov chains can be used for the analysis and models of behav-

iour [11,31–33]. If for all pairs (ai, aj) of possible actions the

conditional probability P(ajjai) is known, the probability of a

whole sequence of actions can be computed by multiplying the

probabilities of all pairs of consecutive actions in the sequence

(see the electronic supplementary material for a definition of

the actions). For each individual, a specific Markov chain can

be constructed by estimating the probabilities of pairs of actions

from observations of this individual’s movements. When explor-

ing, many fish will swim with a saltatory (stop–start) movement

pattern [34–36]. Differences in the lengths and transitions

between steps make two fish differ in their swimming speed

and turning speed. This is included, together, in our Markov

models. Therefore, these individual-specific models can be

used to try to recognize the individual that produced a newly

observed sequence of actions.

In order to properly use these Markov chain models for the

detection of individual signatures, we applied Bayesian classifi-

cation: given an observed sequence of actions O, we looked for

the individual i that caused the sequence O with the highest prob-

ability, meaning the one that maximizes the conditional probability

PðijOÞ ¼ PðOjiÞPðiÞ
PðOÞ :

Note that the maximization procedure does not depend on

P(O). Also, in our experimental set-up, P(i), the probability for

individual i to occur, is the same for all i. This means that we

can find the individual we were looking for by determining the

individual that maximizes P(Oji). If we have a Markov chain

model for each individual, this can be done in the following

way: for each individual, we simply compute the probability of

the observed sequence O based on the respective individual-

specific model, and pick the individual that yields the highest

probability. In the same way, we can compute the rank of a

specific model M for an observed sequence O by determining

how many other individual models yield a higher probability

than M. Regardless of whether a Markov chain can completely

explain the swimming patterns, these models can be used in

the classification procedure described above because the decision

is based on a simple comparison of values yielded by the models.

Further, although it would be possible to make these models

more complex by using higher-order Markov chains (which

take a finite sequence of previous actions into consideration to



Table 1. Linear mixed-effects models investigating the effect of context (asocial or social) and groups size on (a) group-level conformity (the variance in
median speed between individuals within a group) and (b) individual-level conformity (the variance in speed exhibited at an individual level). Intercept refers
to the baseline parameters of the behaviour of individuals allocated to a group of two, in an asocial context. There is less variability between group members
when in groups compared with when tested on their own, and individuals behave in a less variable manner when in a group. Group-level conformity decreases
as group size increases, but this is not the case for individual-level conformity. Significant p-values at the 0.05 level are shown in bold.

fixed effect value s.e. d.f. t-value p-value

(a) group-level conformity

intercept 3.357 0.435

context 22.073 0.389 35 25.327 <0.001

group size ¼ 4 1.146 0.550 33 2.085 0.045

group size ¼ 8 1.954 0.550 33 3.553 0.001

(b) individual-level conformity

intercept 7.626 0.078

context 20.097 0.025 167 23.876 <0.001

group size ¼ 4 20.029 0.074 33 20.388 0.701

group size ¼ 8 0.021 0.074 33 0.277 0.784

NND 20.000 0.001 131 20.003 0.998
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predict the next action) or including location-dependent models

(which specifically describe the behaviour, e.g. in corners or in

the middle of the arena), this would require more data, and, as

our findings indicate, such models are not required to test our

specific hypotheses.

For the detection of individual signatures between asocial

trials, we constructed a model Mi for each individual i based

on the first trial. Using the data of the second trial for each indi-

vidual i,, we then determined the rank of Mi among all other

models. A rank of 1 means ‘perfect detection’ of an individual

(i.e. no other individual’s models were better at predicting that

individual than its own model). In the absence of any individual

signatures, all ranks are equally probable and should be uni-

formly distributed with a mean of 33 (because there were

65 individuals in these asocial consistency trials). We used a

one-tailed Wilcoxon signed-rank test to determine whether the

mean of our recognized ranks was smaller than that of this

null model.

We also applied this Markov chain model technique to inves-

tigate whether an individual’s asocial behaviour could be used to

detect that individual in a group. To do this, we determined

the rank of each individual’s model among all other models on

the social trials. The expected mean rank in the absence of indi-

vidual signatures was 84.5 (because there were 168 individuals in

the social trials). In this analysis, we were interested in whether

these scores were dependent on what group size an individual

was in. Therefore, we analysed the scores for each group size sep-

arately against this null model, again using one-tailed Wilcoxon

signed-rank tests.

Using this modelling technique for a third time, we also asked

whether we could detect general differences between how individ-

uals moved in asocial versus social contexts. This analysis was

therefore not concerned with differences between individuals,

but rather differences in movement signatures between contexts

including differences between group sizes. To test this, we used

the same Markov chain modelling approach as described pre-

viously to determine whether an individual’s movements could

be distinguished as ‘an individual moving on its own’ or ‘an indi-

vidual moving in a group’. This time, however, we did not

construct models from single individual trials but from sets of aso-

cial trials and of social trials, respectively. These models therefore

do not represent the behaviours of specific individuals, but rather
the general behaviour of an individual moving on its own or of an

individual moving in a group.
3. Results
Fish were highly consistent in the movement parameters we

recorded between their two asocial trials (median speed:

F1,63 ¼ 20.74, p , 0.001; variance in speed: F1,63 ¼ 12.83,

p , 0.001; median turning speed: F1,63¼ 23.47, p , 0.001;

electronic supplementary material, figure S2). We could

also detect individual signatures between these two asocial

trials using the Markov chain modelling technique. By com-

paring fish i’s movement patterns in its first trial with

those in its second trial (as compared with other ran-

domly assigned individuals’ movement patterns), we found

more evidence that fish displayed consistent individual

movement patterns between trials (Wilcoxon signed-rank

test, V ¼ 582.5, p ¼ 0.001).

In groups, we found that the variance between individ-

uals’ median speeds was significantly lower in the social

trial than in the asocial trial, demonstrating group-level con-

formity (table 1a). There was also a significant effect of

group size on individuals’ variance in speed (table 1a), indi-

cating that individuals showed greater variability in larger

groups. We also found that individuals exhibit individual-

level conformity; the variance in an individual’s speed

decreased in a social context compared with an asocial con-

text. In this case, however, individual-level conformity was

independent of group size or the mean distance to a fish’s

nearest-neighbour over the trial (table 1b).

Conformity resulted in individuals adopting movement

characteristics that were group-size-dependent. The Markov

model was able to detect differences between the movements

of a fish in asocial versus social trials, no matter what

group size individuals were in (binomial test: n ¼ 74, N ¼ 96,

p ¼ 0.5, p , 0.001). In addition, it detected differences

between the way a fish moved in asocial trials, the movement

of a fish in smaller groups (two or four fish) and the



Table 2. Linear mixed-effects model investigating the effect of movement scores in the asocial trial ((a) median speed, (b) variance in speed and (c) turning
speed), group size (as a categorical variable) and body size, on movement score in the social trial. Individuals are consistent in their median speeds and median
turning speeds between contexts, but not their variance in speed. Significant p-values at the 0.05 level are shown in bold.

fixed effect value s.e. d.f. t-value p-value

(a) median speed (mm s21)

intercept 59.140 5.460

individual 0.062 0.028 130 2.210 0.029

group size ¼ 4 20.359 4.778 33 20.075 0.941

group size ¼ 8 6.059 4.755 33 1.274 0.211

body size 20.642 0.705 130 20.910 0.364

(b) variance in speed (mm2 s22)

intercept 1541.963 229.261

individual 0.069 0.042 130 1.655 0.100

group size ¼ 4 2120.140 160.507 33 20.749 0.460

group size ¼ 8 14.820 158.844 33 0.093 0.926

body size 46.130 33.790 130 1.365 0.175

(c) median turning speed (rad s21)

intercept 1.129 0.082

individual 0.144 0.028 130 5.117 <0.001

group size ¼ 4 0.001 0.063 33 0.021 0.983

group size ¼ 8 0.080 0.063 33 1.277 0.211

body size 20.065 0.011 130 25.719 <0.001
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movement of a fish in larger groups of eight fish (binomial

test: n ¼ 45, N ¼ 72, p ¼ 1/3, p , 0.001). Individuals therefore

adopted movement characteristics that were dependent on

the group size they were in.

The level to which individuals conformed to each other’s be-

haviour also affected some group-level characteristics. For

groups of two oreight individuals, groups with a lower variance

between group members’ median social speeds were more

cohesive than groups with a higher variance between group

members’ median social speeds (groups of two: Pearson corre-

lation, r ¼ 0.71, p ¼ 0.01; groups of eight: Pearson correlation,

r ¼ 0.62, p ¼ 0.03). However, this was not the case in groups

of four (Pearson correlation, r ¼ 0.136, p ¼ 0.673). Instead, in

groups of four, groups with lower average social turning

speeds between shoal mates were correlated with higher shoal

cohesiveness (Pearson correlation, r ¼ 0.62, p ¼ 0.03), while

this trend was not evident for groups of two or eight (groups

of two: Pearson correlation, r ¼ 0.33, p ¼ 0.29; groups of eight:

Pearson correlation, r ¼ 0.40, p ¼ 0.19). There was no evidence

that the level of conformity (again measured as the variance

between individuals’ social speeds) affected the median

speed of the group in any group size (groups of two: Pearson

correlation, r ¼ 0.07, p ¼ 0.82; groups of four: Pearson corre-

lation, r ¼ 0.48, p ¼ 0.12; groups of eight: Pearson correlation,

r ¼ 0.37, p ¼ 0.24). Nor was there any evidence that the level

of conformity affected group polarization (variance between

individuals’ median social speeds; groups of two: Pearson

correlation, r ¼ 2 0.47, p ¼ 0.119; groups of four: Pearson

correlation, r ¼ 0.21, p ¼ 0.51; groups of eight: Pearson corre-

lation, r ¼ 2 0.23, p ¼ 0.47; variance between individuals’

median social turning speeds; groups of two: Pearson corre-

lation, r ¼ 2 0.12, p ¼ 0.72; groups of four: Pearson
correlation, r ¼ 0.32, p ¼ 0.31; groups of eight: Pearson

correlation, r ¼ 2 0.31, p ¼ 0.32).

Although individuals conformed to the behaviours of

others, they also retained some key aspects of their movement

signatures. There was no evidence that these consistent indi-

vidual signatures were an artefact of individuals leaving the

group and behaving independently of group members

(linear mixed-effects model for speed: effect of average

NND: F1,131 ¼ 1.483, p ¼ 0.226; linear mixed-effects model

for effect of group size: F2,33 ¼ 1.093, p ¼ 0.347 turning

speed: effect of NND: F1,131 ¼ 0.469, p ¼ 0.495; effect of

group size: F2,33 ¼ 1.668, p ¼ 0.204). In particular, the charac-

teristic median speed and median turning speed of fish in the

asocial trials was retained to an extent in the social context,

although their variance in speed signature was lost (table 2).

Group size and individual body size had no effect on the main-

tenance of speed signatures, and there were no significant

interaction effects between these variables (table 2a). Both

body size and asocial turning speed (but not group size) pre-

dicted average turning speed in a group (table 2c). There was

no evidence, however, that individuals occupied different pos-

itions within the group depending on their asocial movement

preferences or their social movements preferences (linear

mixed-effects model for asocial movement component: effect

of behaviour: F1,131 ¼ 0.59, p ¼ 0.45; effect of group size:

F2,33¼ 0.01, p ¼ 0.99; linear mixed-effects model for social

movement component: effect of behaviour: F1,131 ¼ 0.47,

p ¼ 0.49; effect of group size: F2,33 ¼ 0.007, p ¼ 0.99).

We also used the Markov models to detect an individual’s

movement signature in a group from its movement signature

in its asocial trial. In group sizes of two and four, individuals’

asocial trial models could successfully predict their own
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movement signature in a group compared with other ran-

domly assigned individuals’ asocial models (groups of

two: mean rank ¼ 59.54, V ¼ 60, p , 0.01; groups of four:

mean rank ¼ 73.90, V ¼ 429, p ¼ 0.05). In group sizes of

eight, however, the models were unable to correctly identify

individuals’ movement signatures in groups from their aso-

cial models (mean rank ¼ 88.43, V ¼ 2532, p ¼ 0.77). As

group size increased, therefore, our analysis suggests that

individuals lost some aspects of their movement signatures.

Finally, we aimed to predict group-level properties—in

this case, the median speed of the centroid of the group—

from how a group’s members had behaved asocially. In

groups of two, the fastest individual’s median asocial speed

in the pair could predict the median speed of the centroid

of the group (Pearson correlation, r ¼ 0.754, p ¼ 0.005). In

groups of four and eight, on the other hand, the fastest asocial

individual’s median speed could not predict the group’s

median speed (Pearson correlation, r ¼ 0.324, p ¼ 0.30;

Pearson correlation, r ¼ 2 0.038, p ¼ 0.91, respectively). In

the largest group size, there was a trend, although non-sig-

nificant, for the median of all individuals’ median asocial

speeds to predict the median centroid speed of the group

(groups of two: Pearson correlation, r ¼ 0.311, p ¼ 0.33;

groups of four: Pearson correlation, r ¼ 0.246, p ¼ 0.44;

groups of eight: Pearson correlation, r ¼ 0.523, p ¼ 0.08).
4. Discussion
By recording the fine-scale movement characteristics of indi-

vidual fish in both asocial and social contexts, we have

determined how individual-level behaviour is maintained,

but also adapted, according to the social context. We first

showed that between asocial contexts, individuals exhibited

repeatable aspects of their movement signature, including

their median speed, variance in speed and median turning

speed. In social contexts, we could detect an individual’s aso-

cial median speed and median turning speed signature in

every group size, but not their asocial variance in speed signa-

ture. Using a different analytical method, our Markov models

could also detect asocial individual movement signatures in

groups of two or four individuals, but not in groups of eight.

But although individuals maintained their movement signatures

to some degree, they also adapted them, which led to group-level

conformity. In particular, individuals behaved more similarly to

each other in social rather than in asocial contexts. In group sizes

of two and eight, groups with higher levels of conformity were

also more cohesive. Individuals also reduced the variability of

their own individual behaviour in groups and adopted group-

level movement characteristics that were dependent on the

group size they were in. In particular, there were specific differ-

ences in movement signatures between individuals on their own,

individuals in group sizes of two or four and individuals in

group sizes of eight, as demonstrated by our Markov model.

We did not find any evidence, however, that individuals self-

assorted into positions relating to either their asocial or social

movement signatures. Finally, predicting group-level properties

was group-size-specific, with the fastest individual’s asocial

speed of a pair predicting the median centroid of a group,

while the median asocial speeds of all group members was a

better predictor of group speed in groups of eight.

If individuals are to realize the benefits of group living,

individuals should conform, at least to some extent, to the
behaviour of their group members [16]. In our trials, individ-

uals clearly demonstrated this process, as the variation

between individuals’ movement signatures decreased in

groups compared with when those individuals were tested

on their own. Furthermore, individuals reduced the variation

in their own speed in groups, indicating individual-level con-

formity. Behavioural conformity such as this, both at the

individual and group levels, stops individuals from ‘standing

out from the crowd’, otherwise known as the oddity effect

[37], or becoming isolated from the group. This in turn

reduces an individual’s likelihood of predation [37,38].

Total behavioural conformity, however, where individuals

display no behavioural differences in groups, was not

reached in the group sizes tested here and individuals main-

tained some aspects of their individual movement signatures

in groups. This is important, because if some individuals con-

form completely to the behaviour of other group members,

then they may suffer consensus costs under certain conditions

[21]. Our results demonstrate that when individuals with

different behavioural preferences are in the same group,

these individuals can maintain group cohesion, while not

abandoning their individuality by completely conforming

to a subset of individuals or a despotic group member. By

doing this, compromise over the timing and direction of col-

lective movements can be reached, and individuality

maintained, at least to some degree [22].

In the largest group size tested here (i.e. eight individuals),

it became increasingly difficult to detect an individual’s move-

ment signature. This suggests that in larger group sizes still,

individuals may not show any of their asocial behavioural pre-

ferences. Again, this is likely to be driven by the need to

conform and, in particular, reduce an individual’s likelihood

of predation. But confusion effects, where predators find it

more difficult to select an individual prey item in the group

[37], do not necessarily require complete coordinated behav-

iour [39]. Therefore, this may allow individuals to maintain

some aspects of individuality in larger groups, while not suf-

fering oddity effect costs. Hence, individuality may be

maintained in larger groups, but this remains to be tested.

Although conformity was clearly apparent in these

groups, the mechanism behind the manifestation of confor-

mity remains unclear. However, it must be driven by the

interaction rules between individuals and the instances

when an individual decides to follow or copy a neighbour’s

movements. Therefore, whether an individual maintains its

individual signature is likely to scale with group size, as

the number of potential interactions with group members

increases over time. This in turn may lead individuals in

groups to display group-size-dependent movement charac-

teristics. Both these predictions are consistent with the

findings in our study. Also, in certain contexts, such as in

novel environments, the need to conform may be higher as

individuals benefit from gathering social information from

group members rather than relying on their own minimal

private information [40]. In such cases, this may place

more importance on conformity over individual signature

retention. Future studies should investigate the role of confor-

mity over longer time periods, where individuality may

return after the amount of private information collected

from the environment increases, and reliance on social infor-

mation diminishes. Determining the instances when an

individual decides to follow others and instances when

an individual decides to ignore social interactions will
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determine the mechanism underlying conformity and high-

light its inter-relationship with individual signature retention.

As individuals conformed to the behaviour of their group

members, they adopted movement characteristics that were

group-size-dependent. Specifically, individuals had different

movement characteristics depending on whether they were

on their own, in groups of two or four, or in groups of

eight. The ability to predict the behaviour of individuals as

a function of the group size that they are in provides a power-

ful demonstration of the effect of social context in shaping

behaviour [16]. Further, predicting how individuals will

behave in groups, through both empirical and modelling

work, is an important step towards predicting what proper-

ties these groups will display [41–43]. Our analysis of

group-level properties, such as a group’s median speed,

shows that in small groups the asocial speed of the fastest

individual is an important determinant, whereas in larger

groups, the median asocial speed of all group members is

more important. Our work provides a foundation for future

investigations into this area, and will provide predictions

and methods for investigating individuality in other animal

groups, including human crowds [44]. We suggest the field

of collective behaviour will benefit now from a new gener-

ation of collective movement models, including specific and

consistent individual differences in agents, much as in the

study by Romey [10]. Such models will aid in predicting

what group-level properties may be affected by having

individual differences between group members, leading

empiricists to compose groups of specific behavioural

phenotypes to test and validate model predictions.

Other studies have also demonstrated that individuals

can maintain particular individual behavioural traits in

social contexts. For example, in a recent study, individual

fish in a decision-making task consistently occupied particu-

lar positions in the group, while experimenters controlled for

satiation levels, size and sex [45]. Other studies also report

that the maintenance of these traits depends on both the

level of the trait and state dependencies. In perch (Perca
fluviatilis), for example, traits such as time spent in open habi-

tat are consistently expressed between asocial and social

contexts (groups of four fish); however, bolder individuals

changed their behaviour less between contexts [46]. Similarly,

three-spined sticklebacks (Gasterosteus aculeatus) maintain

their behavioural traits in a pair, where the bolder individual

of the pair will initiate more foraging trips, while a shyer

individual will follow [11,47]. However, when satiation

levels are manipulated, and the bolder of two individuals is

fed while the shyer individual is left unfed, then the shyer

individual changes its behaviour and initiates more foraging

trips [47]. State-dependent behavioural plasticity is an impor-

tant component of individuality and would be particularly

interesting to study in larger groups because our results

suggest that as group size increases, individual signatures

get weaker and become harder to detect. This may cause

factors such as state dependence to play a more important

role in shaping the structure and leadership of larger

groups, rather than individual differences.

Belonging to a group exposes individuals to the behav-

iour or opinions of others, and results in costs and benefits

associated with following or adopting others’ decisions [48].

Retaining individuality in groups is important, therefore, as

it allows individuals to balance the energetic demands and

behavioural needs specific to each individual [49]. If individ-

uals can retain some aspects of their individual behaviour,

they may be better suited to group living than either total

conformists, who lose all trace of individuality, or non-

conformists, who maintain all or most aspects of their asocial

behaviour. Trading off between these two behavioural strat-

egies is likely to have been an important selective factor in

the evolution of grouping behaviour.

We would like to thank Graeme Ruxton, David Sumpter, Andrew
King, the editors and two anonymous referees for their advice on
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