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Interactions between species are important catalysts of the evolutionary pro-

cesses that generate the remarkable diversity of life. Symbioses, conspicuous

and inherently interesting forms of species interaction, are pervasive

throughout the tree of life. However, nearly all studies of the impact of

species interactions on diversification have concentrated on competition

and predation leaving unclear the importance of symbiotic interaction.

Here, I show that, as predicted by evolutionary theories of symbiosis and

diversification, multiple origins of a key innovation, symbiosis between

gall-inducing insects and fungi, catalysed both expansion in resource use

(niche expansion) and diversification. Symbiotic lineages have undergone

a more than sevenfold expansion in the range of host-plant taxa they use

relative to lineages without such fungal symbionts, as defined by the genetic

distance between host plants. Furthermore, symbiotic gall-inducing insects

are more than 17 times as diverse as their non-symbiotic relatives. These

results demonstrate that the evolution of symbiotic interaction leads to

niche expansion, which in turn catalyses diversification.
1. Introduction
Species interactions are a fundamental driver of evolutionary change. Compe-

tition, one form of species interaction, can drive the evolution of both novel

phenotypic and species diversity [1]. Studies of other forms of species inter-

actions have also illuminated symbiotic interactions (intimate, often long-term

interaction between different species) as motivators of evolutionary change,

spurring novel phenotypes, life-histories and developmental pathways [2,3].

Symbioses have played a critical role in the ecological diversification of many

organisms by facilitating expansion into novel ecological niches [2,4], and this

expansion is theorized to catalyse lineage diversification [2,3]. However, empiri-

cal tests explicitly linking symbioses to both niche expansion and species

diversification remain scarce [5,6].

Symbiotic interactions are particularly conspicuous and important in med-

iating interactions between plant-feeding (phytophagous) insects and their host

plants [4,7]. Symbioses between insects and fungi have evolved in a variety of

taxa [8–14]. A diverse insect group known to mediate plant–insect interaction

through symbiotic association with fungi is the ambrosia gall midges (Diptera:

Cecidomyiidae) [9–11,15–28]. Phylogenetic analysis of the fungal symbiont

places it within a monophyletic clade of Botryosphaeria dothidea fungi [29].

Botryosphaeria dothidea are cosmopolitan, typically free-living, ubiquitous

plant pathogens capable of feeding on a wide array of plant families world

wide [29,30].

Fungal-symbiotic gall midge females from six genera within four morpho-

logically well-separated taxonomic tribes transport conidia (fungal spores)

and oviposit them along with their eggs into plant tissues. The gall structures

induced by species of ambrosia gall midges on a variety of different plant

tissue types (root, stem, bud, leaf, flower or seed) are lined internally with

fungal hyphae which the developing larval gall midges use as food

[10,11,15,31–35], but also for defence against natural enemies [29,30,36,37].
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Figure 1. Predicted effects of symbiotic association between plant-feeding insects and fungi on niche expansion and diversification. In this example, a genus of gall
midges (orange) that has evolved a symbiotic association with fungi is 50 per cent more diverse and uses four times as much of the host-plant phylogeny as its
strictly plant-feeding sister lineage (green). Branch lengths are proportional to time, the maximum phylogenetic distance used by symbiotic gall midges is traced in
orange, maximum phylogenetic distance used by strictly plant-feeding gall midges is traced in green, blank branches are not included in maximum path calculation.
(Online version in colour.)
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The genera of ambrosia gall midges display different

adaptations for transportation of the fungal spores, including

specialized mycangial structures or modified hairs that wrap

around fungal spores [10,11,34]. As with other phytophagous

insects [38–40], gall midge host-plant shifts occur most often

between closely related plants relative to distantly related

plants, because shifts among distantly related plants require

substantially more adaptation [6,39]. Thus, gall midges are

constrained in the range of possible host-plant shifts by the

genetic distance between plant taxa [41,42].

Host-plant preferences are well characterized for gall

midge species in 351 genera [41,43] which also may be categor-

ized by the presence or the absence of fungal symbionts

[15,30,43]. Both molecular and morphological analyses have

also revealed that a small proportion (53 of the approx.

6100þ gall midge species) [43] are polyphagous (capable of

using multiple host-plant species; electronic supplementary

material, table S3 and figure S4). Here, using time calibrated

phylogenies of gall midge host-plants, I test two hypotheses

derived from evolutionary theories of symbiosis [2–4,44]

and diversification [1,45] concerning the role of symbiotic

interaction in niche expansion and phytophagous insect diver-

sification: (i) plant-feeding insects engaged in symbiosis

should exhibit niche expansion (display greater genetic dis-

tance between the host plants they use), when compared

with non-symbiotic lineages; and (ii) such niche expansion

should be concomitant with elevated diversification (figure 1).
2. Material and methods
(a) Host-plant data
Host-plant preferences for species from 351 genera of gall-

inducing midges using 141 plant families were assembled and

each midge taxa scored for the presence or the absence of
symbiotic fungi from the literature [43]. Details of host-plant pre-

ferences and use of fungi by gall-inducing midge genera and

polyphagous species is presented in electronic supplementary

material, tables S1 and S2. The species richness of each gall

midge genus was obtained from published sources [43] (see the

electronic supplementary material, table S2).
(b) Host-plant phylogenetics
Relationships among host-plant taxa were reconstructed for

gall midge genera and polyphagous gall midge species using

Phylomatic [46], a tool which compiles published angiosperm

phylogenies yielding a working hypothesis about their phylo-

genetic relationships. Where necessary host-plant phylogenies

were further resolved using published phylogenies. Studies

based on multiple genes were preferred and support values

greater than 80 per cent were required to resolve relationships.

Branch lengths of phylogenetic trees were scaled to time using

the BLADJ function within Phylocom [46] and fossil calibration

points from the literature [47]. The phylogenies of gall midge

host-plants (see the electronic supplementary material, figures

S1 and S2) are deposited in TreeBase (www.treebase.org). The

maximum phylogenetic range (maximum patristic distance) of

the host-plant phylogeny used by each gall midge taxa was

calculated using functions in the R package APE.
(c) Statistical methods
To test the hypothesis that plant-feeding insects engaged in sym-

biosis should exhibit niche expansion, comparisons between

fungal-symbiotic and non-fungal-symbiotic gall midges were per-

formed at both the generic and specific taxonomic levels.

Comparisons of both observed and expected numbers of polypha-

gous fungal-symbiotic and non-fungal-symbiotic gall-inducing

midges and the observed versus expected numbers of plant

families used by fungal-symbiotic and non-fungal-symbiotic

gall-inducing midges were performed using x2 goodness of fit

tests. The expected numbers of gall midges were derived from

http://www.treebase.org
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the total numbers of fungal-symbiotic and non-fungal-symbiotic

gall midges and total numbers of plant families used by fungal-

symbiotic and non-fungal-symbiotic gall midge species. For

example, the expected number of fungal-symbiotic polyphagous

gall midges is given by ((total number of fungal 2 symbiotic gall

midges/total number of gall midges)� total number of polypha-

gous gall midges). It is conceivable that further investigation of

some of the described cases of polyphagy using molecular

methods will reveal some of them to be cryptic species associated

with a single host plant, however, it is unlikely that these cases

would be biased towards fungal-symbiotic gall midges relative

to those species which do not employ fungal symbionts.

Many species of gall midges are narrowly host-specific leading to

a host-phylogenetic distance of zero. An overabundance of zeros may

prove problematic for traditional data modelling techniques, such as

generalized linear models (GLM), these situations arise when depen-

dent variables are comprised of more zeros than expected under a

Poisson distribution [48–51]. An over abundance of zeros in depen-

dent variables is often generated when one process gives rise to zero

and another to non-zero data. In such cases, restricting-dependent

variables to non-zero data may result in biased parameter estimates

[48–51]. Such zero weighted datasets are well modelled with a

two part zero-inflated generalized linear model termed a hurdle

model [49] which accounts for the over dispersion resulting

from zero-inflated data [48–51]. Host-plant phylogenetic distance

(maximum patristic distance) used by non-fungal-symbiotic gall

midge genera was compared with that of fungal-symbiotic

gall midge genera using hurdle zero-inflated generalized linear

models [48] with species richness of gall midge genera included as

a model covariate as implemented in the R statistical packages pscl

[52] and mgcv [53]. Host-plant phylogenetic distance used by

symbiotic and non-symbiotic polyphagous gall midge species was

compared via a Wilcoxon signed-rank test.

Morphologically defined taxonomic tribes [43] correspond

well with a molecular phylogeny (see the electronic supplemen-

tary material, figure S3). However, the lack of a fully resolved

phylogeny for Cecidomyiidae precludes the use of a traditional

sister group based approach, thus comparisons of the species

richness of fungal-symbiotic gall midge genera to non-fungal-

symbiotic genera were performed in two ways: (i) mean species

richness of fungal-symbiotic genera were compared with all

genera without symbiotic fungi within their taxonomic tribes

using a paired t-test and (ii) to account for remaining uncertainty

in taxonomic tribes fungal-symbiotic genera were compared

with all non-fungal-symbiotic plant-feeding genera in family

cecidomyiidae using a Wilcoxon signed-rank test.

That increased species richness in fungal-symbiotic lineages is a

result of increased diversification rather than an effect of clade

age was tested in two ways. First, the lengths of the pendant edges

from the cecidomyiid phylogeny (electronic supplementary

material) of fungal-symbiotic genera were compared with those of

non-fungal-symbiotic genera using the R package APE [54] and a

Wilcoxon signed-rank test. Second, I developed and employed a

novel diversification metric integrating niche breadth, species rich-

ness and taxon age. diversification (D)¼ species richness (SR) �
niche breadth (NB)/taxon age (T ) so, D¼ (SR � NB)/T. Thus,

applied here as: D¼ (gall midge genus species richness�maximum

patristic distance of plant phylogeny used by gall midge genus)/

pendant edge length of gall midge genus from the gall midge

phylogeny. D for fungal-symbiotic gall midge genera was then com-

pared with D of non-fungal-symbiotic gall midge genera using a

Wilcoxon signed-rank test. All statistical analyses were performed

within the R language statistical framework [55].
3. Results
I tested hypothesis (i) that plant-feeding insects with symbio-

tic associations should display niche expansion in two ways.
First, I performed two comparisons among polyphagous gall

midge species (see the electronic supplementary material,

table S3) using x2-tests; (i) the observed versus expected num-

bers of polyphagous gall midge species that do and do not

use fungal symbionts; and (ii) the observed versus expec-

ted number of plant families used by polyphagous gall

midge species with and without fungal symbionts. Results

indicate that there are significantly more polyphagous gall

midges that are symbiotic than expected (x2 ¼ 21.62,

p , 0.001) and that symbiotic gall midge species feed upon a

greater number of plant families than expected (x2 ¼ 38.82,

p , 0.001). Second, the phylogenetic range of host plants used

by gall midges with and without fungal symbionts was com-

pared using both a zero-inflated generalized linear model [48]

and Wilcoxon signed-rank tests. I performed this comparison

both between gall midge genera with and without fungal sym-

bionts while accounting for the species richness of gall midge

genera and between known cases of polyphagous gall

midge species also with and without fungal symbionts.

Gall midges employing fungal symbionts to mediate inter-

actions with host-plant species consistently use a significantly

expanded range of host plants relative to non-symbiotic

lineages (table 1, figures 2a,b and 3a,b).

To test hypothesis two, that fungal-symbiotic gall midge

lineages are more diverse relative to lineages without such

symbionts, I first compared the species richness of gall midge

genera using symbiotic fungi to all related non-fungal-

symbiotic lineages within their taxonomic tribes using a

paired t-test. Secondly, as it is possible that a robust molecular

phylogeny of family Cecidomyiidae would reveal phylogenetic

rearrangements of genera among tribes the species richness of

fungal-symbiotic gall midge genera was compared with all

other plant-feeding genera within the family. Consistent with

prediction (2), gall midge lineages using symbiotic fungi

to mediate insect–plant interactions are significantly more

diverse than both their tribal relatives lacking fungal symbionts

(t¼ 21.71, d.f.¼ 3, p , 0.0003; figure 3c, electronic supplemen-

tary material, figure S4) and all plant-feeding genera within the

family (W ¼ 97.5, p , 0.0001). As judged by the available

sequence data and a Wilcoxon test fungal-symbiotic gall

midge genera are not significantly older when compared

with their available non-fungal-symbiotic relatives (W ¼ 76.5,

p¼ 0.75). Comparison of diversification (D) of fungal-symbiotic

gall midge genera with D of non-fungal-symbiotic gall midge

genera suggests that symbiotic genera are diversifying faster

(W ¼ 132, p ¼ 0.0008; figure 4).
4. Discussion
In accord with both predictions these results consistently

support a role for symbiosis in niche expansion and diversi-

fication of phytophagous insects. Phytophagous insects

which have evolved symbiotic association with fungi exhibit

niche expansion, in the form of use of a broader range of

host-plant taxa, because their fungal symbionts are cosmo-

politan plant pathogens capable of digesting dozens of

plant families worldwide [30,33]. Buffering interactions

with plant taxa through symbiotic interaction with generalist

fungi may thus relax phylogenetic constraints on the host-

plant preferences of phytophagous insects imposed by

characteristics of their host-plant lineages such as host-plant

chemistry [57], natural enemies [36,58] or plant defences [59].



Table 1. (a) Results of zero-inflated generalized linear model (hurdle model) comparing phylogenetic range (maximum patristic distance) of host plants (HP)
used by symbiotic and non-symbiotic gall midge genera. The sample size n, b, b s.e., z-score and p-value are provided for both the Poisson and binomial
parts of the model for each independent variable. (b) Wilcoxon comparison of the breadth of the host plant phylogeny (maximum patristic distance) used by
polyphagous gall midge species using a fungal symbiont with the breadth of the phylogeny used by polyphagous gall midge species without fungal symbionts.

model and response variables independent variables n b b s.e. z p-value

(a) gall midge genera: (i) Poisson part

HP phylogenetic range (intercept) 350 6.17516 0.009 654.416 ,0.001

HP phylogenetic range symbiont 350 0.188 0.019 9.652 ,0.001

HP phylogenetic range gall midge genera species

richness

350 0.059 0.003 15.886 ,0.001

gall midge genera: (ii) binomial part

HP phylogenetic range (intercept) 350 21.645 0.146 211.267 ,0.001

HP phylogenetic range symbiont 350 3.254 1.105 2.944 0.003

(b) polyphagous gall midge species

n test estimate p-value

HP phylogenetic range

non-symbiotic

HP phylogenetic range

symbiotic 44 Wilcoxon W ¼ 114 0.003
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Figure 2. Plot of zero-inflated (hurdle) generalized linear model comparing phylogenetic range used by symbiotic (orange dashed lines) and non-symbiotic
(green solid lines) gall midge genera, in which the response variable is phylogenetic breadth of the host-plant phylogeny used (host-plant phylogenetic distance
� log(gall midge species richness)þ symbiotic status j symbiotic status). For symbiotic and non-symbiotic gall midge genera of similar species richness the sym-
biotic genera consistently use a greater proportion of the host-plant phylogeny. (a) Fitted values for binomial portion of hurdle model. (b) Fitted values for Poisson
portion of hurdle model. In both (a) and (b) CIs are plus or minus twice the s.e. from model fit. (Online version in colour.)
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Key innovations facilitate the rapid migration from one

peak in the adaptive landscape [60,61] to another perhaps

higher peak [62] catalysing diversification [63]. For plant-

feeding insects, such as gall-inducing midges, higher peaks

in the adaptive landscape constitute those with more eco-

logical opportunity in the form of more available niches

(unexploited host-plant taxa, plant parts or time periods of

plant growth) [41], fewer competitors or fewer natural ene-

mies [36]. Incorporation of fungal symbionts into the life

cycle of plant-feeding insects is thus a key innovation allow-

ing transitions across a deep valley in the adaptive landscape,

a shift to a genetically distant host-plant taxon, to be similarly

tractable to shifts between genetically similar host-plant taxa.

Thus, by facilitating the colonization of distantly related host-

plant taxa, symbioses may allow insect lineages to simul-

taneously escape the limitations present at smaller scales,

such as local competition for limited niches, and take advan-

tage of the ecological opportunities that accompany shifts to

novel adaptive zones [64], catalysing diversification at larger
scales. Colonization of such novel adaptive zones is likely

accompanied by the opportunity to diversify sensu Simpson

[65] ‘. . .more or less simultaneous divergence of numerous

lines all from much the same ancestral type into different,

also diverging adaptive zones’. [65, p. 223], predicting elev-

ated diversification of fungal-symbiotic insect lineages

relative to lineages without fungal associations. Thus,

among phytophagous insects, colonization of disparate adap-

tive zones may facilitate both phenotypic divergence [40] and

diversification through division of available niche space such

as closely related host-plant species, novel plant parts and

time periods [36,41].

The 548 fungal-symbiotic gall midge species with well-

described host-plant preferences are roughly evenly divided

between tropical (190 species), temperate (215 species) and

arid (143 species) biogeographical regions. Furthermore,

only 24 fungal-symbiotic gall midge species use plant

families that are not also used by non-fungal-symbiotic gall

midge species suggesting the effect of symbiosis on niche
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Figure 3. Maximum patristic distance of host-plant taxa used by (a) polyphagous gall midge species and (b) gall midge genera with and without fungal symbionts.
Gall midge taxa with fungal associations use a greater breadth of host plant taxa relative to species lacking fungal symbionts as defined by genetic distance between
hosts. (c) Comparison of the species richness of plant-feeding gall midge genera with symbiotic fungal associations to relatives within their taxonomic tribes that do
not have fungal associations. Means with s.e. bars are indicated on each plot. (Online version in colour.)
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Figure 4. Violin plots [56] showing comparison of the diversification (D) of
non-fungally symbiotic gall midge genera with fungal-symbiotic gall midge
genera suggesting fungal-symbiotic gall midge genera are diversifying at a
significantly faster rate relative to their non-symbiotic relatives. Whereby,
D ¼ SR � NB/T. (Online version in colour.)
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expansion and diversification is not simply a correlate of

particular host-plant families or biogeographical regions.

While good taxonomic characters delineate the fungal-

symbiotic genera, different fungal-symbiotic genera have

unique adaptations associated with symbiosis, and the prelimi-

nary molecular phylogeny matches well with taxonomy it is
impossible to say for certain that the genera are monophyletic

without a completely resolved molecular phylogeny. Further-

more, comparison of the richness of genera is not ideal nor is

the estimation of lineage age without a complete phylogeny.

Thus, a complete molecular phylogeny for the group would

provide a more robust framework for testing the hypotheses

here thereby substantially strengthening the inference that

symbiosis catalysed diversification of this group.

Taken together these results support predictions derived

from evolutionary theories of symbiosis and diversification

that symbiotic interaction catalyses niche expansion and

diversification. The importance of symbiotic interaction in

diversification is unlikely to be exclusive to gall midge–

fungal associations or to plant-feeding insects. For instance, it

is likely that microbial mutualists also promote diversification

through expansion of ecological opportunities available to

their hosts in other taxa [4,6]. Thus, studies of the consequences

of symbiosis for diversification in other taxonomic groups and

other contexts of symbiosis would further illuminate the role

played by symbiosis in diversification.
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