
rspb.royalsocietypublishing.org
Review
Cite this article: Nadell CD, Bucci V, Drescher

K, Levin SA, Bassler BL, Xavier JB. 2013 Cutting

through the complexity of cell collectives. Proc

R Soc B 280: 20122770.

http://dx.doi.org/10.1098/rspb.2012.2770
Received: 21 November 2012

Accepted: 3 January 2013
Subject Areas:
evolution, theoretical biology,

computational biology

Keywords:
evolution, biofilm, cancer, collective behaviour,

emergence, cooperation
Author for correspondence:
Carey D. Nadell

e-mail: cnadell@princeton.edu
†These authors contributed equally to this

study.

Electronic supplementary material is available

at http://dx.doi.org/10.1098/rspb.2012.2770 or

via http://rspb.royalsocietypublishing.org.
& 2013 The Author(s) Published by the Royal Society. All rights reserved.
Cutting through the complexity of
cell collectives

Carey D. Nadell1,†, Vanni Bucci3,†, Knut Drescher1,†, Simon A. Levin2,
Bonnie L. Bassler1,4 and João B. Xavier3

1Department of Molecular Biology, and 2Department of Ecology and Evolutionary Biology, Princeton University,
Princeton, NJ 08544, USA
3Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
4Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA

Via strength in numbers, groups of cells can influence their environments in

ways that individual cells cannot. Large-scale structural patterns and collec-

tive functions underpinning virulence, tumour growth and bacterial biofilm

formation are emergent properties of coupled physical and biological pro-

cesses within cell groups. Owing to the abundance of factors influencing

cell group behaviour, deriving general principles about them is a daunting

challenge. We argue that combining mechanistic theory with theoretical

ecology and evolution provides a key strategy for clarifying how cell

groups form, how they change in composition over time, and how they

interact with their environments. Here, we review concepts that are critical

for dissecting the complexity of cell collectives, including dimensionless par-

ameter groups, individual-based modelling and evolutionary theory. We

then use this hybrid modelling approach to provide an example analysis

of the evolution of cooperative enzyme secretion in bacterial biofilms.
1. Introduction
Social interaction and collective behaviour are highly influential forces in

biology. Living in groups allows individuals to evade predation, to forage

more effectively and to exert a more powerful influence on their environments

than individuals can when they act alone. Owing to their ubiquity and visi-

bility, assemblies of metazoan organisms, such as insect swarms, fish schools,

bird flocks and animal herds, have for many years drawn the attention of biol-

ogists, physicists and mathematicians [1–4]. Despite prescient early work [5],

only recently have researchers broadly come to realize that most unicellular

organisms are also social (figure 1). Bacteria, unicellular eukaryotes, and cancer-

ous cells have group-level properties that are integral to how they live and, in

the case of pathogens and cancer, how they cause disease [6–9].

A fundamental challenge for scientists studying cell collectives is to under-

stand the emergence of group-level properties, such as spatial structure and

behavioural coordination, from the interactions of individual cells with each

other and with their surroundings [10]. Many biological processes—nutrient

uptake, growth, motility and the secretion of extracellular compounds—interact

with many physical processes—nutrient advection and diffusion, shear stress,

physical shoving among cells and detachment—to yield cell group structure

and collective behaviour. Additionally, cells alter their gene expression in

response to each other and to the local microenvironment [11–14], and cell

groups can evolve rapidly [7,15–19].

The numerous processes that contribute to cell group architecture and

behaviour make it difficult to extract general principles about the origin of

their emergent properties. Analytical methods for studying collective behaviour

often focus either on heterogeneities in structure [4,20–22] or on heterogeneities

in cell group composition [23–25], but rarely on both. Similarly, powerful

theory has been developed for understanding the evolution of social interaction

[26–30], but this theory is often difficult to apply directly to cell groups in realistic

contexts (but see [31–33]). Computational individual-based modelling offers an
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Figure 1. A three-dimensional rendering of a biofilm (128 mm length � 128 mm width � 20 mm height) of the pathogen Vibrio cholerae, grown in a micro-
fluidic chamber and imaged by confocal scanning laser microscopy. The three strains are identical except for their constitutive expression of teal, yellow or red
fluorescent protein; each colour patch descends from a single ancestral cell, resulting in spatial separation of different genetic lineages.
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alternative approach, implementing cells in two- or three-

dimensional space that behave independently in response to

their local microenvironments [34,35]. Such models allow

subtle details of biology and physics to be considered and

are excellent for studying cell group heterogeneity, but they

are typically complex and sacrifice generality for realism.

In the present review, we argue that a combination of scal-

ing analysis and individual-based modelling methods can be

used to relate physical and biological mechanisms—and their

associated, readily measurable parameters—to the more

abstract principles of evolutionary theory. We briefly review

these modelling approaches and highlight studies that have

used them to analyse nutrient transport and consumption,

selective sweeps and quorum sensing communication within

cell groups. We then provide an example of this modelling

approach that addresses cooperative enzyme secretion in bac-

terial groups. The analysis is described in detail to serve as a

guide for others who may wish to use similar approaches.

Our results provide a mapping between social evolution

theory and the basic parameters of growth, enzyme secretion,

solute diffusion and population structure.
2. Dimensionless numbers in physics and biology
Measurement units allow us to compare a quantity, such as

length, with a standardized reference unit, such as the

metre. In some circumstances, it is more useful to express

lengths in terms of other quantities that constitute natural

length scales, such as cell diameters. The dimensionless quan-

tity Diametercell-group/Diametercell is thus an intuitive
measure of cell group size. Such non-dimensional quantities

have been widely employed in the physical sciences, as

they reduce the complexity of a model under study and

often allow the identification of critical ratios of a system’s

governing parameters [36,37].

In fluid mechanics and transport theory, many dimension-

less numbers have been introduced [38]; some of these are

relevant for biological processes at the cellular level and have

been discussed in two recent and comprehensive reviews

[39,40]. Two of the most widely used dimensionless numbers,

which are critical for understanding cell group function and be-

haviour, are the Reynolds number and the Péclet number. The

Reynolds number is defined as the ratio of inertial to viscous

forces in fluid flow, and can be calculated as Re ¼ rFUL/h,

where U is the characteristic fluid velocity scale of the

system, L the characteristic length scale of the flow, and rF

and h the fluid density and dynamic viscosity, respectively.

Very high values of Re thus correspond to turbulent flow,

while small values of Re correspond to laminar flow. The

Péclet number is the ratio of flow-mediated molecular trans-

port and diffusion-mediated molecular transport; it can be

calculated as Pe ¼ UL/D, where L is a characteristic length

scale of the system and D the molecular diffusion constant

(e.g. of a particular nutrient). The Reynolds number is therefore

a measure of the flow structure (turbulent versus laminar),

while the Péclet number determines the dominant molecular

transport mechanism (flow-mediated versus diffusive) for a

given system.

The Reynolds and Péclet numbers often shift from values

much less than unity for single cells, to values significantly

above unity for cell groups. Therefore, viscous forces, laminar
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Figure 2. Still frames of individual-based biofilm simulations, adapted with permission from [42]. (a) Black cells no longer have access to sufficient nutrient
concentrations for growth, while green cells are growing and compose the cell group’s active layer. The active layer depth is related to a dimensionless
number, d, which compares the relative rates of nutrient diffusion into the biofilm and nutrient consumption within the biofilm (see main text). (b – d )
Three separate individual-based simulations of growing biofilms initiated with a 1 : 1 mixture of two strains that are identical except for a neutral colour tag.
Biofilm surface roughness and lineage segregation increase as the active layer becomes thinner (decreasing d).
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flow and diffusion often dominate the lives of solitary cells [41].

On the other hand, inertial forces, unsteady flows and flow-

mediated solute transport become important for cell groups

that have characteristic length scales much larger than those of

single cells in isolation. In the following sections, we discuss

other, less standard, dimensionless quantities and length

scales that have been defined in various disciplines, including

bioprocess engineering and evolutionary biology, to yield

insights into the structure, function and evolution of cell groups.
3. The balance of growth and nutrient transport
The consumption of soluble nutrients by biofilm-dwelling

bacteria depletes the nutrient concentration close to the bio-

film surface. Fluid flow also slows near the biofilm surface

because of hydrodynamic constraints. Together these two

effects create a boundary layer that separates the nutrient

concentration in the bulk advective fluid above the bio-

film from the nutrient concentration inside the biofilm

(figure 2a) [40]. By Fick’s Law, the nutrient flux into the bio-

film is determined by the concentration gradient across the

boundary layer. Once nutrients have entered the biofilm,

they are further transported by diffusion in addition to

being consumed by biofilm-dwelling cells.

The relative strengths of nutrient transport and of nutrient

consumption are critical for biofilm formation. Picioreanu et al.
[43] first introduced this ratio as a dimensionless number:

G ¼ l2 mmaxrX

SbulkDS
;

where l is the biofilm thickness, mmax the maximum bacterial

growth rate, rX the bacterial biomass density, Sbulk the concen-

tration of growth substrate in the bulk fluid and DS the

diffusivity of growth substrate. The numerator describes the

maximum bacterial biomass growth rate, and the denominator

describes the maximum substrate transport rate through the
biofilm. Picioreanu et al. [43] used their dimensional analysis

of substrate transport and bacterial growth in conjunction

with cellular automata models that simulate bacterial cells

growing in two- or three-dimensional space. The authors

found that changes in G are associated with dramatic changes

in biofilm structure. Cell growth and division are uniform

within biofilms when G is small, which results in biofilms

that grow rapidly with smooth fronts. If G is large, however,

cell growth is heterogeneous along the biofilm front, indicating

that bacterial growth is limited by nutrient transport.

A modification of the G number was recently introduced

to shift focus towards the proportion of cells in a biofilm that

have sufficient access to substrate for growth, which is accom-

plished by considering the rate of molecular transport

through the boundary layer, rather than the biofilm itself

[42]. The modified dimensionless number, d, is

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SbulkDSY
mmaxrXh2

s
;

where mmax, Sbulk, rX and DS are defined as above, Y is the yield

with which bacteria convert substrate to biomass and h
the boundary layer thickness. The d number determines the

depth to which substrate diffuses into a biofilm before being

depleted, and therefore represents the thickness of the actively

growing cell population, in units of h (figure 2a) [42].

When biofilms are limited by the maximum bacterial

growth rate (low G, high d), they expand into smooth-

surfaced colonies as the majority of cells within them grow

and divide, and different cell lineages remain spatially well-

mixed (figure 2b). However, when biofilms are limited by

nutrient transport (high G, low d), the layer of actively

growing cells is thin and restricted to the periphery of the

cell group, generating instabilities along the advancing

front. This effect amplifies surface irregularities into hetero-

geneous biofilm surface structures and leads to bottlenecks

in the genetic composition within the layer of actively
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growing cells (figure 2c,d). As the biofilm grows, many cell

lineages are cut off from access to nutrients due to chance

alone, leading to an overall reduction in the number of cell

lineages in the biofilm. The lineages that remain become

spatially segregated as the cells within them grow and

divide [44–46]. This effect has been demonstrated experimen-

tally for bacteria [44,47,48], unicellular yeast [47] and social

slime moulds [49], and it is conceptually linked to genetic

drift of neutral variants and selective sweeps of strains that

differ in their reproductive rates [47,48,50,51]. The G and d

numbers are also related to basic elements of social evolution

theory, as spontaneous lineage segregation causes preferen-

tial interaction among cells of the same genotype [42,49].

We return to this point in our final section detailing a

model of cooperative enzyme secretion in bacterial biofilms.
space
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Figure 3. Time-series of one-dimensional spatial simulations of competition
among asexually reproducing individuals (different mutants denoted by differ-
ent colours), adapted with permission from [55]. Stars denote the birth of a
novel beneficial mutant. (a) Periodic selection occurs when the fixation time
for beneficial mutations (tfix) is less than the wait time for the occurrence of
a new beneficial mutation (tmut). (b) Clonal interference occurs when tmut�tfix

leading to competition among two or more beneficial mutations and slowing
the rate at which different beneficial mutations reach fixation. When populations
are constrained in space, tfix increases, making clonal interference more likely to
occur than in well-mixed populations of comparable size.

280:20122770
4. Lineage expansions and clonal interference
The pattern with which beneficial mutations spread through

a population has been of central interest since the advent

of population genetics in evolutionary biology. Classical

theory primarily considers scenarios in which advantageous

mutations are rare, and each one reaches fixation before any

new beneficial mutations subsequently occur. However,

experiments with bacteria have yielded measurements of

beneficial mutation rates that are much higher than originally

expected, which, given a sufficiently large population size,

leads to competition among multiple favoured mutants in a

single population. This phenomenon, known as clonal inter-

ference [52–54], strongly influences the rate of evolution

within microbial communities and is generally expected

to decrease the fixation rate of independent beneficial

mutations.

When populations are constrained in space, beneficial

mutations take considerably longer to reach fixation than

they would in a well-mixed population of equivalent size

[55–57]. As a result, clonal interference may be expected to

occur more readily in systems with spatial constraints, as tra-

velling waves of advantageous mutations collide with one

another. The likelihood of interference depends on how

often advantageous mutations occur and how long they

take to sweep through a population, which in turn is a function

of population size and the extent to which advantageous

mutations provide a fitness benefit (i.e. the selection coefficient).

If beneficial mutations are sufficiently rare and selection

for them sufficiently strong, a regime of periodic selection is

expected in which only one beneficial mutation sweeps through

the population at a time (figure 3a). If advantageous muta-

tions are relatively common and take longer to reach fixation,

clonal interference will occur as advancing waves of selectively

favoured mutants encounter one another and compete for

access to space (figure 3b).

Noting the balance among multiple biological and

spatial factors that contribute to clonal interference,

Martens & Hallatschek [55] derived a characteristic length

scale for the critical size of a cell group, above which clonal

interference will occur

Lc ¼
s

2s0m

� �1=ðdimþ1Þ
;

where s is the speed with which the spreading wave of a ben-

eficial mutant travels, s0 the mean selective advantage of
beneficial mutations, m the rate of beneficial mutations per site

and dim the dimension of the system under study (e.g. dim ¼

2 when cells are competing on a plane). Periodic selection is

expected to occur for systems in which the characteristic

length scale is L� Lc (figure 3a), while clonal interference is

predicted for systems in which L� Lc (figure 3b).

The Lc length scale integrates physical and biological par-

ameters to define a threshold for clonal interference. This

analysis, along with many of those discussed in this article, high-

lights the importance of considering spatial structure for making

inferences about evolution within cell groups. Lc is likely to

be important for characterizing evolution within biofilm com-

munities, which by definition are spatially constrained and

transition from small initial colonies, in which periodic selection

may be expected to prevail, to very large communities contain-

ing millions of cells, in which clonal interference is highly likely.

The Lc length scale has also been explored in the context of cancer

progression [58]; increased clonal interference is expected to

delay the onset invasive cancer by slowing the accumulation

of mutations that allow neoplasms to attain high growth rates

contributing to malignancy [17,59].
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5. Quorum sensing and length scales of
communication

Beyond living in close proximity to one another, cells in

groups often release diffusible molecules to which they and

other members of the group respond. In the context of bac-

terial biofilms, this process is termed quorum sensing

[13,60]. Cells are thought to use signal concentration as a

proxy for population density, altering their gene expression

profiles after a sufficiently high concentration is reached.

In a recently published unifying analysis, Pai & You [61] note

that quorum sensing systems ultimately allow cells to assess

when a critical enclosure volume has been reached. The critical

volume occurs due to the accumulation of many cells in a

given space, or the enclosure of fewer cells in a small space.

The authors define a dimensionless ratio y ¼ Ve,c/Vc as the sen-

sing potential of a detector, where Ve,c is the critical enclosure

volume and Vc the volume of a cell. The y ratio is the threshold

enclosure space, expressed in the number of cell volumes, below

which cells transition from solitary state to social state for a given

regulatory target function. The sensing potential can be calcu-

lated from the basic parameters of a quorum sensing circuit,

including the signal synthesis rate, the threshold signal concen-

tration for activation of a detector, the signal-degradation rate

constant and the signal-transport rate constant.

The sensing potential formulated by Pai & You [61] clarifies

how changes in specific properties of quorum sensing circuits

allow bacteria to monitor local conditions and adjust their

expression of group-oriented behaviours accordingly. The

specific prediction of their study is that quorum sensing bacteria

will evolve sensing potentials that result in the activation of

behaviours that require participation from multiple cells at a suf-

ficiently high population density in order to be effective. Such

behaviours include the secretion of digestive enzymes and nutri-

ent chelators involved in pathogenicity, as well as polymeric

substances that contribute to the structural stability of biofilms

[62]. It is also important to note that not all quorum sensing-

regulated phenotypes are secreted compounds, and the sensing

potential may also evolve to tune the regulation of metabolic

genes and other individual cell properties whose optimal

expression may nonetheless depend on population density.

Pai & You [61] do not explicitly consider population

spatial structure in their model framework; however,

though their model assumes uniform interaction neighbour-

hoods, one may consider the quorum sensing process to

operate within local patches belonging to a larger metapopu-

lation, within which each patch is roughly uniform [63,64]. In

a heterogeneous environment, quorum sensing allows bac-

teria to monitor conditions within their local patch and

adjust their behaviour in response to enclosure volume.

Future theoretical work that more directly addresses the com-

bination of population spatial structure, quorum sensing

regulation and evolutionary dynamics represents an excit-

ing direction that will complement the growing number of

experimental studies on quorum sensing evolution [65–69].
6. Spatial lineage mixing and the evolution of
bacterial cooperation

The collective secretion of extracellular compounds lends cell

groups the ability to consume complex growth substrates and
to cause disease. Extracellular digestive enzymes and

nutrient-sequestering molecules are common within bacterial

biofilms, but they present a difficulty for evolutionary theory.

Because such enzymes are secreted into the extracellular

space, non-secreting cells that do not pay the cost of contri-

buting to the public good may reap their benefits. And

because they pay no cost of production, such

cells can outcompete their enzyme-secreting counterparts

[31,66,68,70–72].

A dominant factor allowing cooperation to evolve in many

systems is the preferential interaction among cooperative indi-

viduals relative to their competitive neighbourhoods [30]. We

might therefore expect the interaction between secreted

enzyme transport and genetic lineage distribution to be critical

for the evolution of cooperation within bacterial biofilms.

In this section, we develop and analyse a general model for

digestive enzyme secretion in biofilms and test it using a

well-established individual-based simulation framework for

biofilm growth. The analytical results derived below are simi-

lar to those of Driscoll & Pepper [73], who also study the

evolution of diffusible public good secretion. Our approach

differs in that we include more physiological detail by using

parameters that can be measured in the laboratory; we

implement cells as spheres in three-dimensional space; and

we provide an explicit description of spatial clustering for

multi-cell scenarios of competition between enzyme producers

and non-producers. These modelling choices allow us to couple

the analysis with computational simulations and to emphasize

dimensional reduction. We aim to provide sufficient descrip-

tion to serve as a guide for other researchers who may wish

to use similar approaches for their systems of interest.

We start by deriving the concentration profile of the

digestive enzyme (E) around a single secreting cell that is

stationary within a large body of still liquid. By Fick’s Law,

E obeys the diffusion equation in spherical coordinates,

@E
@t
¼ DE

1

r2

@

@r
r2 @E
@r

� �
; ð6:1Þ

where DE is the diffusivity of the secreted enzyme, t rep-

resents time, and r the radial distance from the centre of the

secreting cell. Diffusion of small molecules is typically such

that the concentration profile of E reaches steady state quickly

relative to cell growth and division. The steady-state profile

of E is obtained by integrating equation (6.1) for @E/@t ¼ 0

@

@r
r2 @E
@r

� �
¼ 0: ð6:2Þ

This is a second-order differential equation and can be

solved using two boundary conditions. The first boundary

condition we use is that the enzyme concentration should

vanish far away from the producing cell

lim
r!1

E ¼ 0: ð6:3Þ

The second boundary condition implements conservation

of mass and states that the rate of enzyme passing through

the surface of the cell matches the rate of enzyme production

by the cell (qE)ð
S
�DE

@E
@r

dS ¼ qE; ð6:4Þ

where the left-hand side of the equation represents the inte-

gral of the diffusive flux out of the cell over its entire
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surface (S). Solving equation (6.2) with boundary conditions

(6.3) and (6.4) yields the following solution:

EðrÞ ¼ qE

4pDEr
; ð6:5Þ

which states that the concentration of a secreted digestive

enzyme increases directly with the rate of enzyme produc-

tion and decreases with the inverse of the distance from the

producing cell.

(a) Conditions favouring public good secretion: two-cell
scenario

We will now use the profile of the extracellular enzyme con-

centration, E, around a single cell to study competition

between producing and non-producing cells (which we will

term cheaters by convention) [74]. The rates of increase in

mass per volume of a producing cell P and a cheating cell

C are defined by

@P
@t
¼ ðmP � cÞP ð6:6Þ

and

@C
@t
¼ mCC; ð6:7Þ

where m is the growth rate per unit mass, called the specific

growth rate. Equation (6.6) implements a metabolic cost of

enzyme production (c), which is subtracted from the

growth rate of producers and assumed to be an arbitrary

function of the enzyme production rate (an explicit cost func-

tion will be defined for our simulations below). We assume

that the specific growth rates are linear functions of the

local concentration of the digestive enzyme:

mi ¼ m0ð1þ bEiÞ; i ¼ P, C: ð6:8Þ

Here, m0 is the basal specific growth rate and b a coefficient

of growth increase per mass of enzyme, which implements the

benefit of the secreted public good. In reality, cells benefit from

nutrients released into the environment by enzymes as they

break down complex substrates into smaller, importable nutri-

ents; however, we only model diffusion of the secreted

enzyme. We make this simplification for the sake of clarity

and tractability, but note that this approach approximates the

full description of any system in which the nutrients liberated

by the enzyme diffuse much faster than the enzyme itself

[75]. For example, extracellular chitinases of Vibrio spp. [76]

have an approximate molecular weight of 90 300, which can

be converted to a molecular diffusion constant of Dchitinase ¼

58 mm2 s21 [77]. The product of chitinase activity, N-acetylglu-

cosamine (GlcNAc), has a diffusion constant that is an order of

magnitude larger: DGlcNAc ¼ 500 mm2 s21 [78]. We expect such

a difference in the diffusion constants of extracellular enzymes

and their digested products often to be upheld, because diges-

tive enzymes are typically much larger than the nutrient

molecules they release into the environment.

We can use our model of growth rates together with

the enzyme concentration profile from equation (6.5) to deter-

mine the conditions for which the producing cell outgrows a

cheater cell in its vicinity. The producer has the advantage

when its fitness (wP) is higher than that of the cheater (wC).

Fitness is simply the net specific growth rate of each cell

wP ¼
1

P
@P
@t
¼ mP � c ð6:9Þ
and

wC ¼
1

C
@C
@t
¼ mC: ð6:10Þ

The producer therefore has the advantage when wP. wC.

Using equations (6.8)–(6.10), this condition for the fitness

advantage of a producer can be expressed as

m0ð1þ bEPÞ � c . m0ð1þ bECÞ; ð6:11Þ

where EP and EC are the concentrations of secreted enzyme

experienced by the producer cell and the cheater cell, respect-

ively. From equation (6.5), the values of EP and EC are

Ep ¼
qE

4pDErcell
ð6:12Þ

and

EC ¼
qE

4pDEd
; ð6:13Þ

where rcell is the radius of a producer cell and d the distance

between the producer and the cheater cells. qE was defined

above as the rate of enzyme production per producer cell.

We now replace qE by a term for the enzyme production

rate per biomass of producer (kE), which is more convenient

for the analysis that follows. The conversion is qE ¼MPkE,

where MP is the mass of a single producer cell. The mass of

the cell is the product of its average density (r) and its

volume, and we can therefore replace MP by 4
3pr3

cellr: After

substituting equations (6.12) and (6.13) into equation (6.11)

and dividing through by rcell, we can rewrite the condition

for producer advantage as

bkEr2
cellr

3DE
1� rcell

d

� �
.

c
m0

: ð6:14Þ

The first factor on the left-hand side of equation (6.14)

is a dimensionless number, which we will call BL (benefit

localization)

BL ¼
bkEr2

cellr

3DE
: ð6:15Þ

BL compares the fitness increase afforded by accumu-

lation of secreted enzyme (numerator) to the diffusion of

enzyme away from the producing cell (denominator). The

expression that results from this substitution is

1� rcell

d

� �
BL .

c
m0

: ð6:16Þ

The ratio c/m0 quantifies the cost of enzyme production,

scaled to the basal cell growth rate. The expression

(1 2 rcell/d ) is equal to zero when the producer and the chea-

ter cells are directly adjacent, and approaches unity as the

cheater cell is moved far away from the producer cell. Finally,

the dimensionless number BL captures to what extent the fit-

ness benefit of secreted enzyme is localized around the

producer cell. Small values of BL correspond to rapid diffu-

sion of enzyme away from the producer relative to its rate

of production and thus a more homogeneous distribution

of enzyme-mediated benefit in the environment. Large

values of BL correspond to steeper gradients of decreasing

enzyme concentration around the producing cell and a result-

ing fitness benefit that is more tightly localized around

the producer.
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For a system containing one enzyme producer and one chea-

ter, equation (6.16) describes whether the benefit of the secreted

enzyme is sufficiently privatized by the producer for the

secretion phenotype to be favoured [73,79]. The left-hand side

describes the extent to which the enzyme-producing cell prefer-

entially benefits itself due to localization of the secreted

enzyme (BL), and its distance from the cheater cell, captured by

(1 2 rcell/d). When the product of these factors outweighs the

cost of enzyme production, the secretion phenotype is favoured.

For simplicity, we began with the two-cell scenario

described above, which introduces the central importance

of how enzyme distribution and cell–cell distance interact

to control whether enzyme production is favoured. In the fol-

lowing section, we address the more general problem of

social evolution within groups containing many cells.

(b) Extension to a system of many cells
We will now extend the two-cell scenario to one with an arbi-

trary number of producer (nP) and cheater (nC) cells. The

fitness values of the producer and the cheater cell types are

defined by averaging the growth of the cells in the two sub-

populations:

wP ¼
1

nP

XnP

a¼ 1

1

Pa

@Pa

@t
ð6:17Þ

and

wC ¼
1

nC

XnC

b¼ 1

1

Cb

@Cb

@t
: ð6:18Þ

We are again interested in the condition wP . wC, which

for the multi-cell scenario is

m0 1þ b
nP

Xnp

a¼ 1

Ea

 !
� c . m0 1þ b

nC

Xnc

b¼ 1

Eb

 !
: ð6:19Þ

We will assume that all producer cells are the same size

(this will be relaxed in our simulations below). The important

distinction from the two-cell scenario is that the concentration

of E now experienced by a focal cell, a, is the sum of the con-

tributions from all producers in the system:

Ea ¼
XnP

g ¼ 1

kEr3
cellr

3DEdag
: ð6:20Þ

Here, dag is the distance between the focal cell a and pro-

ducer cell g. If the focal cell is itself a producer, then we

assume dag ¼ rcell for g ¼ a. We can now determine the

form for the sums in inequality (6.19):

XnP

a¼1

Ea ¼
kEr3

cellr

3DE

XnP

a¼1

XnP

g¼1

1

dag

ð6:21Þ

and

XnC

b¼1

Eb ¼
kEr3

cellr

3DE

XnC

b¼1

XnP

g¼1

1

dbg

: ð6:22Þ

If we substitute these expressions into inequality (6.19)

and re-scale the distance between two cells by the cell

radius (such that dag ¼ rcelld0ag), the multi-cell version of

inequality (6.16) becomes

1

nP

XnP

a¼1

XnP

g¼1

1

d0ag
� 1

nC

XnC

b¼1

XnP

g¼1

1

d0bg

 !
BL .

c
m0

: ð6:23Þ
Equation (6.23) is closely analogous to Hamilton’s rule,

BR . C, the canonical condition of inclusive fitness theory

under which cooperation is selectively favoured [80]. Here,

B is the fitness benefit of cooperative behaviour, C the cost

of cooperative behaviour and R relatedness, the regression

coefficient of recipient genotype on donor genotype across

all cooperative interactions. Relatedness is often interpreted

to signify common descent, but more generally the related-

ness coefficient is a statistical description of the extent to

which cooperative actor genotype predicts recipient genotype

[33,81–86]. For social traits that influence neighbours in a

distance-dependent manner, including the secretion of diffu-

sible public goods, relatedness corresponds tightly to the

spatial clustering of cooperative individuals with each other,

relative to the clustering of cooperative individuals with

cheaters [33,73,87]. In such scenarios, spatial segregation of

different genotypes yields high relatedness coefficients,

whereas even mixture of different genotypes yields relatedness

coefficients near zero (assuming no discrimination mechan-

isms that allow cooperative individuals to preferentially

target one another to receive benefits).

Equation (6.23) thus contains the same fundamental

components as Hamilton’s rule, expressed in terms of the

parameters of this particular system. The left-hand term

in parentheses,

1

nP

XnP

a¼1

XnP

g¼1

1

d0ag
� 1

nC

XnC

b¼1

XnP

g¼1

1

d0bg
; ð6:24Þ

represents the degree of clustering among producer cells (left-

side compound summation), minus the degree of clustering

between producer and cheater cells (right-side compound

summation). Together with BL, this clustering differential

captures the extent to which producer cells preferentially

benefit their own kind via the secretion of the digestive

enzyme. That is, the combined effects of the clustering

differential and BL determine the relatedness coefficient

and total cooperative benefit associated with extracellular

enzyme secretion for a given population structure and set

of parameter values describing growth, enzyme production

and enzyme transport. When the collective benefit provided

by enzyme secretion is sufficiently biased towards enzyme-

producing cells, such that the cost of enzyme production

is offset, cooperation is selectively favoured. Importantly,

equation (6.23) describes the instantaneous dynamics of a

cell group; as a population grows and its structure changes,

the balance of equation (6.23) may change as well.

(c) Simulations with an agent-based model
The derivations above illustrate the basic links between the

abstract evolutionary theory of cooperation and the core par-

ameters of cell group growth and public good production.

They also imply that the outcome of competition between

producers and cheaters may be predicted if the population

spatial structure, the BL number and the cost c/m0 to produ-

cers are known. The BL number provides the additional

important insight that it is not the values of the parameters

b, kE, rcell, DE and r in isolation but rather their compounded

value according to equation (6.15) that is critical for the evol-

ution of diffusible public good production in spatially

structured environments.

We now test the predictive role of BL with simulations of

biofilms in two-dimensional space. The computational
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Figure 4. Competition between cells producing a growth-enhancing enzyme
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framework used to run these simulations has previously been

described in detail and tested experimentally [34,46,88]. Our

model relaxes some of the assumptions of the analytical deri-

vations above by adding realistic detail to the cells and their

interactions with each other. The transport of solutes is still

assumed to occur by diffusion, but diffusion now occurs

only within a boundary layer that extends a distance h
above the biofilm. Cells are allowed to vary in size across

the population as they grow and divide. We carried out simu-

lations in which the producer and the cheater cells were

inoculated at an initial 1 : 1 ratio (nP ¼ nC), allowed the simu-

lations to run until the biofilm reached a pre-defined

maximum thickness, and then quantified the outcome of

competition by computing the ratio of producer fitness to

cheater fitness (wP/wC).

We first assumed that cell growth rate is exclusively a

function of public good concentration at the cell’s location,

and we conducted an array of simulations in which BL was

altered by independently varying the values of the par-

ameters that compose it (figure 4). As expected, our

simulations showed that there is a threshold value of BL

above which enzyme-secreting cells are selectively favoured.

Furthermore, the effect of varying BL was identical regardless

of which of its constituent parameters (b, kE, DE or rcell)

was altered.

We next extended the preliminary analysis by allowing

growth rate to vary as a function both of local secreted

enzyme concentration (E, as above), and of available nutrient

(N, assumed to diffuse into the biofilm from a bulk liquid).

The scenario we implement is one in which bacteria can

achieve a basal growth rate by consuming a readily accessible

carbon source, the basic nutrient N, which diffuses into the

biofilm from the bulk liquid. Bacterial growth may be

augmented by the activity of the secreted enzyme, which lib-

erates a different growth substrate [89]. The two nutrient

sources are implemented separately to allow us to indepen-

dently vary the effects of two distinct phenomena on the
evolution of cooperation. The first is the extent of lineage seg-

regation within growing biofilms, which is determined by the

thickness of the actively growing layer along the advancing

front. The active layer thickness is governed by a parameter

group (d, see §3 and figure 2) that includes bulk nutrient con-

centration. The second is the concentration profile of secreted

enzyme, determined by BL. As noted above, the benefit of a

secreted enzyme becomes more privatized by cells producing

it as the BL number increases. A stoichiometric table detailing

the exact growth dynamics of producer and cheater cells is

provided in the electronic supplementary material, table S1.

For d . 103, which results in well-mixed biofilms, co-

operative cells have higher fitness when BL exceeds a critical

threshold of approximately 1022 (figure 5a). The threshold

BL above which cooperators are favoured corresponds to the

length scale on which cell lineages cluster due solely to their

immobility and limited dispersal (population viscosity).

Note that diffusible enzyme production can still be favoured

in relatively mixed environments, so long as the spatial

range at which it provides a fitness benefit matches the spatial

range along which cells tend to be of the same genotype.

For d , 103, the threshold BL at which producers are

selectively favoured increases sharply. This result was some-

what counterintuitive, as decreasing d leads to increasing

spatial segregation among cell lineages, which in principle

could allow for cooperative cells to be favoured even if the

benefit of their secreted enzyme is distributed farther away

from them (decreasing BL). However, we see that the con-

ditions favouring cooperation become more stringent as d

decreases because nutrient limitation creates a strong advan-

tage for cell lineages that accumulate even marginally greater

biovolume at the earliest time points during biofilm growth

[42,62,90]. Such cells are able to deny their neighbours

access to nutrients and in so doing dramatically reduce

their ability to grow. Under these conditions, cheater cells

outgrow cooperative cells if the secreted enzyme is not

strongly localized (figure 5b). However, if the secreted

enzyme’s effect is sufficiently localized around producing

cells (high BL), then producers outcompete cheater cells

early during biofilm growth and remain dominant over the

course of the competition (figure 5c). Indeed for low d and

high BL, cooperative cells outcompete cheater cells 10 times

more strongly than they do with the same BL value at high

d. Low d leads to more globalized competition for nutrients

and increased segregation among cell lineages (i.e. increased

relatedness) [42,74], both of which increase the advantage of

spatially localized cooperative behaviour [30].

Our simulation model makes a number of simplifying

assumptions: inactive cells do not decay, biofilms are not sub-

jected to shear stress, cells cannot disperse, biofilms are

always initiated with a confluent monolayer of cells, and

there is no plasticity in expression of the digestive enzyme.

Relaxing some of these assumptions will certainly provide

further insight into the evolution of enzyme production in

biofilms. We expect that decreasing initial cell density will

favour enzyme producers by allowing them to preferentially

benefit themselves and their clonemates prior to experiencing

competition with non-producers. Conditional enzyme secre-

tion, for example in response to quorum sensing signals

[62,91] or to nutrient conditions [92,93], may allow coopera-

tive cells to avoid exploitation by non-producing cells early

during biofilm formation, when growth deficits lead to a

severe competitive disadvantage. The durability of secreted
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public good compounds [94], the shapes of their benefit and

cost functions [95], and disturbance-dispersal dynamics [89]

also play an important role in the evolution of cooperation,

but for the sake of illustration and brevity we have omitted

these molecular and ecological details from our study.

Our analytical model and simulations illustrate how

scaling analysis can be applied to make predictions about

the evolution of social behaviour in cell groups, and how

one may relate the detailed parameters of cell growth,

enzyme secretion and solute diffusion to the abstractions of

evolutionary theory.
7. Conclusions
Small details of physics and physiology are often critical for

understanding biological systems in general and cell groups

in particular. To capture such details, realistic individual-

based models of cell groups often contain dozens of parameters

describing a variety of biological and physical processes.
Deriving general principles about cell groups therefore presents

a great challenge, one that we think can be effectively met by

seeking and using dimensionless numbers that collate the

parameters of a system into its major driving forces. This

approach vastly reduces the size of parameter space to be

swept when exploring a problem of interest; provides greater

clarity in the interpretation of model results; and offers a

straightforward route to experimental testing and consolidation

with more abstract theories from collective behaviour and

evolutionary biology.
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