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Bar-headed geese are renowned for migratory flights at extremely high alti-

tudes over the world’s tallest mountains, the Himalayas, where partial

pressure of oxygen is dramatically reduced while flight costs, in terms of

rate of oxygen consumption, are greatly increased. Such a mismatch is para-

doxical, and it is not clear why geese might fly higher than is absolutely

necessary. In addition, direct empirical measurements of high-altitude flight

are lacking. We test whether migrating bar-headed geese actually minimize

flight altitude and make use of favourable winds to reduce flight costs. By

tracking 91 geese, we show that these birds typically travel through the valleys

of the Himalayas and not over the summits. We report maximum flight

altitudes of 7290 m and 6540 m for southbound and northbound geese,

respectively, but with 95 per cent of locations received from less than

5489 m. Geese travelled along a route that was 112 km longer than the great

circle (shortest distance) route, with transit ground speeds suggesting that

they rarely profited from tailwinds. Bar-headed geese from these eastern

populations generally travel only as high as the terrain beneath them dictates

and rarely in profitable winds. Nevertheless, their migration represents an

enormous challenge in conditions where humans and other mammals are

only able to operate at levels well below their sea-level maxima.
1. Introduction
A significant proportion of the world’s bar-headed geese (Anser indicus) make

biannual migrations between breeding areas in Mongolia, northern China

and the Tibetan Plateau (latitude between 298N and 378N, mean elevation of

4800 m) and wintering areas in India, crossing the Himalayan mountains

(along the southern edge of the Tibetan plateau) en route [1–8]. This species

has become renowned for a paradigm of extreme high-altitude migration,
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being frequently cited as flying regularly above 8000 m

[4,7,9–32] following the original report of observation of

birds over the summits of the Himalayas [30]. Up to now,

however, the published reports that indicated that birds

may be flying at very high altitudes have been only qualitat-

ive, either because the recording devices did not directly

measure altitude [4,7] or because they were based on inci-

dental auditory and visual observations [30,32]. Such

observations may also be subject to unknown errors by obser-

vers, particularly given that neurological ability is known to

be affected by high altitude [33], and they do not indicate

whether such flights are common and whether they represent

sustainable, aerobically powered flights. Thus, personal

accounts of this type lack scientific accuracy with respect to

prevailing atmospheric conditions. For example, Swan [30]

wrote of hearing bar-headed geese flying over the summit

of Mount Makalu (at 8487 m elevation, the fifth highest

mountain on Earth) while standing at 4800 m on the Barun

Glacier on a still night. Given that he would have been

around 6000 m away from the summit of Makalu (see the

electronic supplementary material, figure S1) and that

sound attenuates as the inverse square of the distance from

the source (and more quickly in hypodense air, i.e. at high

altitude), this interpretation is highly speculative compared

with the idea that the geese were simply flying within and

along the enormous valley below Mount Makalu. Thus,

there is a requirement to obtain objective and quantitative

data on how often these birds fly at extreme altitudes,

under what environmental circumstances and whether they

represent true powered flight.

Swan [30] speculated that extreme high-altitude flight

would both facilitate navigation and reduce the risk of

being blown into mountainsides. This hypothesis does not

seem sufficient to explain why this energetically demanding

migration might primarily take place high above the land

surface, and thus in conditions of very low partial pressure

of oxygen and air density (and consequently poor lift),

when lower-altitude routes through the Himalayas exist.

Given that flight is a particularly costly form of transport,

in terms of the rate of oxygen consumption, and that

oxygen becomes progressively more rarefied at higher alti-

tudes, powered flight should become progressively more

challenging with altitude. For example, at 8000 m, the mini-

mum mechanical power required for flight is 50 per cent

greater than that at sea level [34], whereas the partial pressure

of oxygen is 40 per cent lower than that at sea level [35]. The

postulated high-altitude migration of bar-headed geese is

thus a paradox of avian migration ecology and physiology

[17]. However, no direct measurements of extreme high-

altitude flight by bar-headed geese have ever been collected,

and the migratory flights of bar-headed geese have yet to be

placed into any quantitative context, either with regard to

their overall migratory strategy, their associated environ-

mental conditions or their physiological nature.

Specific weather conditions may be exploited by migrating

birds to provide significant energetic savings [36]. For

example, because winds reach speeds that are similar to the

most efficient transit speeds for birds [37], migratory costs

could be halved by flying in tailwind conditions, if the magni-

tude of turbulence remains the same. General patterns of wind

are globally quite predictable (e.g. winds are typically stronger

over seas and at high altitude) and consequently many species

of birds have been shown to seek tailwinds during migration
[37,38]. In addition, vertical components of wind (e.g. oro-

graphic updrafts and ‘thermals’) can be used by both small

and large bird species to generate lift and reduce the costs of

climbing flight [9,39,40], and could be used to negotiate

demanding vertical features such as mountain ranges. How-

ever, this may not always be the case [41–43] and we have

previously shown that for a group of bar-headed geese

migrating northwards over the Himalayas, many birds

began their flights in what was probably the still of the night

and made use of low-altitude passes (up to 5800 m) [1,6].

In this study, we describe the movements and timing of a

larger group of bar-headed geese, including those in the

study of Hawkes et al. [1]. On the basis of our previous find-

ings, we posit the hypotheses that, because migratory wild

animals should tend to minimize energy expenditure, bar-

headed geese will: (i) migrate at the lowest altitudes possible;

and (ii) make use of favourable winds (i.e. tailwinds).

Global Positioning System (GPS) data are collected objec-

tively over wide spatial and temporal scales, and are thus well

suited to test these hypotheses. In this study, bar-headed geese

(n¼ 91) were fitted with GPS satellite transmitters (Microwave

Telemetry solar Argos-GPS PTT-100; http://microwaveteleme-

try.com/Bird_PTTs/30g_gps.php) at two sites in India in

December 2008 (Chilika Lake, 19.6948N, 85.3078E, n¼ 15;

Koonthankulum Bird Sanctuary, 8.4728N, 77.7058E, n¼ 10), at

Qinghai Lake, China in March 2007 and April 2008 (36.9078N,

100.1398E, n¼ 29) and at Terkhiin Tsagaan Lake, Mongolia in

July 2008 and July 2009 (48.1478N, 99.5768E, n¼ 37). The trans-

mitters had a mass of 30 g, which represents approximately

1 per cent of the 2.26 kg mean body mass of the study

individuals, and incorporated estimates of altitude to +22 m

accuracy, up to 20 480 m. They were attached using Teflon and

elastic harnesses; see §4 for discussion of the potential effects of

transmitter tags. Data were analysed using R (www.r-project.

org) and integrated with environmental variables using custom

script in MATLAB (www.mathworks.com). See §4 for more details.
2. Results
(a) Migratory patterns
Global Positioning System data described a migratory corridor

extending from northern Mongolia to southern India, with

many of the birds deployed from Mongolia passing over the

eastern Himalayas near the border between Nepal and

Bhutan, where Himalayan valleys are lowest and where the

width of the Himalayan mountain range tends to its narrowest

[44] (figure 1). Tags from 53 geese failed to provide sufficient

data to describe their migration in detail and were therefore

excluded from further analyses. Tags from the remaining

38 geese provided data for a median 453 days (range

135–1216 days), sending a median nine GPS locations per

day (range 0–24). Geese demonstrated a migratory dichotomy

[6]: (i) some geese wintered in India near sea level (‘crossers’;

n ¼ 19); and (ii) other geese remained north of the Himalayas,

wintering in eastern Tibet at altitudes between 3190 and

4440 m (range of medians per goose; ‘non-crossers’; n ¼ 19).

(b) Do bar-headed geese migrate at the lowest
altitudes possible?

Geese migrating southwards in the autumn flew up to

7290 m altitude (maximum altitude recorded for one goose

http://microwavetelemetry.com/Bird_PTTs/30g_gps.php
http://microwavetelemetry.com/Bird_PTTs/30g_gps.php
http://microwavetelemetry.com/Bird_PTTs/30g_gps.php
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Figure 1. Satellite tracks of migrating bar-headed geese: (a) three-dimensional map showing release locations (black crosses) of bar-headed geese in India (n ¼ 2
sites) and Mongolia (n ¼ 1 site). Coloured lines represent 16 individual geese, and coloured background shading indicates elevation. Solid thick white line shows
the great circle route. White crosses show locations of the 14 ‘eight-thousanders’ (the world’s highest mountains, each over 8000 m in elevation). Five peaks are
largely obscured owing to their proximity to other peaks. (b) Cross-section of land elevation under the arithmetic mean bar-headed goose northwards migration
from Indian wintering (left side of plot) to Chinese and Mongolian breeding grounds (right side of plot).
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over northern Bhutan), with crossers migrating a median

3152 km southwards from Mongolia and China to India

(maximum 4542 km) in a median 81 days (maximum

149 days). By extracting migratory phases from stationary

phases, it was evident that there was a diel pattern in

the timing of locations received during migration, but

not during stationary phases, suggesting that geese

mainly migrated at night and during the early morning

(figure 2a,b). Geese migrating northwards in spring sustained

high climb rates for hours while crossing the Himalayas (see

also [1]) and one was tracked as high as 6540 m. The birds tra-

velled a median 3000 km distance (maximum 5140 km) in a

median 47 days (maximum 92 days). In total, 95 per cent of

filtered locations gathered while birds were in flight over

the Tibetan Plateau (where the highest ground elevations

they would have experienced, including the Himalayas,

were located) were received from lower than 5784 m

(n ¼ 207 locations). Although our data cannot preclude that

geese could have occasionally flown higher than this

during inter-location intervals (which were 1–2 h long), it

seems unlikely that significant flights were missed. Only 10

geese were recorded higher than 5784 m (and only one

goose higher than 6500 m), contributing just 11 locations.

What is more, all but one of the 11 locations were received
during the night and early morning, between 21.00 and

11.00, when the density altitude (the corresponding virtual

altitude in the International Standard Atmosphere for the

actual conditions experienced by the geese) may have been

some hundreds of metres lower than they would have experi-

enced during the day, owing to the colder air temperatures

(see also [1]). The majority of goose locations occurred less

than 591 m from the ground (upper quartile; median

188 m) and geese flew closest to the ground on the Tibetan

Plateau (median 62 m). We also compared the locations

received from geese over terrain higher than 5000 m with a

null model of randomly dispersed locations in the same

area (see §4; electronic supplementary material, figure S2).

Terrain over which geese travelled was in the lowest 1 per

cent of elevation values in the null model, suggesting that

the majority of geese choose to minimize altitude by flying

along valleys where possible and do not usually cross moun-

tain summits (figure 3).

(c) Do bar-headed geese make use of
favourable winds?

At the resolution of our modelled data describing general

wind patterns, there was no evidence that southbound
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geese selected specific weather conditions in which to migrate

(gross wind speeds and directions were not significantly

different from those experienced by stationary geese;
electronic supplementary material, figures S3 and S4; see

also §4), but northbound geese migrated in wind speeds

that were significantly slower than those that they
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experienced when stationary (Mann–Whitney–Wilcoxon

test, W ¼ 109, p , 0.01). During migration, geese flew at

17.1 m s21 (15.5–18.9 inter-quartile range; n ¼ 38 geese),

with a maximum recorded GPS ground speed of

35.3 m s21. However, more than half of the ground speeds

were marginally slower than the altitude-corrected predicted

‘minimum power air speed’ (the air speed required to have

travelled with the minimum power between two locations)

from flight biomechanical theory [34], and were correlated

with and almost equal to minimum transit speeds (the mini-

mum ground speed required to have travelled between two

successive locations and their corresponding time stamps;

figure 4a,b). Although detailed wind data with which to

estimate airspeed were not available (airspeed ¼ ground-

speed–wind vector; which would have permitted the

estimation of the tailwind ratio), our data therefore suggest

that geese may have made headway regardless of wind con-

ditions [43]. However, we do not know what the local

conditions were in the immediate vicinity of the geese.

As expected from flight biomechanical theory, geese flew

significantly faster at higher altitudes, travelling 3.7 m s21

faster above 5000 m than at sea level (Spearman’s correlation

coefficient S ¼ 177 458, p , 0.01, n ¼ 38 geese; figure 4c).

Bar-headed goose migration described a route that was

112 km longer than the great-circle route (the minimum dis-

tance between wintering and breeding sites; figure 1a, white
line), with a deviation up to 450 km eastwards on the Tibetan

Plateau. At latitudinally and temporally coincident locations

on the great-circle route, modelled wind speeds were signifi-

cantly stronger than those experienced by migrating bar-

headed geese (median 11.1 versus 2.6 m s21; Wilcoxon–

Mann–Whitney two-sample U-test, U ¼ 1119, p , 0.01), and

were also likely to be highly turbulent and frequently against

the direction of travel (figure 5). We have previously recorded

apparent selection for calmer, less windy conditions at night

for bar-headed geese making the 8 h northern migration over

the Himalayan mountain range [1].
3. Discussion
The reputed extreme high-altitude migration of bar-headed

geese above the peaks of the Himalayas [30] has puzzled

ecologists and physiologists alike for over 30 years; indeed,

Black & Tenney ([17], p. 236) suggested that ‘there must be

a good explanation for why the birds fly to the extreme

altitudes . . . particularly since there are passes through the

Himalaya at lower altitudes, and which are used by other

migrating bird species’. In this study, we find no evidence

to support a general paradigm of extreme high-altitude

migration (.8000 m), although there were a couple of flights

over 6000 m altitude for short periods of time. Geese in this
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study comprised two major wintering aggregations and two

breeding populations, of which one, Qinghai province in

China, hosts almost one-third of the world’s nesting

population for this species [2,3,5,6]. This suggests that a

major portion of the global population of bar-headed geese

(.17 000 individuals) might be expected to be found along

this flyway [45].

The strategy adopted by the majority of bar-headed geese

passing through the eastern Tibetan plateau was potentially

to reduce overall flight costs by flying over the lowest part

of the mountain range and not much higher than the under-

lying terrain dictated. There was no evidence that geese made

regular use of tailwinds, although we note the resolution of

the meteorological data we used precludes detailed analysis

of this hypothesis. The rare higher flights that were recorded

in this study may represent brief negotiation of particularly

high terrain where no lower-altitude routes exist and/or

may have been associated with favourable winds or night-

time reductions in density altitude. Bar-headed geese do

also cross the mountains further west [4,7], where there is a

greater percentage of the Himalayas’ highest peaks and

ridges. Thus, future studies may address whether extreme

high-altitude flight is more prevalent for other populations

and whether they may make use of favourable wind con-

ditions (e.g. tailwinds and lift from vertical up-currents).

Our dataset, however, suggest that higher-altitude flights in

the eastern Himalayas and Tibetan plateau are a relatively

uncommon event, and supports our hypothesis that geese

migrate via the lowest routes available to them. It does not,

however, support our second hypothesis that they make

use of tailwind conditions to reduce energy expenditure.

We have shown that the majority of bar-headed geese

typically fly up to 6000 m above sea level. This is still an extra-

ordinary feat. Even at these altitudes, the barometric pressure

in the standard atmosphere is more than halved, yielding not

only less aerodynamic lift, but also half the partial pressure of

oxygen with which to fuel flight. We are unable, at present, to

determine whether the geese migrate at these altitudes solely

under their own power. If they do, it would be particularly

impressive as they are relatively large birds with a potentially

negative allometric scaling ratio of power available to power

required, compared with smaller birds [34,46,47], and are not

known to exhibit exceptional external morphological adap-

tations to facilitate flight at high altitude [15]. By contrast,

humans can only exercise sub-maximally at such altitudes

[48]. Occasional rare flights to even higher altitudes do

occur, and it is not clear whether these flights are assisted by

favourable wind and temperature conditions [49] or whether

they can be sustained entirely by the various physiological

adaptations for flight at high altitude, which have been

described in some detail for bar-headed geese [10,27,49].
4. Material and methods
(a) Satellite tracking
Global Positioning System tags obtained locations hourly (n ¼ 25

tags) or 2-hourly (n ¼ 66) and transmitted the accumulated, com-

pressed data to the Argos satellite location system every 2 days.

The units also transmitted the goose’s instantaneous flight

ground speed (to + 0.3 m s21 accuracy at speeds . 11.1 m s21)

and heading (to + 18 accuracy). Transmitters were attached,

using Teflon and elastic harnesses. Externally mounted telemetry
tags are known to have negative effects on a range of avian

species [50–54] (e.g. causing an increase in energy expenditure

during flight owing to the additional drag induced by the tag).

Such tag attachment effects may have existed for bar-headed

geese in this study. Although it is unclear whether it may have

affected their altitudinal maxima to some degree, it seems unli-

kely that geese would have flown higher than necessary

without the burden of tags given the relatively small size of

the tags and the increasing costs of flight with altitude.

(b) Flight biomechanics
The ground speed data transmitted by the tags were compared

with an estimate of the most efficient air speed per unit of

time (the minimum power air speed; VMP) and distance (the

maximum range air speed; VMR) [34]. These estimates were com-

puted in FLIGHT v. 1.22 [34] using the following input parameters:

(i) 125 per cent of the mean capture mass of bar-headed geese in

the present study (125% ¼ 2.82 kg; geese were captured during

their wing moult and many weeks prior to fattening and

migration [55]); (ii) a mean measured wing span for bar-headed

geese of 1.46 m; and (iii) a mean wing area of 0.25 m2 (from Lee

et al. [15]), yielding estimates of VMP and VMR for an average

goose at sea level in still air. Estimated VMP and VMR were then

recalculated over 500 m altitudinal increments to 7500 m above

sea level in FLIGHT for comparison with the tracking data at alti-

tude. During migration however, as fat stores are used up (and

replenished at stop-over sites), body mass will change, meaning

that actual VMP and VMR are dynamic while our estimates are

not. They will therefore obviously not be accurate for all geese

at all times of the year, but can be parsimoniously used as a

broad indicator of optimum flight speeds.

(c) Data management
Global Positioning System data were managed using the Satellite

Tracking and Analysis Tool [56] and hosted on Movebank

(http://www.movebank.org) [57]. GPS location data (n ¼ 149

320 locations) were used in analyses and we did not use

Argos-derived locations. The time zone in which each location

was transmitted was determined and used to convert each GPS

time (in coordinated universal time) to local time, and compared

with local sunrise and sunset times to assign each location to day

or night. Migratory periods were extracted from the data using

the minimum straight-line displacement distance from original

release location to each subsequent GPS location. Periods of

migration (persistent movement, shown as steep increases in dis-

placement) can then be identified as distinct from stationary

phases such that migratory timing can be extracted (e.g. stop-

overs, breeding and wintering shown as flat sections where dis-

placement distance does not change, retaining 5% of locations).

Data were further filtered to retain locations corresponding

only to transit ground speeds greater than 11 m s21 (25%

slower than the estimated VMP [34], retaining 5.4 per cent of

the filtered data). All retained data had corresponding estimates

of instantaneous GPS-derived ground speed and 97 per cent had

altitudinal estimates.

(d) Environmental data layers
Land elevation data coincident to goose locations were obtained by

overlaying tracks on the NASA/NGA 90 m Shuttle Radar Topo-

graphy Mission (SRTM; http://www2.jpl.nasa.gov/srtm/)

topographic data product. Spatio-temporally congruent weather

data for the central Asian region were obtained from the European

Centre for Medium-Range Weather Forecasts ERA interim dataset

on a fixed grid of 1.58 and at 6-hourly temporal resolution (http://

www.ecmwf.int [58]). Coincident ground elevation from SRTM

was subtracted from each transmitted flight altitude to derive

http://www.movebank.org
http://www.movebank.org
http://www2.jpl.nasa.gov/srtm/
http://www2.jpl.nasa.gov/srtm/
http://www.ecmwf.int
http://www.ecmwf.int
http://www.ecmwf.int


rspb.royalsocietypublishing.org
ProcR

SocB
280:20122114

7
flight height above ground, and used to select the relevant pressure

level from the ERA dataset for each location. The spatio-temporally

congruent U and V components, the vectoral components of wind

speed and direction, were then extracted from the dataset and used

to calculate wind direction and speed for each goose location.

Wind data were plotted using the R package ‘oce’ and circular stat-

istics carried out using ‘CircStats’. We calculated the great circle

route (shortest route) between the deployment and terminus

locations, using the R package ‘geosphere’.

(e) Statistical analysis of route elevation
We tested whether geese selected routes through the Himalayas

and across the Qinghai–Tibetan Plateau that encompassed stat-

istically lower altitudes than might be expected at random by

testing the observed goose data against a null model [59]. The

null model was constructed by randomly scattering 5000 points

across a rectangular extent that encompassed the generalized

flyway across the Qinghai–Tibetan Plateau (see the electronic

supplementary material, figure S2). The elevation of the

ground under each modelled point was then sampled from the

SRTM data layer and compared with the ground elevations

under bar-headed goose locations that lay within the same

extent. We then enumerated the proportion in each that lay

above and below 5000 m elevation.

( f ) Statistical analyses
Global Positioning System and meteorological data were not nor-

mally distributed (Shapiro–Wilk test, p , 0.05), and measures of

central tendency are therefore represented as medians with
inter-quartile ranges. Wilcoxon tests were used to compare

between two groups [60].
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Mongolian Academy of Sciences, Wildlife Science and Conservation
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