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Key conceptual issues about speciation go unanswered without consider-

ation of non-mutually exclusive factors. With tests based on speciation

theory, we exploit the island distribution and habitat differences exhibited

by the Caribbean cricket Amphiacusta sanctaecrucis, and with an analysis of

divergent ecological selection, sexually selected differentiation and geo-

graphical isolation, address how these different factors interact. After

testing for divergent selection by comparing neutral genetic and morpho-

logical divergence in one ecological (mandible shape) and one sexual

(male genitalia shape) trait, we examine whether ecological or sexual selec-

tion is the primary mechanism driving population divergence. We find that

all three factors—isolation, ecological and sexual selection—contribute to

divergence, and that their interaction determines the stage of completeness

achieved during the speciation process, as measured by patterns of genetic

differentiation. Moreover, despite the striking diversity in genitalic shapes

across the genus Amphiacusta, which suggests that sexual selection drives

speciation, the significant differences in genitalia shape between forest habi-

tats revealed here implies that ecological divergence may be the primary axis

of divergence. Our work highlights critical unstudied aspects in speciation—

differentiating the cause from the consequence of divergence—and suggests

avenues for further disentangling the roles of natural and sexual selection in

driving divergence in Amphiacusta.
1. Introduction
A primary difficulty with testing mechanisms of speciation empirically arises

from the inherent challenge of interpreting patterns of divergence. Evidence

of local adaptation and divergent selection in promoting species differentiation

is widely acknowledged [1], and theoretical models detail the processes under-

lying speciation [2]. Nevertheless, the processes, and specifically the pace and

order in which ecological and sexual divergence accumulates, is much less

clear in empirical studies. Ecological divergence, for example, may be a cause

or consequence of speciation. Local adaptation may arise only after reproduc-

tive isolation leads to a cessation of gene flow, as opposed to driving

speciation itself [3]. Likewise, when species differ in both ecological and

sexual characters, it is notoriously difficult to distinguish between character

divergence that is a cause or a result of species divergence [4–6]. Such distinc-

tions are critical for understanding not only the drivers of speciation, but also

for understanding why speciation remains incomplete in many cases (see

review, [7]). For example, as the driver of speciation, selective differences

cannot withstand the dilution effects of gene flow and adaptive divergence

will remain relatively ephemeral unless selection is strong [8]. By contrast, if

ecological differences are a consequence of speciation, where reproductive iso-

lation evolved in some other context, adaptive divergence will accumulate

irrespective of the strength of selection.

Here we investigate the relative contributions of ecological and sexual diver-

gence, as well as differentiation associated with geographical isolation, on
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species divergence in flightless Caribbean crickets (genus

Amphiacusta). Archipelago systems afford a natural scenario

for studying the role of genetic drift in species divergence,

while also providing an evolutionary arena where selection

contributes to the speciation process [9].

Spatial isolation and limited vagility have indeed played a

demonstrable role in the diversification of Amphiacusta
(Gryllidae: Phalangopsinae) across the Greater Antilles. Phy-

logenetic analyses show that the diversification history is

dominated by inter-island diversification, with closely related

species distributed across different islands [10]. Yet, inci-

dences of intra-island speciation (i.e. sister taxa occur on the

same island) raise the question about the role of selection in

species divergence, although whether ecological or sexual

selection is a cause or consequence of divergence is unclear

[10]. The restriction of this highly diverse genus (more than

80 species) to the Caribbean islands, and individual species

to wet or dry primary forest, or to damp caves [11], suggests

that local adaptation is important. However, Amphiacusta taxa

are also characterized by conspicuous divergence in male

genitalia [11,12], divergence that is largely concentrated in

the C-sclerite, a portion inserted directly into the female

genital tract during mating that exhibits unparalleled differ-

entiation compared with other morphological traits both in

the diversity of shape variation and magnitude of divergence

among species. Extreme divergence in genitalia, especially in

the absence of other extensive morphological variation, is

generally taken to be a sign of sexual selection operating,

either by female choice or male–male competition for fertili-

zation opportunity, on male genitalia shape [13,14], and

comparative studies lend support to such a hypothesis

([15]; for reviews, see [14,16,17]).

Such divergence in ecological and sexual characters not only

characterizes different species of Amphiacusta, but is also paral-

leled in divergence patterns within species whose populations

are distributed across multiple islands (including the focal

taxon of this study Amphiacusta sanctaecrucis). In the Virgin

Islands, A. sanctaecrucis are restricted to wet tropical forest. How-

ever, on two islands (i.e. Beef Island and Virgin Gorda; figure 1a)

that are characterized by nearby mountains sufficiently high to

create a rain-shadow effect, this species inhabits two very

different habitats: a wet or a dry tropical forest (figure 1b).

We exploit this situation to consider a set of non-mutually

exclusive, and potentially interacting, factors—divergent selec-

tion associated with different ecological habitats, sexually

selected differentiation and geography—that may contribute

to species divergence in Amphiacusta. Specifically, we approach

the question of how different factors might interact with three

testable hypotheses. First, we can test for evidence of divergent

selection by comparing observed patterns of morphological

divergence (QST or PST) to a background level of divergence

established from patterns of neutral genetic divergence (FST),

as proposed by Wright [18,19].

Differentiation in the mandibles and male genitalia

(figure 2) is quantified and used as a proxy for the presence

of divergent selection [7]. Studies on the functional mor-

phology of insect mandibles have identified their ecological

relevance [20], including in Orthoptera more generally,

where their chewing ability appears to be under selection

[21]. Likewise, genitalia are a good proxy for sexual selec-

tion [13]; genitalic characters not only show species-level

divergence in Amphiacusta but have also been shown to

mediate reproductive success in other taxa [13,14].
Second, selection and drift acting together will produce

greater divergence than drift operating alone, because

ecological divergence will lead to greater reductions in gene

flow than occasioned solely by geographical isolation. Thus,

if ecological differences contribute to divergence, there

should be a correlation between neutral genetic divergence

and ecological differences between populations. Lastly,

we dissect the roles of ecological and sexual processes in

species divergence. Because A. sanctaecrucis inhabits both wet

and dry forests, we can ask whether there is evidence of differ-

entiation in mandible shape between crickets inhabiting dry

forests and crickets inhabiting wet forests. Furthermore, if

species divergence is driven by ecological selection, and diver-

gence in sexual characters is a consequence (not the driver) of

species divergence, then we would expect to see differentiation

in shape in male genitalia between dry and wet forest popu-

lations. On the other hand, if there is no significant effect of

habitat on species divergence, populations may exhibit differ-

ences in genitalia shape independent of the consequences of

ecological selection.

We make these comparisons among the five wet

forest island populations and two dry forest populations

of A. sanctaecrucis. By making comparisons among adjacent

island populations (figure 1a), we can control for the effects of

the timing of colonization on our analyses of divergence. More-

over, by studying population-level divergence, as opposed to

species differences, we also avoid the confounding problems

of comparisons in which post-speciational differences obscure

the processes that drive species divergence [7,22].
2. Material and methods
Specimens of A. sanctaecrucis were collected from a population

from a wet tropical forest habitat on each of five Virgin Islands

and from the two islands (Virgin Gorda and Beef Island) that

had dry forest habitats, for a total of seven populations (figure 1).

Only adult males (the adult stage in males is unambiguous because

only mature males have wings) were used for calculating phenoty-

pic divergence because the morphological characters most subject

to sexual selection are the male genitalia.
(a) Genetic data and analysis
Neutral genetic differentiation was quantified with microsatellites

in a total of 176 individuals across each of the populations: Beef

Island (BI; n ¼ 16), Saint Croix (STC; n¼ 26), Saint John (STJ;

n ¼ 31), Saint Thomas (STT; n¼ 37), Tortola (TOR; n¼ 25),

Virgin Gorda Peaks (VGP; n¼ 30) and Virgin Gorda Baths (VGB;

n ¼ 11). Genomic DNA was extracted from the femur of each

individual using a Qiagen DNeasy kit. Nine dinucleotide microsa-

tellites were isolated using the protocol outlined in Glenn & Schable

[23]. The clone sequences used to generate microsatellites are in

Genbank (accessions JX987471-479). Individuals were genotyped

for nine loci (AS15, AS17, AS18, AS19, AS29, AS44, AS54, AS69

and AS70). Microsatellites were amplified in a 10 ml reaction con-

taining 5.7 ml H2O, 1.0 ml 10X buffer minus MgCl2, 0.3 ml MgCl2,

0.5 ml of each 10 mM primer, 0.4 ml bovine serum albumin, 0.6 ml

of 2.5 mM dNTPs, and 0.04 ml Taq polymerase (Invitrogen)

under the following conditions: 2 min of initial denaturation at

948C and then 35 cycles of 948C for 15 s, 30 s from 508C to 568C,

30 s at 728C and a final extension of 4 min at 728C. PCR products

were genotyped on an ABI Model 3730 sequencer with a standard

of ROX 500 (ABI). Alleles were scored using GENEMARKER v. 1.70

(Soft Genetics).
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Figure 1. Populations of Amphiacusta are restricted to two different habitats within the Virgin Islands and display a pattern of genetic isolation-by-distance. (a) Map
of the Virgin Islands with the location of sampled populations marked by black circles and labelled with population designations. (b) Photographs illustrating the
two very different habitats in which Amphiacusta occur—either wet tropical forests or dry (desert-like) forests. (c) A significant pattern of isolation by distance across
islands is evident (Mantel test: r ¼ 0.756, p ¼ 0.0056). There was also a significant correlation between genetic distance and habitat type when controlling for the
effect of geographical distance ( partial Mantel test: r ¼ 0.767, p ¼ 0.028). FST-values for wet versus wet forest comparisons are in white, for wet versus dry forest
comparisons are in black, and for dry versus dry comparisons are in grey. STC, Saint Croix; STT, Saint Thomas; STJ, Saint John; TOR, Tortola; BI, Beef Island; VGP,
Virgin Gorda Peak; VGB, Virgin Gorda Baths.
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The program MICRO-CHECKER [24] was used to confirm that

there were not null-alleles. However, one microsatellite, AS18,

was not included in the analyses because of a departure from
Hardy–Weinberg expectations (based on 100 000 permutations

in ARLEQUIN v. 2; [25]) with p-values Bonferroni corrected for

multiple tests. For eight loci, Weir & Cockerham’s [26] FST-values
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Figure 2. Traits included in our analysis of phenotypic divergence. As a proxy
for divergent selection associated with ecological and sexual selection,
phenotypic differences were quantified in (a) the mandibles, and (b) the
male genitalia (specifically, the C-sclerite, which is inserted into the female
reproductive tract during copulation), respectively. Shape divergence among
populations of Amphiacusta sanctaecrucis in the genitalia and mandibles were
quantified using geometric morphometric techniques (see §2).
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were calculated among pairs of populations in FSTAT v. 2.9.3.2 [27]

with 95% CIs determined from 1000 bootstrap replicates. We used

the program IBDWS [28], which performs Mantel tests between

genetic and geographical distance matrices, to examine whether

populations exhibit isolation by distance. To examine whether

habitat type influenced genetic divergence as well, we also per-

formed partial Mantel tests between genetic distance and

geographical distance, with habitat comparison as a co-variable.

All Mantel tests above were performed with 10 000 permutations.

Except where otherwise stated, all statistical tests were performed

in R v. 2.15.0.

(b) Morphological data and analysis
Phenotypic differentiation of the mandibles and genitalia were

quantified in the 153 sampled males using geometric morpho-

metrics: BI (n ¼ 14), STC (n ¼ 23), STJ (n ¼ 25), STT (n ¼ 29),

TOR (n ¼ 21), VGP (n ¼ 27) and VGB (n ¼ 14). Digital images

of the mandibles and genitalia (figure 2) were taken with a

Leica DC300 dissecting scope and compiled from a standardized

set (i.e. the same focal depth per specimen and magnification) of

multiple focal planes using DISCOVERY-PRO and SCOPE-PRO PLUS

imaging software. Multiple images (n ¼ 5) were taken of each

structure for each individual to account for potential errors aris-

ing from the digitizing procedure; analyses (discussed below) are

based on the average across the five replicates per individual.

Femur length (as a measure of body size) was measured with

standardized digital images taken with a Leica DFC320 dissect-

ing scope using IMAGE-PRO PLUS software (Media Cybernetics).

Nine landmarks were digitized to measure shape variation of

the mandibles, and five landmarks and 74 sliding semi-land-

marks to measure shape variation in the genitalia (specifically,

the C-sclerite) [29,30] using TPSDIG v. 1.44 software [31].

A generalized Procrustes analysis was performed to control

for variation owing to the size and orientation of the images

using TPSRELW v. 1.44 [31]. The resulting variables, or partial

warps (PWs), represent the location of each sample relative to

the mean Procrustes configuration, and are statistically indepen-

dent from one another [32]. Shape variation and analyses of

population differentiation were conducted separately for the

mandibles and genitalia.
We used the summary statistic PST (with PWs as input) to

quantify population differentiation and test for drift-induced

versus selective divergence in mandible and genitalia shape.

PST-values are comparable with FST-values and were estimated as

PST ¼
s2

PB

s2
PB þ 2h2s2

PW

;

where s2
PB is the between group variance (i.e. between popula-

tions), s2
PW the within group variance (i.e. within populations)

of a phenotypic trait and h2 is the heritability. Note that PST is

used when QST cannot be estimated (e.g. in field studies that

lack heritability estimates) [33–37]. We compared the degree of

trait divergence (PST) with the degree of neutral genetic diver-

gence (FST) at eight nuclear loci. Following Wright [18,19], if

trait differences among populations are the result of divergent

selection, PST . FST; if traits are evolving under similar con-

ditions on different islands, they will exhibit stabilizing

selection, PST , FST; and if they are the result of stochastic,

drift-induced divergence, then PST � FST [36,37].

The inclusion of environmental variance in this measure

means that care must be taken in its interpretation. This study

focuses on morphological traits that typically exhibit high additive

genetic variance [38–42]. A range of heritability values (from

0.1 to 0.6) spanning those commonly reported in the literature

for both ecological characters exhibiting patterns of local adap-

tation [43,44] and traits under sexual selection [45–48] were

considered in our calculation of PST to guard against misinterpre-

tations. Results of statistical analyses presented in the text are

based on a heritability scalar of 0.6, but all tests are robust to her-

itability scalar used to calculate PST (i.e. the pattern remains

significant for values of h2 from 0.1 to 0.9). Note that the choice

to present results based on h2 ¼ 0.6 is conservative for comparing

PST and FST-values, given that smaller heritability scalars result in

a greater difference between PST and FST (see the electronic sup-

plementary material, figure S1). The 95% CIs were calculated for

each PST-value by bootstrapping of 2000 replicates for each trait

using R (see the electronic supplementary material).

A MANOVA was used to assess whether population affiliation

and habitat type independently explained a significant portion of

the variation in mandible and genitalia shape. Canonical variate

analysis (CVA) was used to examine whether there were significant

differences in mandible and genitalia shape between wet and dry

habitats, as well as to visualize how individuals from these habitats

were ordinated in morphospace. The significance of the Mahalano-

bis distance (D2) between habitat was assessed via permutation

tests with 10 000 replicates. We used PWs to examine differences

in mandible shape and relative warps (RWs) to investigate differ-

ences in genitalia shape, because a high variable to sample size

ratio makes MANOVA impossible and can distort CVA, exaggerat-

ing differences. RWs are equivalent to principal components, are

independent variables and their use reduces the dimensionality

of the data. We then used discriminant function analysis (DFA)

to assess the accuracy of the canonical variates for assigning indi-

viduals to wet and dry habitats. CVA and DFA of mandible

PWs were performed in MORPHOJ v. 1.05b. CVA and DFA of geni-

talia RWs were performed with the lda function of the ‘MASS’

package in R. Morphological and microsatellite data for this

paper are deposited in Dryad: doi:10.5061/dryad.8b490.
3. Results
A significant relationship between the level of neutral genetic

divergence, as measured by FST from eight microsatellites,

and the geographical distance among islands, shows an iso-

lation-by-distance effect (Mantel test: r ¼ 0.756, p ¼ 0.0056;

figure 1c). This effect is exemplified by the very high

http://dx.doi.org/10.5061/dryad.8b490
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Figure 3. Comparison of average phenotypic and genetic divergence across
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populations. See the electronic supplementary material, table S1 for details
about individual population comparisons, and figure S1 which demonstrates
that this conclusion is robust to a broad range of heredity scalars (i.e. from
0.1 to 0.9) used to calculate PST.
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FST-values between A. sanctaecrucis from Saint Croix compa-

red with other Virgin Island populations (see the electronic

supplementary material, table S1). In addition to being geo-

graphically separated from the other islands, the geological

history of Saint Croix is one of continual isolation, despite

dramatic changes in sea level during the Pleistocene, whereas

the other Virgin Islands experienced periods of connected-

ness in the past [49]. Additionally, there was a significant

correlation between genetic distance and habitat type when

controlling for the effect of geographical distance (partial

Mantel test: r ¼ 0.767, p ¼ 0.028).
(a) Tests for divergent selection
To test for evidence of selective divergence, the background

level of divergence established from patterns of neutral gen-

etic divergence (FST) was compared with the level of

population differentiation in selected characters (as measured

from the FST analogue for morphological characters, PST)

[50,51]. This comparison showed that both mandibular and

genitalic divergence among populations was significantly

greater than patterns of neutral genetic divergence, both glob-

ally and for nearly all population pairwise comparisons (see

figure 3 and the electronic supplementary material, table

S1). There was also no significant correspondence between

pairwise FST and mandible PST (Mantel test: r ¼ 0.162 and

p ¼ 0.28) or genitalia PST (Mantel test: r ¼ 2 0.041 and

p ¼ 0.47). To guard against the inflation of PST-values via

differential wear patterns associated with dietary differences

in A. sanctaecrucis from dry versus wet forests, the geometric

morphometric analyses were repeated, excluding landmarks

associated with the mandibular teeth; the results were the

same. Because calculations of PST require a heritability

scalar, we examined the robustness of this conclusion across

a broad range of heritability values (i.e. from 0.1 to 0.9) (see
the electronic supplementary material, figure 1), and

showed that PST-values remain elevated compared with

FST-values. Even though we do not have heredity estimates

for the characters (the study was conducted with wild-

caught animals), this range of heredity values considered

span those observed in other taxa for morphological traits,

including those associated with ecological differentiation

[42–44,52], and specifically for studies on insect genitalia

[45,46]. There is no significant correspondence between

population pairwise mandibular and genitalia PST-values

(Mantel test: r ¼ 0.556 and p ¼ 0.079).

Populations differed significantly in both mandible shape

(MANOVA, Wilks l ¼ 0.226, F6141¼ 3.115, p ¼ 0.0001) and

genitalia shape (MANOVA, Wilks l ¼ 0.046, F6135¼ 3.70,

p ¼ 0.0001). Habitat type, wet or dry forest, also explained a

significant portion of the variation in these structures (mandi-

bles: MANOVA, Wilks l ¼ 0.635, F1146¼ 6.466, p ¼ 0.0001;

genitalia: MANOVA, Wilks l ¼ 0.599, F1141¼ 4.043,

p ¼ 0.0001). CVA also revealed highly significant differences

in mandible shape between dry- and wet-habitat populations

(D2 ¼ 2.2037, p , 0.0001), and DFA correctly assigned 130 of

149 samples (87.2%), with the majority (17 of 19) of incorrect

assignments being those from wet habitats incorrectly categor-

ized as dry-habitat individuals. Similarly, CVA revealed

significant differences in genitalia shape between dry and wet

habitat populations (D2 ¼ 2.04, p , 0.0001) and 83.1 per cent

of samples were correctly assigned to wet or dry forest, with

errors being almost entirely of dry habitat crickets incorrectly

assigned to wet habitat (17 of 24). Altogether, there is significant

separation in morphospace for both mandibles and genitalia

between dry and wet forests, albeit with some overlap (figure 4).
4. Discussion
Evidence for ecological or sexual selection mediating popu-

lation divergence continues to accumulate [4,53–55];

however, distinguishing between which of these factors has

played the primary, and which the secondary, role can be a

difficult task [5–7]. We demonstrate that isolated island

populations of A. sanctaecrucis are diverging in both an eco-

logical trait (mandible shape) and sexual trait (male

genitalia). The evidence suggests that the divergence in

these traits is due primarily to selection, rather to than drift.

First, both traits exhibit elevated PST-values relative to neutral

expectations (see figure 3 and electronic supplementary

material, table S1). Second, there is a significant relationship

between neutral divergence and habitat, after controlling

for geographical distance. Moreover, although values of PST

may be confounded by a species demographic history

(e.g. a correlation between FST and PST; [42]), the lack of a

significant correlation between patterns of neutral divergence

and phenotypic divergence in both the mandibles and genita-

lia indicates that this is not the case here. Thus, our findings

indicate that it is not just geographical isolation, but that

ecological differences also contributed to species divergence.

We acknowledge that FST-values can have multiple

interpretations, such as being indicative of the timing of

island colonization [56]. However, this explanation does not

appear to fit our data. Rather, the lack of correlation between

FST and PST suggests that the contribution of ecological differ-

ences to species morphological divergence has arisen through

reductions in gene flow that are greater than predicted by
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geographical isolation alone [57]. The significant influence of

habitat on FST supports this interpretation of the pattern of

neutral divergence between islands.

To dissect the relative roles of ecological and sexual selec-

tion in species divergence, and specifically, the issue of

separating cause and consequence, we tested whether mand-

ible and genitalia shape vary not only by population but also

with respect to habitat type. If species divergence is driven by

ecological selection, such that divergent sexual characters are

a consequence (not the cause) of species divergence, we

would expect sexually selected traits to vary with respect to

ecology. MANOVA and CVA results confirm that genitalia

are divergent on an axis of forest type, suggesting the tanta-

lizing possibility that ecological selection is the primary

cause, and sexual selection the consequence, of divergence.

However, several important caveats need to be addressed.

First, population differences in mandible and genitalia

shape may be the result of plastic responses to different

environments; a common garden experiment is necessary to

address this possibility. Second, although sexual selection is
generally invoked to explain divergence in male genitalia,

another explanation for the convergent pattern of divergence

in mandibular and genitalic shape in A. sanctaecrucis is that

these traits are pleiotropically linked [58]. It is difficult to

see why genitalia should be especially likely to be affected

by pleiotropy [16], and little evidence for pleiotropic evol-

ution of genitalia has emerged to support this hypothesis

(but see [59,60]); however, selection on one or more loci

that affect cuticular growth and shape could result in similar

patterns of evolution for each. (We note there is no significant

correspondence between population pairwise mandibular

and genitalia PST-values, or between the first relative

warps (equivalent to the first principal components) of mand-

ible and genitalia shape (N ¼ 130, r2 ¼ 0.103, p ¼ 0.445),

suggesting that rates of divergence between the two phenoty-

pic traits are not coupled.) Furthermore, the pattern of

divergence in genitalia and mandibles suggest the intriguing

possibility that both represent a ‘magic’ trait, i.e. traits that

are pleiotropically linked, under divergent selection and

that simultaneously cause reproductive isolation via non-

random mating [61]. Future research into the underlying gen-

etic basis of mandibular and genitalic shape will be necessary

to fully address these competing hypotheses.

Another possibility is that environmental variance is

responsible for the pattern of genitalic divergence with

respect to habitat differences. Divergence in sexually selected

characters influenced by the ecological environment [62,63]

include traits where the perception of acoustic or visual dis-

plays by females or interacting males may be affected by

the habitat of the presenting male [53]. We consider it unli-

kely, however, that the genitalic differentiation among

populations inhabiting different ecological habitats is a

direct consequence of the environmental differences per se.

The shape of the male genitalia is not a character that

would exhibit such ecological dependence because it is a

character subject to post-copulatory selection (i.e. the environ-

ment in this case is the female reproductive tract; [13]).

Although body size differences associated with environ-

mental differences among populations could in principle

contribute to genitalic differences among populations, we

did not detect any relationship between genitalia and body

size, as measured by leg length (N ¼ 123, linear regression,

r2 ¼ 0.0004, p ¼ 0.8231). Moreover, the effect of size was

removed in the geometric morphometric analyses prior to

quantifying the amount of genitalic divergence among popu-

lations (see §2). These reasons lead us to doubt an a priori
reason to expect an association between the strength of

sexual selection and the ecological environment.

Rather, the pattern of genitalia shape divergence in the

genus is suggestive of sexual selection. The most notable fea-

ture of Amphiacusta, except its extreme species richness, is the

extreme divergence in genitalia shape with little apparent

divergence in other morphological traits [11,12]. In addition,

there is some evidence of correlated changes in shape

between male and female genitalia [11], although this has

yet to be rigorously demonstrated, owing to the difficulties

of studying female genitalia, which are soft-bodied structures

that do not preserve well. Finally, the mating behaviour

of Amphiacusta pronauta (sister species to A. sanctaecrucis)

[64] and A. sanctaecrucis (L. L. Knowles & E. Oneal 2007,

personal observation) suggests a functional role for the C-

sclerite, as after a lengthy mating (approx. 15 min), males

remove their spermatophore from the female’s genital tract
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after mating and consume it, behaviour that suggests the

attempted removal of rivals’ sperm [65].

Focusing on the level of genetic differentiation as an indi-

cator of the completeness of speciation (i.e. ranging from

population divergence to post-speciational divergence; [7]), the

degree of isolation conferred by all three factors—geography,

divergent ecological selection and sexual selection—can be con-

sidered. Our results indicate that isolation confers some genetic

differentiation, but that ecological selection in different habitats

has increased the genetic differentiation beyond that expected

merely by drift. Ecological selection appears to be primary, per-

haps rendering sexual selection less effective as a consequence of

lower levels of gene flow (i.e. greater reproductive isolation)

between populations from dissimilar habitats.

Lastly, the FST-value between the two dry forest habitats is

exceptionally high (figure 1), suggesting that they indeed are

the most reproductively isolated. The accumulation of greater

genitalic divergence between populations from dissimilar habi-

tats resulting from the greater reproductive isolation driven by

ecological divergence predicts that populations from the dry
forest should represent the highest level of completeness

towards speciation (considering that a progression towards

speciation occurs in stages [7]). Altogether, our study demon-

strates that non-mutually exclusive factors influencing

divergence can be considered together and their effects separ-

ated from one another. Finally, despite previous evidence

suggesting that sexual selection is the primary driver of species

divergence in the genus Amphiacusta [10], we have uncovered

evidence that, when geographical isolation permits, ecological

divergence precedes sexual divergence among populations of

flightless crickets confined to the Virgin Islands.
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