
rspb.royalsocietypublishing.org
Research
Cite this article: Bestley S, Jonsen ID, Hindell

MA, Guinet C, Charrassin J-B. 201 Integrative

modelling of animal movement: incorporating

in situ habitat and behavioural information

for a migratory marine predator. Proc R Soc B

280: 20122262.

http://dx.doi.org/10.1098/rspb.2012.2262

3

Received: 23 September 2012

Accepted: 16 October 2012
Subject Areas:
behaviour, ecology, environmental science

Keywords:
individual movement, animal telemetry, spatial

ecology, state-space model, foraging

behaviour, oceanographic drivers of movement
Author for correspondence:
Sophie Bestley

e-mail: sophie.bestley@dal.ca
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rspb.2012.2262 or

via http://rspb.royalsocietypublishing.org.
& 2012 The Author(s) Published by the Royal Society. All rights reserved.
Integrative modelling of animal
movement: incorporating in situ
habitat and behavioural information
for a migratory marine predator

Sophie Bestley1,2,4, Ian D. Jonsen1, Mark A. Hindell2, Christophe Guinet3

and Jean-Benoı̂t Charrassin4

1Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
2Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
3Centre d’Etudes Biologiques de Chize, CEBC-CNRS, 79170 Chize, France
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A fundamental goal in animal ecology is to quantify how environmental (and

other) factors influence individual movement, as this is key to understanding

responsiveness of populations to future change. However, quantitative

interpretation of individual-based telemetry data is hampered by the complex-

ity of, and error within, these multi-dimensional data. Here, we present an

integrative hierarchical Bayesian state-space modelling approach where, for

the first time, the mechanistic process model for the movement state of animals

directly incorporates both environmental and other behavioural information,

and observation and process model parameters are estimated within a

single model. When applied to a migratory marine predator, the southern ele-

phant seal (Mirounga leonina), we find the switch from directed to resident

movement state was associated with colder water temperatures, relatively

short dive bottom time and rapid descent rates. The approach presented

here can have widespread utility for quantifying movement–behaviour

(diving or other)–environment relationships across species and systems.
1. Introduction
Animal movement fundamentally influences the distribution and abundance of

organisms as well as many ecological processes operating at the population,

community and ecosystem levels. These include habitat selection and conserva-

tion [1], territorial and home-range dynamics [2], predator–prey dynamics [3],

disease spread and invasions [4], and the biological production, transfer and

transport of energy [5]. Within this critical area of research, technological

advances in telemetry [6] are increasingly leading researchers to focus on the

movement of individuals as the spatio-temporal bridge between the individual

and the population [7]. Of prime (but often elusive) interest is the exploration of

how individual movement behaviour is influenced by environmental (and

other) factors [1] as this is key to understanding animal responsiveness to

environmental change.

Inference on complex animal–environment interactions is driving the

development of increasingly sophisticated methods for analysing movement

data [8,9]. Individual-based telemetry data are associated with a number of well-

documented issues, producing large volumes of high-resolution auto-correlated

observations that are often incomplete and/or containing significant error, with

the high cost resulting in small sample sizes [10]. To develop population-level infer-

ence necessitates a modelling framework that appropriately treats both the data

(observation process) and the movement process, with each source of error

[11,12], providing a realistic representation of movement behaviour [13,14] and

allowing meta-analysis across individuals [15]. How to appropriately characterize

the environment can represent a significant additional challenge [16,17],
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particularly in the marine context, where wide-ranging

migratory species may spend the majority of their time deep

diving in a remote and inaccessible three-dimensional habitat.

A recent innovation in marine telemetry is the data logger,

which relays via satellite high-accuracy vertical profiles of two

key physical oceanographic variables, temperature and salinity

[18,19]. This provides local-scale in situ oceanographic habitat

information obtained within the animal’s immediate percep-

tual range. Summarized information on vertical diving

behaviour is also recorded. Global tagging efforts of southern

elephant seals (Mirounga leonina) have collected such data

across vast spatial and temporal scales throughout annual

winter foraging migrations in the Southern Ocean, a signifi-

cant proportion within the remote Antarctic sea ice zone

[18,19]. This presents an unprecedented opportunity for a

highly migratory marine species to quantify individual move-

ment and foraging responses to environmental influences, and

to infer how individual behaviour can shape population ecol-

ogy, a fundamental first step towards predicting responses in a

zone highly sensitive to climate change [20,21].

Here we focus on the East Antarctic continental shelf, a

highly productive coastal region influenced by seasonal

changes in sea ice [22] and sensitive to climate change [21].

This area has previously identified as a highly favourable

foraging zone for southern elephant seals [18], in particular,

for benthically foraging male animals [23]. While apparently

less frequented by females, recent evidence indicates that this

habitat is more profitable, in terms of energy gain, than

alternative sea ice or oceanic habitats [24].

In this study, we aimed to identify and quantify relation-

ships between horizontal movements, diving behaviour and

the physical ocean environment within an integrated model-

ling framework. State-space models (SSMs) are an ideal

method for analysing tag data to discriminate behavioural

state—for example, ‘resident’ and ‘directed’ movement (puta-

tively ‘foraging’ and ‘travelling’ states)—but these commonly

incorporate only information from horizontal movements

[11–13]. Here, we extend for the first time a hierarchical

Bayesian state-space modelling framework [15] so the vertical

(diving) component of movement and/or the environmental

cues can both influence the probability of switching between

states. Simulation studies are used to evaluate the sensitivity

of the SSM to estimating parameters for known environmental

relationships. We then focus on the southern elephant seals

migrating from Kerguelen Islands (KI) and Macquarie Island

(MI) that targeted the sea ice zone over the Antarctic shelf.

Our approach achieves a quantitatively rigorous understand-

ing of animal–environment interaction, incorporating the

vertical component of this multi-dimensional process.
2. Material and methods
(a) Instrumentation and data
Conductivity–temperature–depth (CTD) satellite relay data loggers

were built by the Sea Mammal Research Unit (University of St

Andrews, UK). Details of the tags, deployment and data relay pro-

cedures have been described elsewhere [18,19]. Briefly, CTD and

dive depth data are collected every 4 s during a dive ascent and com-

pressed onboard [25] for limited bandwidth transmission via the

Argos satellite system. Temperature and salinity profiles are based

on the deepest dive made in each 6 h period. The accuracy of cor-

rected pressure, temperature and salinity data is better than 2–
5 dbar, 0.02–0.038C and 0.02–0.05 psu, respectively [18,19,26], and

has been continuously improved since 2005.

The tags were deployed on juvenile male southern elephant seals

(length ¼ 3.09 + 0.45 m) from KI (69830 E, 49830 S) during 2009 and

adult females (length¼ 2.39 + 0.03 m) from MI (158854 E, 54836 S)

during 2010. Tags were deployed in the late austral summer to cover

winter foraging trips. Here we focused on those animals that tra-

velled to the East Antarctic shelf and slope environment (KI: n ¼ 5

seals, 7607 Argos locations; MI: n ¼ 3 seals, 4992 Argos locations).

To increase the MI sample size an additional 2005 deployment

(length ¼ 2.55 + 0.06 m) was also included (n ¼ 4 seals, 3655

Argos locations).

To examine the movement of seals in relation to oceano-

graphic conditions, two environmental variables were derived

from the CTD profiles (KI: n ¼ 1498, MI: n ¼ 1082/1533 during

2005/2010), mean ocean temperature (Temp, 8C) at the bottom

of a dive, and thermocline strength (Tcline, kg m23). Both pro-

vide potentially important information on the vertical structure

of the water column in which the animals forage [27]. For

example, strong thermoclines may concentrate phytoplankton

and thereby attract higher trophic levels [28]. Ocean temperature

influences species distribution and physiology (e.g. low tempera-

tures may lower metabolism, hence speed, of potential prey [23]).

The dive bottom was considered to include more than 80 per cent

of the maximum recorded depth. The CTD data were first line-

arly interpolated onto 1 m vertical levels for the surface 10 m,

and 10 m levels thereafter. Thermocline strength was determined

based on potential density (s), calculated relative to the surface

from temperature, salinity and pressure using standard seawater

equations. For each profile, the bottom of the surface mixed layer

depth was determined where the density difference to the sur-

face Ds . 0.125 kg m23 [29], and the base of the thermocline

where the vertical density gradient Ds/Dz � 0.0001 kg m21.

Thermocline strength was calculated as the absolute difference

between the densities at these two depths.

To examine the movement of seals in relation to their diving be-

haviour, two variables were developed from the raw dive data

(KI: n ¼ 21739, MI: n ¼ 9287/11894 during 2005/2010), the pro-

portion of time spent at the bottom of an individual dive

(pTime), and the absolute descent rate (Des, m s21). When actively

foraging, we may expect seals to both increase their descent rates

and maximize their time at the dive bottom [27,30], particularly

when targeting benthic prey at relatively consistent depths. As

pTime varied strongly across individuals it was necessary to

centre this variable such that pTimek,t ¼ pTimek,t – mean(pTimek)/

sd(pTimek), where k is the individual and t is the timestamp.

Only data beyond 10 km of the island release sites were

examined. Prior to analysis, all covariate time series were regu-

larized to match the regular 12 h time steps of the correlated

random walk being fit in the SSM [11]. Missing environmental

or diving information was filled by loess fitting with a span

a ¼ 28/n (i.e. a 14 day neighbourhood). While this generally rep-

resented less than or equal to 10 per cent of the data (KI Temp:

8.0%, Tcline: 10.2%, pTime: 1.3%, Des: 1.3%), it was higher for

the environmental covariates obtained from the 2005 deployment

(MI Temp: 40.3/3.4%, Tcline: 46.0/8.7%, pTime: 9.9/2.1%, Des:

9.9/2.1% for 2005/2010 respectively). An alternative approach

in future would be to set priors for missing covariates; however,

it is likely this will substantially increase the computational time.

An example CTD time-series and the derived environmental and

dive variables are shown in figure 1.
(b) State-space model
The SSM provides an appropriate framework for modelling

movement and simultaneously dealing with inherent telemetry

location error [11,12]. Using Bayesian methods all locations in

a track can be probabilistically assigned to one of two
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Figure 1. Example environmental and diving time-series data from a KI juvenile male (3.62 m length) southern elephant seal (ct36-F-09). (a) Vertical temperature-
at-depth (8C) profiles recorded 10 February to 3 June 2009. (b) Covariates derived from tag data (see §2). Two environmental covariates—temperature at the
bottom of a dive (8C, blue) and thermocline strength (kg m23, black)—and two diving covariates—proportion of time spent at the bottom of a dive (centred,
cyan; see §2) and descent rate (m s21, pink). Grey bars show where the best-ranked model estimates the resident movement state to occur.
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(unobservable) behavioural states, nominally labelled as ‘resident’

(R) and ‘directed’ (D). In a hierarchical formulation parameters

may be estimated across multiple individuals [15]. To enable

environment–behaviour and dive–behaviour relationships to be

directly quantified within a single model, we extend this SSM fra-

mework so the transition (switch) between states varies explicitly

as a function of (environment and/or dive) covariates.

Suppose there are two behavioural states with the state vari-

able bt representing the state at time t. The transition matrix

determines the switching probabilities (f ),

ft;i ¼
DtjDt�1

1� RtjRt�1

�
1�DtjDt�1

RtjRt�1

�
; ð2:1Þ

whose elements are constrained so that
P

i ft;i ¼ 1: We modelled

these as dependent on both the previous state bt21 and n covari-

ates Xt via a logistic function:

ft;i ¼
e
biþ
Pn

j¼1
mi;jXt;j

1þ e
biþ
Pn

j¼1
mi;jXt;j

� � : ð2:2Þ

Here b and m are the intercept and coefficient parameters, j is

the covariate index and i [ [1; 2] is the behavioural state index,

where 1 ¼ ‘directed’ and 2 ¼ ‘resident’. Hereby at any time t
the switch probability Pr[RjD] ¼ 1 2 f1 and the reverse switch

Pr[DjR] ¼ f2. Which of these transitions occurs at any time

step is determined by the previous behavioural state,

nt;1 ¼ ft;bt�1
and nt;2 ¼ 1� ft;bt�1

; ð2:3Þ

where h represents the probability of being in either state. This is

modelled using a categorical distribution such that bt � Cat(ht).
We used vague priors throughout [11,12,15], and set both b

and m � N(0, 10). The model code is available in the electronic

supplementary material, appendix S1.

(i) Simulations
To assess the performance of the covariate SSM, we set up a series

of experiments with simulated data and known environment–

behaviour relationships, and compared the parameter estimates

to the true values. To emulate a realistic ocean temperature field,

we simulated a random Gaussian field with spatial correlation

(using the R ‘fields’ package [31]), overlaid on a north–south

gradient (from 10 to 22). We set a 1600� 400 grid covering the

observed spatial range of KI southern elephant seals (see the elec-

tronic supplementary material, figure S1). Six tracks of 290 time

steps were simulated in each experiment and environmental data

were sampled along the track. Each location had Argos errors

added from randomly drawn location classes using the real

class proportions as the probability vector (p ¼ 0.01, 0.12, 0.14,

0.10, 0.19, 0.44 for the classes 3, 2, 1, 0, A, B/Z respectively).

All tracks were generated using identical parameter values, dif-

fering only in the environment–behaviour coefficients used in

each simulation (see the electronic supplementary material,

table S1). Ten combinations of coefficients (m1, m2) over the

range 0.25–2 were investigated, where positive coefficients indi-

cate a higher (lower) probability of switching into (out of)

‘resident’ behaviour in cold water.

(ii) The influence of behaviour and environment on movement
Two hierarchical models [15] were then fitted separately to the KI

and MI seals using a half-day time step (selected since only
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2 Argos uplinks per day is common in ice environments). For

each, the model parameters were estimated across the group of

animal tracks. The SSM is run using the software packages WIN-

BUGS and R [32], freely available online (http://www.mrc-bsu.

cam.ac.uk/bugs/winbugs/contents.shtml and http://www.R-

project.org). To fit the model two Markov chain Monte Carlo

(MCMC) chains of 20 000 iterations were run with a burn-in of

10 000. Each chain was thinned so one in every 10 samples was

retained, for a final MCMC sample size of 2000.

It is logical that animals should be more likely to switch from

a directed to resident movement state where they can obtain

forage, but it is also plausible that the reverse switch (from resi-

dent to directed) may be related more strongly to the internal

state of the animal (e.g. satiation) or some other factor (e.g. the

need to return to breeding grounds) [13]. Hence we explored

two scenarios, where covariates are not included in the determi-

nation of the reverse switch probabilities (a one-way switch

influence) and are included (two-way). To assess how well a par-

ticular model fitted the data, we used the Bayesian deviance

information criterion (DIC) [33]. DIC was not used as a strict

basis for model choice, but rather as a means for producing a

candidate set of model formulations [13].

Developing diagnostics for Bayesian SSMs remains a field of

active research. Particularly for the relatively complex SSMs used

here, with the observation (treating Argos data) and process (treating

the behavioural state switching) models simultaneously being fitted,

(i) discriminating poor fit and (ii) determining the source and any

consequence of poor fit is not simple. For evidence of fundamental

problems, we investigated four avenues. To assess for convergence,

we used two approaches: (i) visual inspection and autocorrelation

functions were applied to the MCMC sample chains for estimated

movement and covariate parameters, and (ii) the Brooks–

Gelman–Rubin potential scale reduction factor (̂r) [34] was

examined for all estimated parameters, using r̂ � 1:1 as a threshold

for convergence. (iii) To check for parameter identifiability issues

(i.e. whether sufficient contrast existed within the data to estimate

the intercept and covariate coefficient parameters well), we checked

whether the posterior samples for the parameters were correlated, in

particular between the two switches. (iv) Finally, we examined to

what extent the behavioural state estimations were ultimately

influenced by the various model formulations.
3. Results
(a) Simulation study
The covariate SSM produced good estimates of the known

environment–behaviour parameters (see the electronic sup-

plementary material, table S2 and figure S1b). In all of the

simulation experiments, the true values of the slope parameters

(m1, m2) fell within the 95% credible limits (CL) of the posterior

distributions for these parameters. However, estimates for the

weakest slope value tested (0.25) tended to straddle zero, indi-

cating low confidence. In a few simulations, one intercept (b1)

fell on (n ¼ 1 experiment) or just outside (n ¼ 2 experiments)

the relatively narrow 95% CL. However, the effect of these

errors on the estimation of behavioural state as ‘resident’ or

‘directed’ appeared minor, with greater than or equal to

88 per cent correct allocation achieved in all simulations.

(b) Case study: shelf ice migrants from Kerguelen
Islands and Macquarie Island

Having evaluated the model performance using simulated

data, we applied it to data from southern elephant seals

tagged on KI and MI. The four diagnostic avenues investigated
showed no evidence of any fundamental problems (see the

electronic supplementary material, appendix S2). The tracks

generated by the SSM using the 12 h time step comprised 1146

and 1083 locations for KI and MI seals, respectively. Individual

tracks ranged from 116 to 287 and 123 to 219 locations, respect-

ively, spanning approximately 2 to 6 months (figure 2). In

general, seals showed rapid travel south to the East Antarctic

continental shelf. Seals from both islands spent approximately

half their trip over the shelf, on average 50 and 46 days for KI

males and MI females, respectively (table 1). During this time,

animals displayed between one and four periods of ‘resident’

movement, averaging 14 days and 25 days for KI males and

MI females, respectively (see table 1 and electronic supplemen-

tary material, figure S2). Above three-quarters of the shelf time

was characterized as putative foraging (‘resident’), with the

majority of dives (76 and 81%) identified as benthic (table 1). Fol-

lowing their shelf visit seals moved north and engaged in one or

more additional resident periods within the sea ice zone or

returned to their breeding island (figure 2; electronic supplemen-

tary material, figure S2). Horizontal swim speeds tended to be

much lower during resident periods, but this was not always

the case (see the electronic supplementary material, figure S3).

The majority of covariate SSMs showed a substantially

improved fit to the KI data, when compared with the no-

covariate base SSM, on the basis of DIC values (see the

electronic supplementary material, table S3). Best results were

obtained for the multi-covariate models, where the two-way

influence on switch rates generally performed better than the

one-way switch models. The best-ranked model was the most

complex model tested, which included all four covariates with

a two-way influence. Given only a small DIC difference with

the corresponding one-way switch model, it is arguable that

the latter could be selected on the basis of parsimony. However,

all models yielded very similar posterior estimates of the covari-

ate coefficients (see the electronic supplementary material,

figures S4 and S5), which engenders confidence in the suite of

results. Hence, we present the full-covariate two-way model

results here for completeness. For MI, the best-performing

models generally contained dive bottom temperature, thermo-

cline strength and/or dive bottom time (see the electronic

supplementary material, table S3). Performance of the one- or

two-way switch varied between different model formulations.

The influence of the covariates on switching rates is not

straightforward to interpret. For the KI seals, the positive f1

coefficient for temperature and the negative coefficient for ther-

mocline strength (see table 2 and electronic supplementary

material, figure S4) indicate that the probability of switching

from a directed to a resident state was more likely to occur in

colder waters and where the thermocline was relatively strong

(figure 3a). Interestingly, switching from directed to resident

movement was actually associated with a decrease in the pro-

portion of time spent at the bottom of the dive, and with

increased dive descent rates. Examination of individual time

series (figure 1b) appears to support this finding: for example,

the initial switch into a resident movement state (near the end

of February in this case) occurred in correspondence with dis-

tinct disjuncture in all covariates. Somewhat unexpectedly,

perhaps, the coefficients for the reverse switch (governing f2,

from resident to directed movement) all had the opposite

signs (table 2; electronic supplementary material, figure S5).

This indicates that the reverse switch was also most likely

under all the same circumstances, although the effect in most

cases tended to be weaker (figure 3a).
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Figure 2. Map showing estimated positions and movement state (directed, blue; resident, red) from the best-ranked models for (a) Kerguelen Islands (KI, n ¼ 5)
and (b) Macquarie Island (MI, n ¼ 7) seals. Lower panels show detail of inset area over the East Antarctic shelf indicated by white box in upper panels. Bathymetric
1000 m contour (white line), climatological mean maximum ice extent during 1978 – 2008 (black dotted line) and during May – June 2005 – 2008 (black dashed
line) are also shown for reference (sea ice data from http://data.aad.gov.au/aadc/metadata/metadata_redirect.cfm?md=AMD/AU/sea_ice_extent_winter).

Table 1. Summary movement, foraging and diving information for 2009 KI (n ¼ 5) and 2005/2010 MI (n ¼ 7) seals which migrated to the East Antarctic
shelf region. The term forage denotes periods defined (using the covariate SSM) as ‘resident’ movement. Values represent mean + s.d. (range) across
individual animals.

KI males (n 5 5) MI females (n 5 7)

percentage trip on shelf 49 + 15 (30 – 65) 56 + 20 (20 – 79)

daysa on shelf 101 + 31 (65 – 132) 92 + 40 (36 – 159)

percentage shelf time forage 82 + 13 (64 – 95) 76 + 30 (11 – 97)

no. forage events 4 + 1 (3 – 5) 2.3 + 1.1 (1 – 4)

no. shelf forage events 3.2 + 0.8 (2 – 4) 1.6 + 0.8 (1 – 3)

forage run lengths (daysa) 32 + 14 (12 – 46) 47 + 27 (17 – 103)

shelf forage run lengths (daysa) 29 + 15 (12 – 46) 51 + 30 (4 – 103)

percentage shelf dives benthicb 75 + 22 (43 – 95) 78 + 20 (42 – 97)

percentage shelf forage dives benthic 76 + 25 (40 – 100) 81 + 22 (44 – 100)
aNote that ‘days’ actually represents model days, which are 12 h time steps. Behavioural switches of less than 2 time steps
were discounted.
bBenthic diving was ascertained where the maximum dive per time step was within 50 m of the bathymetry for an estimated
location, based on the fine-scale (2 min) ETOPO2 v. 2 grid from the National Oceanic and Atmospheric Administration
National Geophysical Data Center (http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-2006/ETOPO2v2c/).
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The temperature and bottom time patterns in the best-

ranked MI model were similar to KI, although the effect of

temperature was weaker (see the electronic supplementary

material, table S4). However, in the full-covariate model the

opposite effect of the thermocline occurred (i.e. switching

from directed to resident movement was more likely where

the thermocline was relatively weak). The final column of
table 2 is helpful in interpreting the strength of the estimated

covariates: estimates that strongly overlap zero (greater than

10%) can be seen to be poorly defined. In the case of the KI

seals (table 2), this includes the reverse switch effects of

both biological covariates and, for MI (see the electronic sup-

plementary material, table S4), both descent rate coefficients

and all the reverse switch coefficients.

http://data.aad.gov.au/aadc/metadata/metadata_redirect.cfm?md=AMD/AU/sea_ice_extent_winter
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Table 2. Parameter estimates from the best-ranked model for KI (n ¼ 5) seals. Estimated values are given as the posterior mean, s.d. and median, along with
the 2.5% and 97.5% credible limits (CL). Also shown is the proportion of posterior samples falling below (above) zero for positive (negative) median parameter
estimates. Note for KI the best-ranked model is the full-covariate model.

parameter effect mean s.d. 2.5% CL median 97.5% CL % < 0 <

Temp f1 1.01 0.21 0.62 1.01 1.46 0

f2 20.54 0.29 21.15 20.52 20.03 0.02

Tcline f1 21.68 1.16 23.90 21.71 0.59 0.08

f2 3.83 1.64 0.65 3.77 7.15 0.01

pTime f1 1.00 0.62 20.18 1.00 2.20 0.06

f2 20.68 0.65 21.92 20.69 0.64 0.15

Des f1 21.30 0.79 22.84 21.32 0.23 0.05

f2 0.36 0.86 21.47 0.39 1.87 0.33
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Figure 3. (a) Estimated relationships between environmental and diving
covariates and switching probabilities, from directed to resident (solid lines),
and resident to directed (dashed lines) movement. Shown are predictions
from the best-ranked KI model based on the median coefficients (m1, m2)
drawn from the posterior samples. The covariates are ocean temperature at
the dive bottom (Temp, 8C, dark blue), thermocline strength (Tcline, kg m23,
black), the proportion of time spent at the dive bottom ( pTime, light blue)
and the absolute dive descent rate (Des, m s21, pink). To illustrate the effect
of each covariate, each of the other covariates is held constant at its median
value. (b) Covariate distribution within the two predicted movement states.
For each covariate, the distributions within the directed and resident
movement states are presented on the left-hand side and right-hand side,
respectively. Presented as a traditional boxplot combined with a kernel
density plot (R software package VIOPLOT v. 0.2 [35]). Data are resampled to
ensure equal representation across animals.
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In our model, the covariates only influence switch

rates directly. How environment and/or dive parameters

alter between the different behavioural states is a subtly

but importantly different question. In the KI example

(figure 3b), dive bottom temperatures tended to be lower,

and dive descent rates higher, during resident movement

periods (compared with directed movement periods), which

is consistent with the observed switch rate patterns. How-

ever, while the switch into resident state is associated with

spikes in thermocline strength, the resident periods are then

characterized by generally weaker thermoclines, compared

with directed movement periods. Another disjuncture is evi-

dent: while the switch into resident movement is associated

with lower proportional dive bottom time, the actual resident

periods themselves are actually characterized by higher dive

bottom times in comparison with periods of directed move-

ment. The same patterns are observed for MI (data not

shown); however, the dive parameter patterns are more

variable between individuals, and hence somewhat less

differentiated overall.
4. Discussion
Modern telemetry methods provide a wealth of information

on the movement and behaviour of individual animals. How-

ever, quantitative ecological interpretation, particularly the

drawing of inference across individuals, is hampered by

both the inherent complexity of, and the error contained

within, these data. SSMs represent state-of-the-art methods

appropriate for these analyses. Here, we present an SSM

approach where the movement state directly incorporates

environmental and diving information, such that the pre-

dicted state is influenced by these variables in a biologically

realistic way. Our application demonstrates biologically inter-

pretable results for a migratory marine predator commuting

to a known ‘hotspot’ foraging region [18,23,24]. This rep-

resents the most integrated application to telemetry data to

date, where observation and process model parameters,

including movement–habitat relationships, are estimated

within a single framework. This approach can have wide-

spread utility for quantifying movement–diving (or other

behaviour)–environment relationships across species and

systems. Importantly, it represents a significant step towards
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the goal of developing predictions for future scenarios, which

properly account for multiple sources of uncertainty.

In the movement context, there is a suite of common eco-

logical questions, which span species and systems (both

terrestrial and aquatic). For example, how does animal move-

ment relate to environmental variability, specifically the

spatio-temporal distribution of heterogeneous resources? In

this study, we derived environmental covariates (temperature

at the dive bottom and thermocline strength) that contained

information on the vertical structure of the water column, to

investigate the three-dimensional habitat used by these

marine predators. The covariate SSM generally estimated

strong relationships between both of these covariates and the

probability of switching between movement states. Specifi-

cally, for seals from KI the probability of switching into

resident state tended to increase strongly at ocean tempera-

tures around 21.88C (i.e. in the sea ice zone) and where the

thermocline strengthened temporarily (figures 1b and 3a).

This is consistent with the broad-scale oceanographic changes

that occur as seals cross the Antarctic Slope Front (ASF) and

enter the very cold Antarctic shelf and surface waters [36].

For seals from MI, the models containing ocean tempera-

tures and thermocline strength were also supported;

however, the temperature relationship was weaker and the

probability of switching into resident state increased at low

not high thermocline strengths (see the electronic supplemen-

tary material, table S4 and figure S4). This probably reflects

the different position the islands occupy with respect to the

major fronts of the Antarctic Circumpolar Current [19].

Migrating south, MI seals must cross multiple bands of

both the Subantarctic and Polar Fronts, hence their approach

to the Antarctic continent is usually marked by a weakening

thermocline strength, and the temporary spike associated

with the ASF can be small relative to that of the more north-

erly fronts. Resident periods for the shelf migrants from both

islands primarily occurred within very cold Antarctic shelf

and surface waters [36], which were generally well mixed

during the austral autumn months.

A second major question, particularly relevant to aquatic

animals, presents itself: how do changes in horizontal move-

ments correspond with changes in vertical movements? In

our study, the most unusual result related to this enquiry. It

is widely expected that actively foraging diving mammals

will spend more time at the dive bottom in areas of higher

prey [27,30]. This essentially extends the prediction of increas-

ing time spent in a profitable patch [37] to the vertical

dimension. However, there are contradictory theoretical

models [38], so this remains a topic of debate. Our results

showed KI seals had a high probability of switching into the

resident state associated with both high dive descent rates

and a low proportion of time spent at the dive bottom. This

appears consistent with the idea that at this point animals

are actively scanning their local environment and locating

their prey field. Subsequently, during the resident periods

dive descent rates and relative bottom time were both high.

This in turn may indicate active foraging particularly as

most shelf dives appeared to target benthic prey (table 1).

These distinctions are quite subtle and not easily discriminated

from voluminous telemetry data. Patterns for MI animals were

similar but weaker. The diving parameters were generally

more variable than the environmental variables, which may

partially explain why these tended to be weaker predictors.

However, this may also reflect the higher frequency with
which dive data are recorded compared with horizontal move-

ments, making this component of foraging appear more

dynamic. Whether this is a false appearance, or highlights

the weakness of the lower-resolution horizontal position

data, is an open question. Alternative telemetry methods

such as accelerometers [39,40], which give a truer picture of

foraging as a three-dimensional continuous space–time

process, may provide a resolution.

Changes in diving behaviour associated with foraging have

been widely observed across species and systems, including

turtles, seabirds, mammals and fish [30,41]. These patterns

can often be qualitatively apparent, or even obvious. However,

quantifying these changes from tracking data, and making

inferences, remains challenging, so a variety of approaches

have proliferated. As scientists are increasingly called on to pro-

vide robust management advice, and complex environmental

influences are ever more in focus, the growing trend in ecology

is a shift towards quantitative methods, such as SSMs [42]. We

hope the advances presented here will provide a useful

contribution to the toolbox available to modern ecologists.

Modelling the reverse switch, from resident to directed

movements, can present a complicated problem. Overall,

our reverse predictions mimicked the results described

above. At the simplest level, this suggests that it is within

the primary foraging grounds of the Antarctic shelf that

seals are most likely to switch back and forth between beha-

viours. Given classic central place foraging trips, little else but

transit occurs farther north. The results might be very differ-

ent for models of animals targeting sea ice, ice edge or frontal

regions [23,43], which may show less directed movements.

However, we also found differences between the two islands,

which may have real biological implications. For KI seals, the

environmental factors generally appeared predictive of

switching out of resident state (see the electronic supple-

mentary material, tables S2 and S3). For MI seals, support

for reverse coefficients was weaker and variable. This may

reflect real biological imperatives: the KI animals were all

juvenile males, whereas the MI animals were all adult

females needing to return to their breeding island.

This highlights the influence of external versus internal

drivers for migrating animals [44], and the potential impor-

tance of incorporating the role of internal state in models.

For example, it may be useful to include a process model

for gestational state, or even a simple biological clock to

monitor when the ‘time’s up’ for foraging animals to return

for the breeding cycle. Alternatively, for non-breeding ani-

mals a process model for body condition may be feasible

for this species on the basis of buoyancy information [18],

which gives a relative index of fat content. Linking such pro-

cess models into a realistic movement framework is not a

simple task, and requires ecologists and statisticians to

work ever more closely together.

While there are specific difficulties associated with predict-

ing onset of directed travel, as described above, the

incorporation of relevant covariates is a valid concern for the

general problem of modelling animal movements. For many

species, resources such as prey distribution are not directly

observable at the scales over which movement occurs. Hence

the measurable variables (e.g. on the physical environment)

are often expected to influence movement only indirectly,

and which will be important predictors is often unclear.

Here, extensive preliminary investigations using mixed-effect

models were conducted to inform covariate choice (S. Bestley
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2010, unpublished data). However, although the model might

be lacking a central (e.g. internal) driver, the covariates may

continue to correlate with such a missing driver. It is here

that the role of model diagnostics is fundamental for identify-

ing problems in model structure. Developing robust diagnostic

and model selection methods, particularly within the Bayesian

framework, is currently an active statistical research field

[33,45], and it may be timely for ecologists to vocalize the

growing need in this area.

State-space models are the most likely approach to deliver

the analytical basis for a synthesis in movement ecology, and

ecologists will increasingly be called to contribute knowledge

to strengthen their biological foundation [8]. Here, we discri-

minated largely the same series of behavioural states using

covariate and non-covariate SSM formulations. This indicates

that the horizontal movement information dominated, but

that the covariates added value by (i) modifying probabilities

often in shorter runs of states (see the electronic supplemen-

tary material, figure S6), and (ii) directly quantifying

relationships between horizontal movement, diving and

environment. This result may change in a different system

where there tend to be shorter and more variable forage

events (e.g. in a dynamic pelagic frontal or sea ice edge

zone). However, given the process model structure we

imposed, a substantially different result is unlikely. Alterna-

tive structures may be considered. For example, here we

quantified fairly broad-scale changes, and a model with

three behavioural states [13] may be warranted to hone in

on finer scale inter-patch processes occurring over the Antarc-

tic shelf. It may also be appropriate to have covariates directly

influence behaviour (e.g. speed) rather than switching prob-

abilities [12]. Alternatively, using a non-switching structure,

where all parameters continuously vary [40], may elicit a

much more varied influence of covariates on animal behav-

iour. Given that any result is likely to be massively
dependent on the process model structure, this choice

should be carefully considered at the outset in the light of

the ecological question of interest, and to ensure that the

model output makes sense with the empirical observations.

The overarching strength of the SSM approach is that having

an underpinning mechanistic movement process enables pre-

dictions (e.g. for new individuals, novel environments or

future climate scenarios). Importantly, the uncertainty in both

the process and observations can be carried through in fore-

casting. This will be fundamentally important for climate

simulations that will bring their own sources of uncertainty

to the problem. Predicting for current and future scenarios is

a non-trivial task since linking tracking data to remotely

sensed ocean data, or four-dimensional global ocean–climate

model output, requires methods accounting for the uncertainty

in the animal’s position—a significant algorithmic challenge.

However, it is a challenge that needs to be embraced as our

community is increasingly called on to provide conservation

and management advice in a rapidly changing global context.
Tag deployments were carried out under the international SEaOS
(Southern Elephant Seals as Oceanographic Samplers) program
(http://biology.st-andrews.ac.uk/seaos). The Australian component
was funded by the Australian Integrated Marine Observing System,
and deployed by C.G. and the 2009 French field team. The French
component was conducted as part of l’Institut Polaire Français Paul
Emile Victor (IPEV, Prog. 109 resp. H. Weimerskirch) and further
funded by Terre-Océan-Surface Continentale-Atmosphére–Centre
National d’Etudes Spatiales, the Groupe de Mission Mercator Corio-
lis and the Total Fondation. The IPEV ethics committee approved this
study and all seals were cared for in accordance with IPEV
guidelines. F. Roquet carried out the CTD data calibration. S.B. was
supported by a Killam Post-doctoral Fellowship. I.D.J. was supported
by Canadian Foundation for Innovation (CFI) and Natural Sciences
and Engineering Research Council (NSERC) grants in support of
the Ocean Tracking Network.
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