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Recent global change has had a substantial influence on the distribution

of organisms, and many species are currently expanding their ranges. To

evaluate the underlying processes, long-term data with good geographic res-

olution are essential. One important but generally overlooked data source is

offered by the taxon-specific national catalogues of first provincial records

that are kept in many countries. Here, we use such data to quantify trait-

based influences on range expansion in Swedish butterflies and moths

between 1973 and 2010. Of 282 species meeting pre-defined quality criteria,

170 expanded their northern range margin, with a mean expansion rate of

2.7 km per year. The analyses demonstrate that habitat and diet generalists,

forest species and species active during warm conditions have expanded

their ranges more rapidly than other species. Notably, range expansion in

diet specialists was positively related to a nitrogen-favoured larval diet,

an effect not found among oligo- or polyphagous species. In contrast to

the general view, this shows that specialist species can undergo rapid

range expansion. We suggest that increased areas of nitrogen-rich habitat,

and increased availability of a nitrogen-favoured diet, are among the most

important drivers of range expansions, potentially having far-reaching

consequences for a wide variety of organisms.
1. Introduction
Recent global change has had a substantial influence on the distribution and

abundance of organisms and, as a consequence, many species are currently

expanding their ranges [1–4]. This has led to altered composition and inter-

actions of plant and animal communities, as well as an increased impact on

ecosystems from alien species [5–7]. The ability to predict how different species

cope with global change and the consequences for ecosystem functioning have

therefore become a great challenge among ecologists [3,6,8]. Future ranges of

species are often modelled over larger scales using climate data [9–11], but sur-

prisingly few studies have explicitly related expansion to resource availability

such as habitat and food.

In addition to climate, range expansions are potentially critically affected

by species traits related to resource use, dispersal and reproductive capacity

[12–14]. However, the relative importance of such traits involved in range

expansion is rarely explicitly quantified (cf. [2,3,15]). In general, resources

such as habitat and diet might influence range expansion both directly and

indirectly, by offering more resources to generalists than to specialists

[15–19]. This may be increasingly important as large areas of natural habitats

are being affected by intensified agriculture and forestry, or transformed into

urbanized areas. Interestingly, a resource that has recently increased markedly

in availability is nitrogen-rich habitat [20,21]. Species inhabiting nitrogen-rich
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Figure 1. Northern range expansion in Sweden between 1973 and 2010 in (a) Araschnia levana (map butterfly) and (b) Apamea scolopacina (slender brindle). The
distribution in 1973 is shown in black, the area colonized up to and including 2010 in grey. In the main approach, northern range expansion was measured as the
difference between the northern range of the province where the species occurred in 2010 and the northern range of the province where the species occurred in
1973; in the alternative approach the southern range of the province where the species occurred in 2010 was used (see A. scolopacina). The expansion of species
recorded as new for Sweden during the study period was measured as the difference between the northern range of the province where the species occurred in
2010, and the southern range of the province where the species was first recorded (see A. levana).
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habitat therefore might have a higher potential to expand

their ranges. Further, large body size [22,23] and high temp-

erature during the adult flight period increase dispersal

capacity, and might therefore increase range expansions

[24–26]. Finally, a high reproductive capacity is related to a

relatively longer flight period, which might also favour

increased range expansion [27].

To reveal underlying processes of climate-change-related

range expansion patterns, studies can be conducted over

latitudinal or elevational gradients using a study group

with long-term distribution data and high geographical resol-

ution. Sweden extends across 1600 km in north–south

direction (from latitude 558 to 698) and therefore offers a

highly suitable model system for studying northern range

expansions. Lepidoptera is a suitable taxon for exploring

relations between range expansion and species traits, because

the feeding spectrum of Lepidoptera is highly diverse,

they respond quickly to climatic and environmental chan-

ges, and there is a solid and robust knowledge on their

ecology and distribution. Here, we explore the northern

range expansion of Swedish Lepidoptera between 1973

and 2010 in relation to their species traits. We predict a

greater range expansion in species exhibiting the follow-

ing traits: generalists with regard to habitat and dietary

width; association with a nitrogen-favoured diet; adult

activity period during warm conditions; large body size;

and high reproductive capacity.
2. Material and methods
(a) Study area and study species
The northern range expansion in Swedish Lepidoptera between

1973 and 2010 was analysed in relation to their species traits.

We restricted the analyses to butterflies and macro-moths (see

the electronic supplementary material, table S1) to ensure that

distribution and traits of the analysed taxa were sufficiently

well known at the time the study started. Taxa that had been

split during the period (n ¼ 21) were excluded from the analyses.

We further applied the following criteria to minimize the risk of

data bias: (i) only species distributed in the provinces up to and

including the 60th latitude in 1973 were considered, as a wide

distribution in northern Sweden at the time the study started

would have constrained the options for further range expansion

by limiting the number of provinces left to expand into; (ii) only

species reproducing in Sweden were included, as vagrant species

would have biased the data otherwise; and (iii) documentation of

all records was critically examined, and two cases that were insuf-

ficiently documented were excluded from the analyses. After this

procedure, 282 species meeting the pre-defined quality criteria

remained (see the electronic supplementary material, table S1).

Systematics and taxonomy follow Karsholt & Razowski [28].

(b) Range expansion
Range expansion distances were measured on a provincial level.

In our main approach, range expansion was measured as the dis-

tance (km) between the northern range limit of the provinces
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Figure 2. Relative importance of traits for northern range expansion. Bar length is proportional to relative importance values. Plus and minus symbols indicate the
sign of the slope (b), and asterisks the significance level: *p , 0.05 and **p , 0.01, in the general linear models.
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occupied in 1973 and the range limit in 2010 (figure 1). For

species that colonized Sweden during the study period, we

used the southern limit of the colonized province as the northern

range margin in the analyses (figure 1). Geographical limits of

each of the 30 Swedish provinces were extracted from maps

available in the Swedish National Atlas [29]. To ensure robust-

ness of the statistical analyses, we used two additional

measures of range expansion. First, we measured range expan-

sion in the same way as described earlier, except that we used

the southern margin of the northernmost occupied province in

2010 (figure 1). Second, each species was categorized into three

expansion classes: no change, moderate expansion (0–150 km)

and large expansion (more than 150 km).

(c) Analysed traits
(i) Traits related to resource use
We classified each species according to habitat niche, using three

classes: species from open habitats (grasslands and other open

areas; n ¼ 94), species from forest habitats (n ¼ 98) and habitat

generalists (n ¼ 90). We classified the larval dietary width into

three classes: specialist species, which feed mainly on a single

plant species (n ¼ 76); oligophagous species, which feed on

few plant species (less than six or restricted to a particular

plant genus per family; n ¼ 102); and generalist species, which

feed on several different plant species (six or more) or genera

(n ¼ 104). Information of habitats and diets was extracted from

Emmet [30], Skou [31,32], Svensson [33] and Huldén et al. [34].

When such information was not consistent in the literature, the

information stated in Huldén et al. [34] was used because it is

based on extensive studies in Finland, adjacent to Sweden. In

order to detect whether species are associated with different

soil nutrient conditions, we applied the Ellenberg N indicator

value [35] of each species’s larval diet. This value refers to the

association of a nitrogen-favoured diet for each species, from

1 (low) to 8 (high). For oligo- and polyphagous species, we used

the mean of Ellenberg N indicator values from their main diets.

(ii) Traits related to dispersal
We classified body size as the wingspan (mm), according to Skou

[31,32] and Emmet [30]. We arbitrarily decided to use male size,

but because male and female size are strongly correlated [36],

this is unlikely to affect our results. We categorized species

according to the mean daytime temperature during the adult
activity period [26]. Species in which the mean daytime tempera-

ture was above 168C were classified as ‘warm’ species (n ¼ 169),

while species active during other periods of the year were classi-

fied as ‘cold’ species (n ¼ 113). In the study area, the period for

‘warm’ species normally ranges from 20 July to 10 September [37].

The following taxonomic groups were included: butterflies

(n ¼ 18), Geometridae (n ¼ 89), Noctuidae (n ¼ 124) and ‘other

macro-moths’ (n ¼ 51; see the electronic supplementary material,

table S1).

(iii) Traits related to reproductive capacity
We used the average length of the flight period in weeks in

southern Sweden [33] as a proxy for the reproductive potential

of each species. This was because reproduction is strongly related

to the adult lifespan of a species [22]. For species with two gen-

erations, we summed the flight periods. No multivoltine species

occur in the study area.

(d) Statistical analyses
In our main approach, we performed a general linear model

to analyse northern range expansion (km) in relation to

resource-related traits (habitat niche, larval dietary width

and nitrogen-favoured diet), dispersal-related traits (body size,

temperature during adult activity period and taxonomic group)

and reproductive capacity, as independent variables. Potentially,

analyses may be biased if there is an over-representation

of certain trait states in some of the taxonomic groups. However,

trait states were rather evenly distributed among the taxonomic

groups (see the electronic supplementary material, tables S1

and S2). To assess the relative strength of support for the

models, given the chosen parameters, we used Akaike’s informa-

tion criterion (AIC), including all possible two-way interactions.

Models with DAIC , 2 in relation to the top model may be con-

sidered to have equal strength [38]. Thus, we performed model

averaging to circumvent the problem of competing models. This

method takes the parameter estimates of all selected models and

calculates average estimates, where each model’s contribution is

proportional to its weight. In the first of the two additional ana-

lyses, we performed the analysis in the same way as described

above, using the alternative measure of northern range expansion.

In the second additional analysis, we performed a multinomial

logistic regression, using the same predictor variables of range

expansion as in the main approach. In this analysis, the group of

species categorized as ’no change’ was used as the comparison
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Figure 3. Range expansion is increasing with increased nitrogen-favoured diet, as indicated by a significant interaction in (a) monophagous species, an effect not
found in (b) oligophagous or (c) polyphagous species. Linear regressions: monophagous species, p , 0.001; oligophagous species, p ¼ 0.172; and polyphagous
species, p ¼ 0.454.
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group. The statistical analyses were conducted using the package

MuMin in the R v. 2.15.1 software environment [39].
05
3. Results
Of the 282 analysed species, 170 (60.3%) expanded their

northern range margin. The mean northern expansion dis-

tance was 101 km, corresponding to a yearly expansion

rate of 2.7 km (maximum distance 850 km; electronic

supplementary material, table S1).

Species traits related to resource use and dispersal

were consistently the most important variables predicting

range expansion, and were included in the top-ranked

models (figure 2; electronic supplementary material, table

S3). Interestingly, the interaction term between diet width

and a nitrogen-favoured larval diet specifically demonstrates

that range expansion is strongly and positively associated

with increasing Ellenberg N indicator values of the larval

diet in specialist species (figure 3). In oligophagous and gen-

eralist species, range expansion was independent of Ellenberg

N indicator values of the diet. Further, habitat generalists and

species associated with forests expanded their ranges more

than species associated with open habitats (87 per cent and

50 per cent, respectively; figure 4a).

The dispersal-related trait ‘temperature during adult

activity period’ had a relative importance of 1.0 and entered

the top-ranked model (figure 2; electronic supplementary

material, table S3). Species active during warm conditions

expanded their ranges 66 per cent more than species active

during cold conditions (figure 4b). Taxonomic group also

had a relative importance of 1.0 and entered all top-ranked

models. Noctuidae expanded their ranges 105 per cent

more than butterflies and ‘other macro-moths’ (figure 4c).

Further, reproductive capacity was less important for predict-

ing range expansion, and had a relative importance of 0.40

(figure 2). Range expansion was not related to body size. In

the two additional analyses, the results remained qualitat-

ively similar for important variables in the main approach

(see the electronic supplementary material, table S3).
4. Discussion
(a) Traits related to resource use
We found that species specialized on nitrogen-favoured diet,

habitat generalists and species associated with forests had a
more rapid range expansion than species exhibiting other

trait states. A rapid range expansion in specialists on nitro-

gen-favoured diet is in contrast to the general view

assuming diet specialists as losers, and diet generalists as

winners, because of global change impacts [18,40,41]. This

finding is, to our knowledge, the first to show that certain

specialist species are favoured by global change over larger

scales, and across a species-rich taxon.

Habitat generalists and forest species had a greater range

expansion than species associated with open habitats. In fact,

forests cover 75 per cent of the land area in Sweden, while

open areas cover less than 5 per cent (arable fields excluded)

and are decreasing [29]. Thus, habitat generalists and forest

species have a lot of habitats available into which they

could expand. On the other hand, range expansion is more

limited among species associated with open habitats, owing

to small and fragmented areas of their habitat [16]. Already

in 2004, substantial eutrophication was observed in approxi-

mately 50 per cent of habitats within the European Union

[20]. Further, our results are consistent with, and supported

by, the fact that increased nitrogen deposition has favoured

plant species associated with nitrogen-rich habitats [42–45].

Thus, both an increased area of nitrogen-rich habitats and

an increased availability of nitrogen-favoured diet appear to

directly influence range expansion in Lepidopterans. We

therefore suggest that increased availability of nitrogen-rich

habitat is one of the most important drivers of range expan-

sions. Indeed, species of nitrogen-poor habitats, having low

Ellenberg N indicator values (category 1, n ¼ 5; or category

2, n ¼ 10), showed a very low range expansion (figure 3a;

electronic supplementary material, table S1). Our result is in

agreement with Angert et al. [13], who called for an inclusion

of habitat availability and not only climate data in predictions

of range expansions.
(b) Traits related to dispersal and reproductive potential
Species active during warm conditions expanded their ranges

more than species active during cold conditions. High temp-

erature minimizes the energy required for movements, shown

for different organisms, and is therefore related to increased

dispersal capacity [6,26,46]. Range expansion was greater in

Noctuidae than in other taxonomic groups. This difference

may be explained by a higher dispersal capacity in

Noctuidae, possibly because they are more robust [26,47].

However, body size per se had no importance for predicting
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range expansion. Several studies have indicated larger-sized

species to be more mobile than smaller-sized species

[22,23,48] (i.e. they should have a greater potential for

range expansions). However, other studies do not find any

relationship between body size and mobility, and, in fact,

some studies suggest that body size might reflect a link to

resource use [49,50].

There was a trend that range expansion increased with

increasing reproductive capacity. This result is in agreement

with Hill et al. [27], who showed a greater range expansion

in species with high reproductive capacity. In these species,

the larger number of offspring may increase the possibilities

for range expansion. Further, because we used the length of

flight period as a proxy for reproductive capacity, there is

an increased possibility of facing suitable conditions for

range expansions during the adult lifespan, which may also

contribute to the explanation of this result.

(c) Range expansion
Our estimate of mean northern expansion rate (2.7 km per year)

lies well within the range of other expansion estimates. In three

global meta-analyses across a large number of taxa, the mean

northern expansion rate was 0.6–2.0 km per year [1–3],

whereas studies on European butterflies report an expansion

of 0.3–5.7 km per year [4,15,51]. Even though our estimate of

range expansion is in accordance with other studies, it may

be argued that our measure of range expansion may be

biased because of the time period chosen and the spatial resol-

ution. First, the study period was chosen because 1973 was the

year when high-quality, validated yearly updates of Swedish

new provincial records were initiated. Second, it is never poss-

ible to detect the most northern population of a species, and it is
critical to distinguish range expansion from extra-limital records

owing to undocumented populations [52]. Therefore, it is

appropriate to use provinces as the resolution of range expan-

sions. Unfortunately, we were not able to analyse declining

species, because they are less studied and provincial species

losses are unfortunately rarely reported. Hence, it is very

difficult to get reliable data on contractions compared

with expansions.
5. Conclusions
We highlight that species traits related to resource use

and dispersal are important for the prediction of range

expansions. Our results suggest that specialists on nitro-

gen-favoured diet, habitat generalists, forest species and

species with adult activity during warm conditions are

likely to go farther, and be the winners in future land-

scapes. We suggest that an increased availability of

nitrogen-rich habitat and nitrogen-favoured diet are

among the most important drivers for range expansions.

Similar processes underlying range expansion are likely to

be in action in many organism groups, and constitute an

important future line of research.

We acknowledge the work of all recorders who collected the data on
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earlier draft of this manuscript and to Hans Karlsson for permission
to use the photo on A. scolopacina. P.-E.B. was funded by Linnaeus
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21. Öckinger E, Hammarstedt O, Nilsson SG, Smith HG.
2006 The relationship between local extinctions of
grassland butterflies and increased soil nitrogen
levels. Biol. Conserv. 128, 564 – 573. (doi:10.1016/j.
biocon.2005.10.024)
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