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Abstract
A mathematical model which reconstructs the structure of existing vasculature using patient-
specific anatomical, functional and molecular imaging as input was developed. The vessel
structure is modelled according to empirical vascular parameters, such as the mean vessel
branching angle. The model is calibrated such that the resultant oxygen map modelled from the
simulated microvasculature stochastically matches the input oxygen map to a high degree of
accuracy (R2 ≈ 1). The calibrated model was successfully applied to preclinical imaging data.
Starting from the anatomical vasculature image (obtained from contrast-enhanced computed
tomography), a representative map of the complete vasculature was stochastically simulated as
determined by the oxygen map (obtained from hypoxia [64Cu]Cu-ATSM positron emission
tomography). The simulated microscopic vasculature and the calculated oxygenation map
successfully represent the imaged hypoxia distribution (R2 = 0.94). The model elicits the
parameters required to simulate vasculature consistent with imaging and provides a key
mathematical relationship relating the vessel volume to the tissue oxygen tension. Apart from
providing an excellent framework for visualizing the imaging gap between the microscopic and
macroscopic imagings, the model has the potential to be extended as a tool to study the dynamics
between the tumour and the vasculature in a patient-specific manner and has an application in the
simulation of anti-angiogenic therapies.

1. Introduction
Vasculature supplies oxygen and nutrients to the growing tumour. Without the recruitment
of additional vessels, the tumour size is limited to a diameter of 4 mm in vitro (Blood and
Zetter 1990) and 2 mm in vivo (Gimbrone et al 1972, 1974). In order to grow beyond this
avascular phase, the tumour recruits new blood vessels (Folkman 1992) via angiogenesis.
Oxygen and nutrients for the tumour are provided by the lowest level of the vasculature
hierarchy, namely the capillaries (Krogh 1959). Most tumours lack adequate oxygen supply
due to insufficient number of capillaries, chaotic vessel structure, high vascular permeability
and the resulting poor blood flow (Vaupel 1977, Nagy et al 2009). The resulting low partial
pressure of oxygen or hypoxia in tumours is an important prognostic factor affecting
therapeutic response, since it renders the tumour cells less sensitive to conventional
therapies like radiotherapy (Höckel and Vaupel 2001, Brizel et al 1997, Nordsmark et al
2001). Understanding the interplay between the tumour and the vasculature is crucial for
developing strategies for anti-angiogenic therapies. One possible approach of analysing the
condition of the tumour and its vasculature and their response to therapy is computational
modelling. Apart from experiments, mathematical and computational models provide
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another means to analyse the response of the tumour and its vasculature in a systematic,
non-invasive and cost-effective manner.

Mathematical models and simulations are widely used to enhance our understanding about
the tumour vasculature (Serini et al 2003, Mantzaris et al 2004 for review, Jain et al 2007).
Vasculature models have focused on tumour vasculature interactions, development of flow-
based networks, vasculature remodelling and mechanical interactions within the vasculature
(for a review see Peirce 2008 and the references therein). In addition, the influence of
chemotaxis, haptotaxis, blood flow, perfusion and drug delivery on endothelial cell
proliferation has also been studied (Anderson and Chaplain 1998, Baish et al 1996, Basciano
et al 2010). Modelling of vessel growth or angiogenesis has been a prime area of focus in
the vasculature simulation field. One of the pioneering mathematical models was presented
by Anderson and Chaplain (1998), who simulated capillary growth based on the concept of
diffusion of endothelial cells across the extracellular matrix. Others have also used this
concept (Sun et al 2005, Bauer et al 2007, Shim et al 2005), sometimes incorporating it
within discrete lattice models at the cellular level and continuum models at the extracellular
level (Bauer et al 2007, Shim et al 2005). Due to the highly irregular structure of the tumour
vasculature, efforts have also been directed towards the analysis of tumour vasculature as a
fractal dimension (rather than a Euclidean geometrical object), and observing its effect on
quantification of microvasculature (Gazit et al 1995, Baish and Jain 2000, Grizzi et al 2007,
Di Ieva et al 2008). Szczerba and Sz’ekely (2002) introduced a vasculature model for
simulation purposes, in which they generated an initial capillary plexus using a random
network generator which demonstrated the randomness observed in the capillary structure.
However, the simulations were purely based on different types of theoretical probability
density functions. Gödde and Kurz (2001) proposed a flow-based model using a hollow
tripod-shaped structure as a basic structural element to create the capillary vasculature
network. Welter et al (2009) employed and further extended this model to simulate vascular
remodelling during tumour growth. All these vasculature simulation models use population-
based rather than patient-specific input parameters. However, vascular network models
based on realistic patient-specific tumour vasculature are necessary to individualize
simulations, and to gain further understanding about the vasculature.

Traditionally, assessing the condition of the tumour vasculature has been done by measuring
the areal density of capillaries. This areal density, defined by the number of capillaries per
mm2, is termed microvessel density (MVD) and has been shown to be a potential prognostic
biomarker. High MVD was found to indicate a poor prognosis in breast cancer (Bosari et al
1992), hepatocellular carcinoma (El-Assal et al 1998), bladder cancer (Bochner et al 1995),
myeloma (Munshi and Wilson 2001) and astroglial brain tumours (Leon et al 1996).
Evaluation of MVD is performed by the immunohistological staining of tissues. However,
since immunohistology is an invasive technique requiring a physical sample of tumour
tissue, data cannot be acquired over the entire tumour. With the above inherent limitations in
the traditional methods, imaging has become one of the pivotal methods for evaluating the
tumour and vasculature condition. Techniques such as dynamic contrast enhanced magnetic
resonance imaging (Türkbey et al 2010) and dynamic contrast enhanced computed
tomography (Miles 2010) can provide physiological information about the tumour and the
vasculature. Information about tissue oxygen concentration can be acquired using techniques
like positron emission tomography (PET), magnetic resonance imaging (MRI) and optical
imaging (Krohn et al 2008). Imaging can provide a number of quantitative measures like
blood volume, blood flow (Miller et al 2005), vascular permeability (Vincensini et al 2007),
and also provide information on angiogenesis (Haubner et al 2005) and vessel abnormalities
(Ge et al 2008). Although imaging is an extremely useful tool, one needs to keep its
limitations in mind. Imaging techniques used in clinics like PET, CT and MRI when
imaging living tissues deep within the body are limited by their lack of resolving power for
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the microcirculation (McDonald and Choyke 2003). Blurring induced by patient motion is
another disadvantage faced by the above techniques. Imaging of capillaries which eventually
perform the final work of delivering oxygen and nutrients, as well as removing metabolic
wastes, is still out of reach of these clinical techniques.

Over the past few years, several researchers have used imaging as an input to their
mathematical models. Imaging has been used to simulate tumour growth and its response to
therapy (Stamatakos et al 2006, Titz and Jeraj 2008, Hogea et al 2008, Atuegwu et al 2011,
Ellingson et al 2011). Glioma growth due to the boundary conditions imposed by the skull
has been particularly attractive for imaging-based tumour simulations (Wasserman and
Acharya 1996, Szeto et al 2009, Gu et al 2012). Bekkers and Taylor (2008) proposed a
multiscale vascular surface model for computational fluid dynamics applications. They
applied their technique on data imaged through MR and CT to complete the imaged vascular
surfaces. Ganesan et al (2011) modelled image-based vasculature specifically adapted for
mouse retina using images from confocal microscopy. The vasculatures in different layers of
the retina were modelled separately and were connected by interconnecting vessels. The
capillary model was a circular mesh consisting of concentric rings of increasing diameter.
Neal and Kerckhoffs (2010) have reviewed modelling works based on imaging. However, a
general methodology for simulating the vasculature based on non-invasive imaging data is
still lacking.

Here, we propose a framework for incorporating multimodality imaging data within a
mathematical model for simulating a representative map of the tumour vasculature and
quantifying the vasculature volume within the tumour. The general modelling framework to
simulate the vascular structure and relate it to the mean tissue oxygen tension is presented.
The model is calibrated, verified and applied on imaging data obtained from preclinical
scans.

2. Description of the model
This section describes the general modelling scheme of the work. The workflow of the
model is first explained along with the mechanics for simulating the vessels. The calibration
procedure for the model is then shown along with the procedure to generate the required
mathematical relationships.

2.1. Model workflow
Using the imaged vasculature and the imaged oxygen map as input, figure 1 shows the
modelling workflow used to simulate the representative map of the vasculature. The
representative map refers to the volumetric distribution of the vessels simulated using the
model.

2.1.1. Model input—To simulate the representative map of the vasculature, the following
two imaging derived inputs are used: the imaged vessel map and the imaged oxygen map as
illustrated in figure 2. The ends of the imaged vessels are used as initial nodes or starting
points to simulate the representative map of the vasculature. In case oxygen or vascular
imaging data are unavailable, one can assume uniform oxygenation or random initial nodes,
respectively.

2.1.2. Vasculature hierarchy—As illustrated in figure 3, the vessels are divided into
three categories.
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Imaged vasculature: This is the vascular structure directly provided by imaging and
represents the imageable vessels. These vessels are much larger in diameter than the
simulated vessels.

Simulated vasculature—large vessels: These vessels sprout directly from the initial nodes
of the imaged vasculature and have a diameter intermediate to those of the imaged
vasculature and the simulated capillaries. These vessels are used to give a directional bias to
the initial vessel growth and do not contribute to the tissue oxygen tension (pO2). Hence
their diameter and length do not affect any of calculations presented in the model.

Simulated vasculature—capillaries: These vessels sprout from the large vessels and
represent the capillaries. Capillaries are assumed to be the sole suppliers of oxygen to the
tissue (Krogh 1959). We assume that all the capillaries have the same pO2 and are equally
efficient in delivering oxygen to the tissue. Assuming this equivalence of all capillaries, the
number of vessels in a region or the vessel density determines the regional oxygen tension.
Limitations of the above assumptions will be discussed in section 5. Table 1 summarizes the
characteristics of the three vessel types.

2.2. Mechanics of the model
The tissue volume is simulated as a volumetric matrix in the MATLAB environment (The
Mathworks, Inc, Natick, MA). To generate the physical structure of the vasculature, vessels
are assumed as cylinders. We further define the following.

• Node: a node is defined as any point in the tissue matrix from which vessels can
sprout.

• Simulated microvessel density (sMVD): the ratio of the number of voxels covered
by the capillaries to the total number of voxels considered in the tissue matrix.
sMVD is solely dependent on the capillaries and not on the larger vessels and is
given in % volume.

• Normalized microvessel density (nMVD): the ratio of the current sMVD of a voxel
(at any time point in the simulation) to the final required sMVD of the same voxel.

• Step length (SL): the number of voxels a vessel sprouts in one simulation step. This
is taken as a fixed parameter, though different for different vessel types. Thicker
vessels have a bigger SL compared to the capillaries. We have related the vessel
diameter and length and fixed the ratio of these two to 1:6. Experimental data on
arterial vessel length and diameter (Less et al 1991) have been used to fix this ratio.

• Box size (BS): a measure used to define the side of the cubic volume (V) used to
evaluate the local sMVD. The cubic volume V is centred on the node in question.
The relation between V and BS is as follows:

(1)

It should be noted that figure 4 shows only the two-dimensional representation of
the cube V. The actual simulations, however, are always performed in a three-
dimensional matrix. In the figure, the value of BS is 2 voxels, the side of the
resulting cube is 5 voxels and V contains 125 voxels.

• Sprouting direction of large vessels: the direction of larger vessels is governed by
the oxygen gradients around the node. A direction of higher oxygen concentration
signifies the presence of more capillaries in that particular direction and a thicker
blood vessel needed to support them. Hence at any sprouting node, the direction of
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maximum oxygen concentration is selected as the direction of vessel sprouting. The
oxygen gradients are calculated within the hemisphere of radius one SL centred at
the node and described about the initial direction of vessel propagation. When an
increasing oxygen gradient is not found within this hemisphere, then instead of
large vessels, capillaries are simulated from the node.

• Sprouting direction of capillaries: we use the parameter α to quantify the direction
in which the capillary sprouts. The branching angle ‘α’ is defined as the angle
(inclination angle) between the initial vessel direction (the zenith direction) and the
new sprout direction as shown in figure 4. Experimental data from the work done
by Op Den Buijs et al (2006) were used to determine α. The data include frequency
distributions of both smaller (α1) and larger (α2) angles that are created when a
vessel branches off into two branches. These distributions have been adapted to
generate the probability density functions (figure 5) for the branching angle. A
Monte Carlo code is used to randomly sample the angle from these distributions. A
three-dimensional simulation of any vector (sprout) requires two angles. Once the
first angle is sampled from the given probability density function, the second angle
β (azimuthal angle) is sampled uniformly between 0 and 2π.

2.2.1. Workflow mechanics—The input oxygen map is converted to a map of required
sMVD using the diffusion model as explained later. The BS at the nodes is determined
according to the required sMVD at those nodes (as explained later in section 3). At each
node, nMVD is calculated, and the node with the least nMVD is selected as the sprouting
node. Angles α and β are sampled and the capillary is propagated SL number of voxels
along the direction determined. The end of this capillary is labelled as a new node and is
added to the list of existing nodes. Each node can sprout twice, and the node with two
sprouts is removed from the list of nodes. If the simulated capillary encounters another
capillary, then the capillary growth in that direction is halted. After each capillary
simulation, the resultant sMVD of the nodes within one BS of the simulated capillary is
analysed. If the sMVD at that time point in the simulation of any of the nodes is equal to or
greater than the required sMVD at that node, then that node is eliminated from the list of
nodes. The procedure is repeated and the simulation is run until the list of nodes is
exhausted. Each capillary is simulated as one voxel in diameter and the corresponding SL is
fixed according to the parameters in table 2. The model has been calibrated (taking SL and
BS as the parameters) to simulate vasculature of required sMVD. Each side of the matrix is
padded with 30 voxels, so that the BS is not restricted to the matrix dimensions. The pO2 in
the padded region is the same as the pO2 at the edges of the oxygen matrix. The choice of 30
voxels was decided based on the observation of edge effects within about 20 voxels from the
edge. The edge effects can be summarized as a continuous drop in the tissue pO2 (simulated
back from the vessels) to the edge of the matrix. Table 2 summarizes the parameters and
constants used in the model.

2.2.2. Converting oxygen map to capillary density map—Since the regional
oxygen tension is governed by the number density of vessels in the region, the oxygen map
can be related to a capillary density map. The input oxygen map is converted to a capillary
density map by inverting the problem. The mean tissue pO2 resulting from a random but
uniformly distributed arrangement of capillaries is calculated. The goal of calculating the
oxygen distribution from the capillary distribution is to establish a functional relationship
between the mean capillary density (the sMVD) and the mean tissue pO2. The mean pO2
from different capillary densities is calculated and a relationship is established (pO2 = f
(sMVD)). The relation is then inverted (sMVD = f−1 (pO2)) to get the required capillary
density from the pO2 obtained from the imaged oxygen map. To find the above functional
relationship, a numerically iterative technique which calculates the pO2 of each voxel given
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the capillary structure was implemented. Following Michaelis–Menten kinetics (Daşu et al
2003), the oxygen diffusion across the tissue is given by

(2)

where, p (mmHg) is the partial pressure of oxygen in the tissue voxel, t is the time (min),
Qmax (mlO2/100g/min) is the oxygen consumption rate, Dk (μm2mlO2/ml/min/mmHg) is the
Krogh diffusion coefficient, p50 is the oxygen tension at which consumption falls to 50% of
Qmax and S (mlO2/100g/min) is the oxygen source strength. While the regular tissue voxels
only have the consumption term and no source term, the capillary voxels have only the
source term and no consumption term. The tissue–capillary system is assumed to be in
equilibrium. Equation (2) is then arranged in the form of a sparse set of linear equations and
iteratively solved for the pO2 of each voxel using an in-house conjugate gradient method in
MATLAB. The source strength of capillary voxels is updated iteratively such that the
capillaries are maintained at a constant pO2.

2.3. Model calibration and mathematical relations
2.3.1. Calibration of vasculature based on the step length and box size—The
model is said to be calibrated for a given density when the vasculature produced is as
homogeneous as possible and satisfies the required sMVD within the region of interest
(ROI). The condition of homogeneity is imposed because the simulations must reflect the
uniformity of the imaging data to the maximum extent possible. Any inhomogeneity if
present should be present in the imaging data and then translated to the simulations in a
predictable fashion.

The calibration procedure is illustrated by varying the SL and the BS, and the effect of
mismatched calibration was assessed both qualitatively and quantitatively. Figure 6 shows
the two-dimensional projections of the vessel structure demonstrating the effect of different
SLs and BSs. A uniform sMVD of 1% was assumed for the simulations.

If BS is too small (as seen in figures 6(a), (d) and (g)), a large amount of tissue volume is
left uncovered. Deviation of a vessel sprout at an angle large enough to satisfy the density
criterion locally (in the volume V about the voxel) would eliminate the node from the list of
active nodes, but the global density criteria (over the entire tissue volume) might still not be
satisfied. In figures 6(b), (c) and (f), the effect of a small SL can be seen. An SL that is too
small leads to clustering of capillaries. Capillaries proceed through the tissue matrix in big
groups. On the other hand, there are areas which barely have any capillary coverage due to
this clustering phenomenon. The density criterion in this case is unsatisfied and
irreproducible. This phenomenon can be seen very clearly in figure 6(c). Figure 6(h) shows
the development of a rigid vasculature when the SL is too large in comparison to the BS.
The vessels are unable to sprout due to lack of adequate number of nodes within the
BSchosen. Large inter-capillary distances are a notable feature of the resulting vasculature.
Such a rigid structure also leads to inadequate coverage of the tissue matrix. The bigger BS
leads to simulation of vasculatures with non-reproducible capillary density. The
miscalibration of BS and SL is also evident in figure 6(i) where a non-uniform coverage of
the matrix is evident. Figure 6(e) depicts an adequate BS with respect to the SL chosen
which leads to the simulation of a uniform vasculature as well as satisfaction of the density
criterion.

The calibrated values of the SL and BS depend on the sMVD being simulated. For the
simulations presented, the SL was fixed according to the experimental data and the optimal
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BS was then calculated. For each sMVD (μ) a hundred simulations were run, and the mean
(μsim) and the standard deviation (σsim) of the resulting sMVDs were calculated. The
optimal or the calibrated BS was the one which minimized the function (μsim – μ)*σsim. The
correct BS values were tabulated for different sMVDs and a functional fit relating BS and
sMVD was obtained. Since sMVD is evaluated over the cube V defined by the BS, the value
of the BS cannot be a fraction of a voxel. Hence, the BS determined from the curve is
rounded to the nearest integer yielding the relation

(3)

The above relationship demonstrates that with a fixed SL and up to the sMVDs investigated,
a region of lower sMVD requires a bigger BS and vice versa. The desired BS for different
sMVDs is shown in figure 7(a).

2.3.2. Relation between the vasculature and mean tissue oxygenation—A
mathematical relation needs to be established between the sMVD and the mean tissue pO2 in
order to simulate the required vasculature density. This mathematical relation (pO2 = f
(sMVD)) was obtained by simulating vasculatures of varying sMVDs as explained in
section 2.2. Vasculature parameters for the generation of vasculature are listed in table 2.
Figure 7(b) shows the mean tissue pO2 of the entire tissue matrix as a function of the
average sMVD of the matrix. A change of Δ sMVD at lower sMVDs would have a greater
impact on tissue pO2 than a similar change at higher sMVDs. The data in figure 7(b) can be
fit to a mathematical equation, where the relation between sMVD and pO2 is summarized by
the following equation:

(4)

2.3.3. Verification of oxygen maps—To verify the simulations, the input oxygen map
is compared to the oxygen map calculated from the simulated vasculature. However, the
vasculature simulated by the model is stochastic in nature. To match the input oxygen map,
multiple runs of the simulated oxygen map must be averaged. However, if the input oxygen
map is heterogeneous and oxygen maps from N simulated runs are averaged, a region of
lower sMVD will be more heterogeneous than a higher sMVD (unless N is very large). To
make the two regions comparable in N runs, the pO2 of a voxel is calculated as an average
of the pO2 in the volume V centred on that voxel. Since the volume V is the volume over
which the sMVD is defined, it is the most logical choice for such an averaging technique.

3. Materials and methods
The model was first tested on a hypothetical situation, was verified and then applied to
imaging data.

3.1. Simulating vasculature for hypothetical oxygen distributions
Vasculature was simulated taking a uniform pO2 as input. The sMVD required to simulate
the required value of pO2 was calculated using equation (4). The calibrated BSs calculated
using equation (3) were used to simulate the desired sMVDs. To start the simulation, four
randomly placed initial nodes were assumed within the tissue matrix from which only
capillaries were simulated. The densities of the vasculatures were verified post-simulation.
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The calibrated parameters were also used to generate a heterogeneous vascular structure. A
test oxygen map was generated wherein an increasing oxygen gradient was established from
one end of the matrix to the other. Four randomly placed initial nodes were assumed and the
capillaries were simulated from these nodes. The model was then used to generate a
vasculature corresponding to this heterogeneous oxygen map. The simulations were run 300
times and the input oxygen map was compared to the simulated oxygen map by performing
a voxel by voxel correlation. A sensitivity study evaluating the effect of the BS on the tissue
oxygen tension for different number of runs was also performed. The voxel pO2 is
calculated as the average of the pO2 within the volume V associated with the voxel. The
results of the sensitivity study were analysed both qualitatively (by comparing the spatial
distribution of tissue pO2) and quantitatively (by performing a voxel to voxel correlation).

3.2. Simulating vasculature with the imaging data
The model was applied on a TRAMP mouse tumour (TRansgenic Adenocarcinoma Mouse
Prostate) model. The initial mouse vasculature was imaged on a micro-CT using a blood
pool contrast enhancing agent (Fenestra VC; ART, Montreal, Quebec). The CT image was
acquired at a resolution of 0.125 mm × 0.125 mm × 0.125 mm per voxel using a Shepp–
Logan filter with a 512 × 512 grid. Twenty-seven points were manually segmented from the
initial vasculature and were used as initial nodes. The ends of the vasculature were at least 2
voxels thick, yielding the imaged vasculature diameter greater than 250 μm (as mentioned in
table 2). A [64Cu]Cu-ATSM PET based hypoxia scan was used to quantify the hypoxia
distribution within the ROI. The micro-PET scan was dynamically acquired in 2D mode
over a period of 60 min after injection of the tracer. The attenuation-corrected PET images
were reconstructed using the ordered subset expectation maximization algorithm with 16
subsets and 5 iterations. The grid size was 128 × 128 and the reconstructed voxel size was
0.85 mm × 0.85 mm × 1.21 mm. No post-filtration was used. Both μPET and μCT scans
were obtained using a Siemens Inveon micro-CT/micro-PET scanner and were scaled to the
desired simulation resolution (explained below). The hypoxia map was converted to the
oxygen map as done earlier by Titz and Jeraj (2008). They approximated the relationship
between pO2 and [64Cu]Cu-ATSM SUV distribution by a sigmoid. The relationship was
based on the work by Lewis et al (1999) where they reported [64Cu]Cu-ATSM uptake as a
function of hypoxia. Figure 8 shows the relationship used.

The oxygen map was then converted to a map of sMVDs using the diffusion model equation
(4) as described previously. The required BSs at each point are calculated using equation
(3). From the initial nodes, large vessels were simulated along the direction of the increasing
oxygen gradient. After each sprout, a new node was added to the list of nodes. New large
vessels were simulated from the nodes until no positive gradient in oxygenation was found
within the hemisphere of radius one SL described about the initial direction of propagation
of the vessel. Once a simulation stage was reached when no additional large vessels could be
simulated, capillaries were simulated from the existing nodes as described earlier.

Once the simulation was run on the imaged data, the oxygen map was calculated from the
simulated vasculature, and was then converted to the hypoxia map and scaled down to the
PET resolution. The cross-section through the input hypoxia and vasculature maps was then
compared to the cross-section through the simulated ones. Due to computation limitations
(see below), the entire tumour could not be simulated at the desired voxel resolution of 20
μm. However a subsection within the tumour was cropped and scaled up to this desired
voxel resolution of 20 μm. The vasculature was simulated in this cropped subsection. The
resultant oxygen map from the simulated vasculature was converted back to a hypoxia map
and was resampled to the PET resolution. A voxel level correlation was then performed
between the input and the simulated hypoxia maps.
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3.2.1. Computational limitations—The model calculations were performed at a voxel
resolution of 20 μm. The choice of this resolution was determined by the diameter of a
capillary. Hence to perform a simulation, the μCT and μPET scans need to be upsampled.
However, the sizes of the matrices needed to simulate at this resolution were too big. The
limitation was imposed by the memory limit of the computer. Hence the μCT and μPET
scans were scaled up to a voxel resolution of 60 μm—a resolution at which the matrices
could be visualized. It should be noted that the calculations for the model were performed at
a voxel resolution of 20 μm and have been applied to the μCT and the μPET scans scaled to
a voxel resolution of 60 μm. Hence there is a mismatch between the simulated vasculature
shown in the paper and how it would appear if the imaging data were scaled to the correct
voxel resolution of 20 μm. In essence, the simulated vasculature shown in the paper is
sparser than what it should be if the imaging data could be scaled up to the desired
resolution.

4. Results
4.1. Simulating vasculature for hypothetical oxygen distributions

The model can successfully simulate homogeneous as well as heterogeneous oxygen and
vascular distributions as shown below.

4.1.1. Simulation of uniform oxygen distribution—Figure 9 shows different
vasculatures generated with uniform sMVDs. The oxygen maps have been chosen to provide
1, 2 and 3% sMVD to the vasculatures in figures 9(a), (b) and (c) respectively. The SL has
been fixed to six voxels and the appropriate BS from the BS versus sMVD calibration curve
equation (3) has been used.

4.1.2. Simulation of heterogeneous oxygen distribution—In figure 10, a greater
capillary coverage can be observed in the region of higher pO2.

4.1.3. Verification and sensitivity study of oxygen maps—Figure 11 compares a
two-dimensional cross-section through the input oxygen map against the simulated oxygen
map calculated from the simulated vasculature. Figure 11(a) shows a cross-section through
the input oxygen map, while figure 11(b) shows the same cross-section through the
simulated oxygen map. The simulated map is the average of 300 runs where the pO2 of each
voxel is calculated as the average pO2 of the volume V defined about that voxel, volume V
being the volume around any given voxel over which the sMVD of the voxel is defined.
Figure 11(c) shows a quantitative verification of the two oxygen maps over the entire matrix
by performing a voxel-by-voxel correlation. The figure also shows the variation in voxel
pO2 with respect to the number of runs performed. There are more variations in the voxel
pO2 with smaller number of runs. With increasing number of runs, the mean voxel pO2
averages out to the value of the input voxel pO2. While figure 11(d) shows a cross-section
through the oxygen map for a single run, figures 11(e)–(g) show the same cross-section
calculated as an average of 10, 50 and 300 runs, respectively. Figures 11(h)–(k) show the
figures corresponding to figures 11(d)–(h) when the pO2 of each voxel is calculated as the
average of the volume V associated with it.

The input and simulated pO2 values agree well with each other. The correlation curve for
300 runs can be seen to start deviating from the ideal curve (y = x) at pO2s less than about 5
mmHg. This non-conformance with the ideal curve is an artefact due to the voxel averaging
method (over the volume V) used for oxygen map verification.
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4.2. Simulating vasculature with the imaging data
Figure 12 demonstrates the application of the model on mouse tumour data. Figure 12(a)
shows the imaged vasculature superimposed on the corresponding Cu-ATSM-PET hypoxia
map. Figure 12(b) shows the agreement of the simulated vasculature with the hypoxia map.
The density of capillaries in the hypoxic region is much lower than the oxic regions. A
gradient in the number of capillaries is also observed as the oxygen concentration decreases
gradually through the tissue matrix.

Figure 12(c) shows a cross-section of the input vasculature (white specks) overlaid on top of
the cross-section through the input hypoxia map in the background at the scale of the PET
resolution. Figure 12(d) shows the corresponding simulated vasculature map along with the
hypoxia map simulated back from the simulated oxygen map. It is important to note that the
number density of the vasculature is not reflected appropriately in the hypoxia image since
the vasculature and hypoxia maps are displayed at different resolutions. The hypoxia voxel
cross-section shows the hypoxia status of a much bigger three-dimensional volume
compared to the two-dimensional cross-section shown for the vasculature. Figure 12(e)
shows a magnified section (shown by the box) of the figure 12(d) and shows the finer details
of the hypoxia distribution which are not evident at the resolution of the PET scale (mm
scale). Increased hypoxia can be seen distant to the vasculature. Figure 12(f) shows a voxel
level correlation of the input and simulated hypoxia maps for a subsection of the tumour
scaled to the voxel resolution of 20 μm. For a single run, agreement of 94% (R2 = 0.94) can
be seen between the input and simulated data.

5. Discussion
The proposed model introduces a framework for simulating the vasculature in silico while
incorporating experimental imaging data within the simulations. The model demonstrates a
successful control of the sMVD, yielding a consistent vascular structure in accordance with
the given oxygenation and vasculature map. The oxygen map generated from the simulated
vasculature has been verified to match the input oxygen map. However, a proper calibration
of the BS and SL as shown is necessary to simulate the desired sMVD. Improper calibration
would lead to generation of a vasculature with inadequate coverage, rigid structure,
clustering of vessels and non-conformation with the input oxygen map.

With the proposed framework, we aimed to link experimentally acquired data to
mathematical models and simulations which provide useful insights into the processes that
govern the vasculature genesis and interactions. We introduce this model as a step forward
in the direction of simulation of the microvasculature. Instead of a two-dimensional measure
like MVD, we introduce a three-dimensional measure (sMVD). In contrast to the image-
based model by Ganesan et al (2011) where the capillaries are simulated on uniform circular
meshes (highly focussed on the eye vasculature), we simulate the vasculature on a Cartesian
grid but without the restriction of circular meshes. The directions of capillaries are simulated
based on experimental probability density functions. Apart from these probability density
functions, the vasculature structure generated by the model also relies on patient-specific
data as available from imaging. Analysis of such patient-specific vasculature simulations
could prove to be a big step in personalizing therapy.

The simulations presented in this paper have been implemented on a voxel resolution of 20
μm and a capillary has been simulated as 1 voxel thick (20 μm in diameter). However, if the
capillary diameter is altered, then the capillary thickness changes from the currently
assumed value of 1 voxel. On the one hand, this might require a different resolution for the
simulated microvasculature, while on the other, it would lead to a different diffusion range
for the capillary and hence would change the relation between the sMVD and the mean
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tissue pO2 equation (4). Hence, the derived mathematical relations obtained in the paper are
valid for a single capillary diameter. When a number of vasculature parameters are changed,
the mathematical relationships are different and should be evaluated individually.
Generation of diameter-specific sMVD–pO2 curves would provide a quantitative estimate of
the effect of vessel diameter on the tissue oxygenation.

The model also assumes that the pO2 inside the capillaries has a fixed value of 60 mmHg,
which is an accepted average physiologically normal value. However, the pO2 of the blood
in the capillaries can be highly variable. Availability of blood and the blood flow through
different capillaries can be decreased resulting in a decreased pO2 inside the capillaries.
During the tumour growth, the vessels can become compressed or blocked and may not
functionally contribute to the modelled vasculature volume, but still may be physically
present. Considering the above factors, it is evident that the sMVDs quoted in the model
essentially reflect the tumour vasculature volume in terms of the normal vasculature volume
and hence reflect an idealistic scenario. A deviation of the observed capillary structure from
the one predicted by the model would reflect the deviation in the above-mentioned factors
from the assumed values and indicate the abnormality of the vasculature present.
Incorporation of the tumour cell line and stage-specific vasculature parameters into the
model would result in a better conformance of the model results with experimental
observations. The quality (sub-optimality) of the vessels can be accounted for in the model
by generating a new sMVD–pO2 curve depending on the vessel quality.

Incorporation of blood flow within the model will result in the generation of a vascular
network where the flow in the individual vessel segments is different. This relaxes the
assumption of constant pO2 within the capillaries. The diameters of the capillaries within the
flow-balanced network would be unequal and be dependent on the blood flow within them.
This also relaxes the condition of constant capillary diameter and the discrete changes in
diameter between the thicker vessels and capillaries. The pO2 within the capillaries would
also be dependent on the blood flow within them and hence the relations between sMVD
and the mean tissue pO2 will change accordingly.

Vasculature can be classified as normal and abnormal vasculatures. Decreased blood flow
and low capillary pO2 are characteristics of the abnormal tumour vasculature. Normalization
of this abnormal vasculature is speculated as a response to anti-angiogenic therapies (Jain
2005). It is suggested that if we know how to correct this abnormal delivery system, there
would be a chance to stabilize the tumour microenvironment and eventually lead to
therapeutic benefit. Incorporation of this concept of abnormal vasculature and simulating the
effect of therapy over time on the abnormal tumour vasculature is a future direction of this
model.

Apart from simulating the vasculature, the proposed model can be used as a starting point to
simulate the growth of these vessels too. A few vessels in the current vessel structure would
thicken up to generate more capillaries due to their exposure to tumour angiogenic factors.
The vessel directions would be affected by phenomena like chemotaxis and haptotaxis.
These factors can be incorporated as parameters in the model to yield the final growth
direction of the vessels. Potential imaging inputs for angiogenic modelling include
[18F]Galacto-RGD-based PET imaging of αvβ3 integrins (Haubner et al 2005) and imaging
of VEGF (Senger et al 1993) expression of the tumour. Information about the temporal
development of the vasculature volume, its condition and the local microenvironment
hypoxia can be obtained by imaging. The study of the vessel–tumour interaction involving
biological parameters is a natural extension of the model. Incorporating this vessel–tumour
interaction to simulate the temporal development of the tumour can give an insight into why
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different tumours have different types of vasculatures (patchy or ribbon like) as found by
Ljungkvist et al (2002).

Figure 12 demonstrates the imaging gap between what is visualized at the macro/PET (mm)
scale and what is visualized at the micro (μm) scale. The model provides a unique
opportunity to bridge this gap between the two imaging levels. The model has the capability
to simulate a ‘virtual immunohistochemical slice’ (as in figure 12(e)) reflecting the
processes at the micro scale and relate it to the macro scale imaging data. Mathematical
models are useful to analyse and optimize therapies. However, optimization of therapies
based on macro scale imaging data might not lead to accurate results. Models such as the
one presented are required to keep track of the changes at both micro and macro scales.

6. Conclusion
A stochastic model based on experimentally determined vasculature properties from
volumetric functional and molecular imaging has been developed. The model successfully
generates vasculature of the required capillary density. Application of the calibrated model
yields a vessel structure appropriately reflecting the input pO2.

In the current work, we present an approach to quantify capillary density using the oxygen
map from a PET scan involving the Cu-ATSM hypoxia marker. Future work involves flow-
based structure modelling to eradicate the assumption of a fixed capillary pO2. Extending
this flow-based model to evaluate vessel thickness based on the number of capillaries
supported by the vessel would result in an even more realistic vessel structure. Such a
comprehensive model could be used to simulate and analyse the temporal development of
patient-specific tumours.
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Figure 1.
Model workflow demonstrating the algorithm to obtain the representative vasculature map
taking the imaged vasculature and oxygen map as input.
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Figure 2.
Example input parameters for the model. (a) Vessel map imaged by the CE-CT scan of a
mouse. Examples of vessel ends (initial nodes) are marked with black circles. (b) The
oxygen map derived from the hypoxia map imaged using [64Cu]Cu-ATSM PET scan.
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Figure 3.
Vasculature hierarchy. The three different types of vessels used to simulate the vasculature.
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Figure 4.
Tissue matrix showing the parameters used to simulate the vasculature. The step length is
the distance a vessel sprouts in a single simulation step. The box size is the variable used to
calculate the density at any point. α is the angle from the original direction a vessel sprouts.
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Figure 5.
Probability density functions for the branching angle α. (a) The two branching angles are
created when a parent vessel sprouts into two daughter vessels. (b), (c) The probability
density functions adapted from the experimental observations of Op Den Buijs et al (2006).
These probability density functions are used in a Monte Carlo algorithm to generate the
angle for vessel sprouting (α).

Adhikarla and Jeraj Page 20

Phys Med Biol. Author manuscript; available in PMC 2013 October 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Dependence of vasculature on the step length and box size. Projections of the three-
dimensional vessel matrix (100 × 100 × 100 voxel cube) on a two-dimensional plane are
shown. Note that these are not cross-sections through the matrix, which would appear to be
much sparser. The step length and box sizes attributed to each image have been shown to the
left and the top of the figure, respectively. The simulated microvessel density (sMVD)
targeted for each scenario was 1%. The achieved sMVDs attributed to each scenario is as
follows—(a) 0%, (b) 0.94%, (c) 1.87%, (d) 0%, (e) 1.01%, (f) 1.25%, (g) 0%, (h) 0.66%, (i)
0.88%. Proper calibration of SL and BS is required to ensure that there is adequate sprouting
and the vessels do not cluster around each other, or develop a rigid structure.
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Figure 7.
Mathematical relations obtained for vasculatures simulated using parameters listed in table
2. (a) Calibration of BS with sMVD. This relation is used to simulate the vessel structure
once the sMVD map has been derived. The data points signify the density targeted, while
the error bars signify the minimum and maximum density achieved from a hundred
simulation runs. (b) Mean tissue pO2 as a function of sMVD. This relation is used to convert
the input pO2 map to a map of required sMVD.
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Figure 8.
Illustration of the sigmoid relationship between the [64Cu]Cu-ATSM SUV and pO2. This
relationship was used to convert the imaged [64Cu]Cu-ATSM uptake to a map of tissue
oxygen tension.
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Figure 9.
Simulation of vasculatures of uniform capillary densities. Three-dimensional renderings of
the simulated vasculature along with the cross-sections through their respective matrices for
three different scenarios are shown. (a) and (d) sMVD = 1.03%. (b) and (e) sMVD = 2.03%.
(c) and (f) sMVD = 2.95%. Even though the three-dimensional renderings look dense, the
sparseness of the matrices can be seen from the cross-sections of the matrices.
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Figure 10.
Model testing on a heterogeneous oxygen distribution (1–25 mmHg). The capillaries can be
observed to cover the tissue matrix with the density dictated by the oxygen map. More
vessels can be seen in a region of higher oxygen tension.
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Figure 11.
Verification and sensitivity study of oxygen maps. (a) A cross-section through the input
oxygen map (range 1–25 mmHg). (b) Cross-section through the corresponding oxygen map
simulated (an average of 300 runs) with each voxel averaged over its corresponding cube of
volume V, volume V being the volume around any given voxel over which the sMVD of the
voxel is defined. (c) Voxel wise correlation over the entire volume of the input and
simulated maps (averaged over V) after different number of simulation runs. There are two
curves each for the 1, 10 and 50 run cases depicting the minimum and maximum values of
pO2 obtained. The shaded region represents the scatter plot for 300 runs. (d) pO2 distribution
across the cross-section for a single run. (e)–(g) Average pO2 distribution across the cross-
section for 10, 50 and 300 runs, respectively. (h)–(k) pO2 of each voxel averaged over the
corresponding cubic volume V for 1, 10, 50 and 300 runs, respectively.
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Figure 12.
Simulation of vasculature with imaging data. (a) Imaged vasculature from CT superimposed
on top of the Cu-ATSM-PET hypoxia map. (b) Simulated representative map of the
vasculature superimposed on top of the Cu-ATSM hypoxia map. (c) A cross-section through
the input vasculature (white specks) overlaid on top of the cross-section through the hypoxia
map. The hypoxia map is shown at the resolution of the PET scan. (d) The same cross-
sections through the simulated hypoxia and vasculature maps. (e) A magnified section of the
simulated hypoxia and vasculature maps at the scale of the simulated vasculature. Hypoxia
can be seen distant to the vasculature. An important point to note here is the issue of
computational limitation as has been discussed earlier (section 3.2). The width of the box in
(d) is 3.3 mm. But since the vasculature simulations have been performed at a voxel
resolution of 20 μm instead of 60 μm, the actual box width on the vasculature simulation
scale corresponds to 1.1 mm. (f) PET voxel level correlation of the input and simulated
hypoxia maps performed for a single run when a subsection of the tumour was scaled up to
the resolution of 20 μm.
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Table 1

Characteristics of different vessel types.

Imaged vessels Large vessels Capillaries

Imaged vasculature Simulated vasculature Simulated vasculature

Radius ri Radius rl (< ri) Radius rc (< rl)

No contribution to the tissue
oxygenation

No contribution to the tissue oxygenation
Sprouts along the increasing oxygen gradient

Contribution to the tissue oxygenation
Sprouting direction based on probability density
functions of the sprouting angle
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Table 2

Model parameters.

Model parameter Symbol Value (range) Reference

Oxygen tension

Krogh diffusion coefficient Dk 2.5 μm2 mlO2/ml/min/mmHg Vaupel (1979)

Oxygen consumption rate Qmax 0.5 ml O2/100 g/min (0.2–4 ml O2/100 g/min) Vaupel et al (1989)

pO2 at 50% consumption rate p50 0.5 mmHg Gnaiger et al (1998)

Vascular pO2 p0 60 mmHg

Capillary radius rc 10 μm (2–100 μm) Konerding et al (1999)

Vessel matrix

Simulated microvessel density sMVD Variable

Normalized microvessel density nMVD Variable

Box size BS Dependent on sMVD

First angle for capillary sprouting α Based on probability distribution Op Den Bujis et al (2006)

Second angle for capillary sprouting β Sampled uniformly from 0–2π

Average vessel length SL Capillaries: 120 μm
Large vessels: 720 μm (diameter: length = 1:6)

Less et al (1991)

Imaged vessel radius ri >125 μm Refer to the imaging section

Large vessel radius rl 60 μm

Voxel resolution used for the simulated data 20 μm
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