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Abstract
The field of psychiatric genetics is hampered by the lack of a clear taxonomy for disorders.
Building on the work of Houseman and colleagues (Feature-specific penalized latent class analysis
for genomic data. Harvard University Biostatistics Working Paper Series, Working Paper 22,
2005), we describe a penalized latent class regression aimed at allowing additional scientific
information to influence the estimation of the measurement model, while retaining the standard
assumption of non-differential measurement.

In simulation studies, ridge and LASSO penalty functions improved the precision of estimates
and, in some cases of differential measurement, also reduced bias. Class-specific penalization
enhanced separation of latent classes with respect to covariates, but only in scenarios where there
was a true separation. Penalization proved to be less computationally intensive than an analogous
Bayesian analysis by a factor of 37.

This methodology was then applied to data from normal elderly subjects from the Cache County
Study on Memory and Aging. Addition of APO-E genotype and a number of baseline clinical
covariates improved the dementia prediction utility of the latent classes; application of class-
specific penalization improved precision while retaining that prediction utility. This methodology
may be useful in scenarios with large numbers of collinear covariates or in certain cases where
latent class model assumptions are violated. Investigation of novel penalty functions may prove
fruitful in further refining psychiatric phenotypes.

Keywords
latent class analysis; latent variable models; measurement models; penalization

1. Introduction
In order to show an association between a genotype and a disorder, one must first define that
disorder. Traditionally, psychiatric diagnoses have been based predominantly on
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presentation [2], but it is possible that etiologically or genetically relevant subgroups exist
within groups of patients with the same diagnosis. The goal is then to ‘carve nature at its
joints’ [3] and to produce phenotypic definitions that are as distinct as possible from one
another, for the purposes of identifying risk factors or etiologies specific to each phenotype.

Toward that end, it may be appropriate to model psychiatric phenotypes (diagnoses) as
latent variables. Latent variable models typically consist of a measurement model, which
relates the latent variable to its observed indicators, and a structural model, which relates the
latent variable to other variables (e.g. genotypes) [4]. Methods exist to simultaneously
estimate the measurement and structural models [5], but assumptions imposed by the model
may result in distorted phenotypic definitions that, if used to classify individuals, would
produce subgroups that were not etiologically or genetically relevant. We believe it is
possible to improve on such phenotypic definitions by including additional substantive
information in the model. This paper will describe an adaptation to the latent class
regression model that seeks to ‘reconcile’ standard internally validating assumptions with
scientifically motivated criteria through the use of penalization.

A penalized latent class model has been developed, but is distinct from the model described
here in both its aim and its form. Houseman and colleagues [6] describe a model for use
with genomic data, where the number of variables (indicators) is large relative to the sample
size. Their work penalizes parameters of the measurement model, whereas we aim to
penalize parameters of the structural model. This form of penalization requires different
estimating algorithms. Most importantly, the approach of Houseman and colleagues has the
primary goal of regularization, that is, achieving estimation that would have been intractable
otherwise given the large-p-small-n structure of their data. Our goal is the development of a
new approach to defining latent states that can be focused on validation, not only on
feasibility.

2. Methods
2.1. Latent class regression model

The problem described in the introduction involves relating a gene (or other biomarkers) to a
psychiatric (latent) phenotype. The categorical nature of psychiatric diagnoses and their
observed indicators (typically whether or not a particular symptom is present) suggests the
use of latent class analysis. Let Yi =(Yi1,…,Yi M)’ denote a vector of M dichotomous
observed indicators for the ith of n individuals in a sample. It is assumed that the indicators
are not independent within individuals, but that any dependence is ‘explained’ after
conditioning upon individuals’ membership (Ci = j) in exactly one of J latent classes. This
assumption is referred to as conditional independence [7]. Letting = ηj =Pr[Ci = j] and πmj
=Pr[Yim = y|Ci = j], we have the following distribution of Y (1) as the standard latent class
analysis model [5].

(1)

The next step is to incorporate predictors of the latent phenotype. Letting ηj(xi’β) denote the
mean model of a regression of latent class membership (a polytomous variable representing
psychiatric phenotype) on a P×1 vector of covariates for the ith individual (xi’), where
β=(β1’,…,βJ’)’, we have the following log-likelihood function (2) for the standard latent
class regression model [5], with η(ν) typically
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(2)

specified as the generalized logistic function of ν. The interpretation of exp(β11), then, is the
odds ratio for the association between membership in class one (compared to the reference
class) and the covariate xi1. A key assumption is that of non-differential measurement

(NDM), such that . Essentially, the observed indicators of the
latent phenotype are independent of the covariates given class membership (Ci) [5]. Explicit
modeling of relationships between covariates and latent class indicators is possible but may
exacerbate difficulties with identifiability. Conditions for local identifiability have been
described [8], but they entail an assumption that covariate effects on latent class indicators
are constant across classes, and may require the fixing of other parameters.

2.2. Proposed methodology
In the model of Houseman and colleagues, each conditional probability (πmj) is modeled as
a function of the covariates h(xim’ αj), and the estimation of the parameters {αj; j = 1,…,J –
1} is penalized through the inclusion of a penalty function in the likelihood equation [6]. We
propose an adaptation, similar to that of Houseman and colleagues, in which conditional
probabilities are not modeled as explicit functions of the covariates but rather treated as
(unknown) constants per item and class, thus allowing an assumption of non-differential
measurement. Here, estimation of β is penalized per (3), with penalty function C and tuning
parameter λ, with  as in 1.2. While the proposed penalty is on parameters
characterizing the latent class probabilities ηj, not πmj, it is expected that penalization

(3)

of covariate coefficients will alter the composition of latent classes, and therefore indirectly
affects the estimation of the conditional probabilities (πmj).

2.3. Incorporation of scientific information for phenotype development
We see at least four ways in which this can be achieved in the framework we have proposed.
The first is by the inclusion of covariates that are hypothesized to distinguish phenotypic
classes. Then, penalization primarily aims to minimize error of prediction of individuals’
class memberships. We have found this approach to be most tractable in a paper focused on
introductory exposition and evaluation of the methodology we have developed, and it is our
primary focus here. To this end, we will employ two commonly used penalty functions and
will select the tuning parameter by cross-validation.

To illustrate the remaining three ways we might incorporate scientific information, consider
a scenario like that which motivated our study: researchers aim to develop psychiatric
phenotypes, and they believe there are two distinct subtypes—exactly one of which is
genetically linked. A first method of incorporating this belief is to constrain the genetic
marker coefficient to be 0 for one of the two subtype classes (say, 1 and 2, with the non-
disordered subpopulation as class 3). Our methodology aims to avoid this rigid an
imposition. A second method is through choice of the penalty function, or equivalently,
prior distribution on the parameters at issue. For example, one might encode the genetic
coefficients in the two subtype classes as β11 = pβ; β12 =(1 – p)β and impose a beta prior on
p, so as to allow the possibility of concentrating mass at the extremes of the support. The
final method is through the choice of the tuning parameter. This might occur in conjunction
with a specific penalty—for instance, through the choice of beta parameters in the example
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just given. It might also occur through selective penalization of parameters in some classes
but not others; we illustrate this approach in our simulation study and our culminating data
analysis.

2.4. Penalization
In this paper, we develop penalization methodology for the ridge penalty,

 [9], and the LASSO penalty  [10]. From a
Bayesian perspective, penalization can be viewed as the assumption of a prior distribution
on β. The bridge penalty λ∑|βj|γ then becomes the logarithm of the prior distribution subject
to a constraint [11]. In the case of the ridge penalty, this prior distribution is Gaussian, with
a mean of 0 and variance 1/λ [11]. With the LASSO, the prior distribution is double
exponential, with a scale parameter of 1/λ [11]. From a frequentist perspective, this
penalization is equivalent to fitting a mixed effects model, where the regression coefficients
are modeled as crossed random effects [12].

Parameter estimation with the ridge penalty is straightforward, and identical to the gradient
EM algorithm described by Bandeen-Roche and colleagues [5] for the standard latent class
regression model, except that here the ‘score’ equation, u(t) and Hessian matrix, H(t) for β
become (4) and (5), respectively. Here, θi j represent individual posterior probabilities of
membership in class j, and ϕjk = 1 if j = k and 0 otherwise. The ‘score’ equation and Hessian
matrix for π (not shown) are unchanged.

(4)

(5)

Standard errors were calculated as H−1nV H−1, where V is an estimate of the asymptotic
variance of the score [6]. In order to reduce computing time, the SQUAREM algorithm, an
iterative scheme that is a hybrid of reduced rank extrapolation and minimal polynomial
extrapolation [13], was implemented for all ridge penalty simulations.

Implementation of the LASSO penalty is not straightforward, as the resultant penalized log-
likelihood is not differentiable with respect to β. Iterative re-weighting was used to
reformulate the optimization as a quadratic programming problem within the generalized
linear model framework. The algorithm is based on that of Houseman and colleagues [6]
(pp. 33–34), but adapted to the current application. In the first step, μi j = ηi j(xi’ βj), to
reflect that the class prevalences, rather than the conditional probabilities, are functions of x
and β. Likewise, residuals are calculated as ei j = θi j – μi j, where θi j is the posterior
probability of class membership. Further, the weighting matrix, W, now corresponds to
casting of the polytomous latent regression in the standard iteratively re-weighted least-
squares generalized linear modeling form. The full algorithm is included in Appendix A.

2.5. Choice of the tuning parameter
In addition to choosing the form of the penalty, one must also choose a value for λ, the
tuning parameter. Here we pursue the typical aim of trading off accuracy and precision of
prediction in subsequent data sets, and λ is chosen to minimize prediction error. A measure
of prediction error can be obtained through cross-validation [14]. Since the latent class
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regression model involves non-Gaussian (binomial) distributions, deviance is used as the

measure of discrepancy, and R, the log-likelihood loss , where 
are parameter estimates obtained with the ith subject left out is approximated by (6), where
HC is the Hessian matrix of the penalized log-likelihood, and nV is the estimated variance of
the score equation.

(6)

Since the LASSO-penalized likelihood is not differentiable, HC in that case is approximated
by H + W, where W is a diagonal matrix with W[(j–1)*p]+p,[(j–1)*p]+p=|βjp|−1 [15].

Minimization of prediction error was not our only goal; we were also interested in the
effects of penalization on external validity. In light of the penalties examined here, we
focused our investigation on quality of prediction, made operational as the area (AUC)
under a receiver operating characteristic (ROC) curve. ROC curves plot sensitivity
(probability of a positive test result given the presence of disease) versus 1-specificity
(probability of a negative test result given the absence of a disease) for a binary outcome
based on varying cutoff values on a continuous ‘test’ variable [16]. The greater the AUC, the
more predictive the test, with an AUC of 1.0 representing a perfect test with 100 per cent
sensitivity and specificity. In our setting, we will use posterior probability of being in the
highest risk latent class as the test value, and dichotomous disease status as the outcome.

3. Simulation studies
A number of simulation studies were conducted. In each case, 100 data sets with three
‘latent’ classes (η={0.05,0.15,0.80}) were generated with sample sizes of 500 and 5000.
Here, the initial ηs refer to means over the population of the covariates. Both the latent class
prevalences and conditional probabilities (π1={0.75,0.75,0.75,0.25,0.25,0.25},
π2={0.25,0.25,0.25,0.75,0.75,0.75}; π3={0.05,0.05,0.05,0.05,0.05,0.05}) were chosen to
reflect what might be expected in a scenario where a disorder has two distinctively different
potential profiles, with the majority of the sample having no disease. Runs were first
conducted with a range of λ values from 0 (no penalty) to 10 with an increment of 1 (‘gross
mapping’). Subsequent ‘further mapping’, with an increment of 0.1, was then done in the
most promising region (based on cross-validation of log-likelihood loss, R) identified by
gross mapping, or in increments of 1, 10, or 100 beyond the initial region.

In order to assess the effects of penalization on external validity, external distal outcome
variables were simulated from a Uniform (0,1) distribution, and were then dichotomized
using latent class-specific outcome prevalences (0.70, 0.05, 0.05), such that individuals in
class 1 would be expected to have the distal outcome 70 per cent of the time, and individuals
in class 2 or 3 would be expected to have the distal outcome 5 per cent of the time.
Following each simulation, parameter estimates corresponding to λ=0 and each λ value
evaluated in the ‘further mapping’ phase were used to calculate posterior probabilities of
class membership for each simulated individual. These posterior probabilities, along with
the simulated outcome statuses were then used to calculate AUC for each λ value.

The first set of simulations was intended to examine the effects of penalization in the context
of varying strengths of association between the class of interest (class 1) and a single
covariate (β11=0.69 or 1.79) in the case of a correctly specified latent class regression model
—i.e. where all model assumptions are met. In this case, penalization of non-intercept
βs(βpj, p≠0) to minimize prediction error may add precision in identifying classes but is not
expected to meaningfully improve over analyses without the penalty. The log odds ratio
(β12) for association between the single covariate and class 2 was always 0. The covariate
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itself was generated from a Uniform (−0.5,0.5) distribution. A number of summary measures

were calculated for : bias, empirical and estimated precision, accuracy of the precision,
and mean-squared error (MSE). Table I shows fine-mapping results with sample size equal
to 5000 and a ridge penalty. As expected, non-zero values of λ resulted in small increases in
precision, at the expense of small increases in bias. These effects were larger in identical
simulations (not shown) with the smaller sample size of 500. Standard errors accurately
estimated the coefficient sampling distributions in both cases. In no case did AUC (not
shown) vary with λ.

The next set of simulations was conducted to determine the effects of penalization in the
context of differential measurement that was not accounted for in the model. Differential
measurement is present when there is dependence between one or more covariates and one
or more latent class indicators after conditioning on latent class membership. In the presence
of such differential measurement, the standard latent class regression model (1) would be
misspecified, as its form implies independence of covariates and latent class indicators after
conditioning on class membership. Typically, differential measurement is ascertained by
creating a set of ‘pseudoclass assignments’ based on individuals’ vectors of posterior
probabilities of class membership, and then testing for dependence within each pseudoclass
[5]. This set of simulations regarding differential measurement is of primary concern for our
methodological development, which aims to tradeoff between construct validating
assumptions that may not all be correct. Data sets were simulated with a range of log odds
ratios (δ={−1.79,0.0,0.69,1.79}) for the conditional dependence between the covariate and
the first of the six latent class indicators; this δ was constant across classes. Conditional
probabilities and latent class prevalences were as in the previous set of simulations, and
β11=1.79. We will refer to instances where both the conditional dependence between the
covariate and the latent class indicator as well as the relationship between the covariate and
class membership are in the same direction as ‘positive differential measurement’
(δ={0.69,1.79}), and when they are in the opposite direction (δ={−1.79}) as ‘negative
differential measurement’. The second half of Table I shows results from these simulations
using the ridge penalty and a sample size of 5000. In comparing bias across values of δ, but
where λ=0 (no penalty), it is clear that the presence of positive differential measurement
leads to overestimation of β11. This is because the relationship between the latent class of
interest and the indicator (here, π11=0.75) and between the covariate and the indicator (δ)
are both in the same direction. As in the previous set of simulations, imposition of the
penalty decreased empirical variances, but bias was decreased. In this case, the typical
downward biasing effect of the penalty (partially) neutralized the upward biasing effect of
the differential measurement. In the case of negative differential measurement, unpenalized
estimation was biased downward, and imposition of the ridge penalty exacerbated that bias.
It is therefore important that users considering use of a penalty first conduct diagnostics on
the unpenalized model to determine the degree and direction of differential measurement.
Here, the standard errors overestimated the coefficient sampling distributions, both with and
without penalization. In cases where differential measurement is suspected, users may want
to employ an alternate method of standard error estimation, such as bootstrap or Huber–
White.

In none of the simulations we performed did the conditional probability estimates change
dramatically as a result of penalization, though there were subtle alterations. Figure 1 shows
scatter plots for the posterior probabilities of class membership based on parameter
estimates for λ=0 and λ=0.1 from a simulation analogous to that in Table I where β11=1.79
and δ=1.79, but with a sample size of 500. Black points represent simulated cases where the
first latent class indicator (the indicator with the independent relationship with the covariate)
is 0, while for gray it is 1. Points above the diagonal line represent cases where the posterior
probability of membership in that class had increased as a result of the penalty, and those
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below represent cases where that probability had decreased. The pattern of posterior
probabilities suggests that use of the ridge penalty ‘moved’ some individuals with a positive
value for the first indicator out of the first class and into the second, and likewise some
individuals with negative value for the first indicator out of the second class and into the
first.

Given that traditionally both the ridge and LASSO penalty are useful in situations with large
numbers of covariates, we next explored scenarios with nine dichotomous covariates. These
nine covariates were generated from a multivariate normal distribution with means of 0,
variances of 1, and covariances of either 0 (first set) or 0.9 (second set). These were then
dichotomized to produce covariates with specified frequencies,
φ=(0.5,0.2,0.3,0.1,0.2,0.3,0.4,0.5,0.6). Simulated β values for the nine covariates were β•1
=(1.79,0,0,–1.39,1.39,–0.40,0.40,–0.69,0.69), and β•2 =(0,0.69,–0.69,0.40,–0.40,1.39,–
1.39,0.40,–0.40). Table II shows results using a ridge penalty and sample size of 5000. As in
the previous simulations, imposition of the penalty increased bias but improved precision,
resulting in a modest improvement in MSE.

We have previously described penalization from a Bayesian perspective, and next wished to
compare our penalization approach to a Bayesian analysis, both in terms of parameter
estimation and computational burden. To achieve this, Bayesian estimations of the latent
class regression models were performed using WinBugs. Priors were defined for parameters
on the logit scale for the conditional probabilities within classes to be logit(πmj)~N(0,5). On
the probability scale, this provides a rather flat prior over the range of 0.05–0.95, suggesting
a relatively uninformative prior, but it bounds estimates away from the boundaries of the
parameter space. The same prior distribution was used for the intercept in the regression
portion of the model, and each of the remaining regression coefficients was specified with a
prior that was ~N(0,1/λ), to be consistent with the ridge penalty. A fully Bayesian analysis
might also have included a hyperprior on λ itself, but this was not undertaken here, as such a
hyperprior would have altered the interpretation of the penalty itself [17], and would have
produced parameter estimates which were not directly comparable to those obtained via
penalization. For each simulated data set, a burn-in of 10 000 iterations was performed.
Based on exploration of chains, we found that convergence occurred within 5000 iterations
so that doubling the burn-in should have ensured convergence for all simulated data sets.
The chain was then run for an additional 50 000 iterations with every 10th iteration saved
for inferences. It is possible for ‘label switching’ to occur among the classes during each
Bayesian estimation. To correct this, chains were post-processed so that class definitions
were consistent throughout the chains using an approach similar to that described by
Stephens [18]. Additionally, we inspected histograms of final estimates and scatterplots of
standard errors versus parameter estimates across all simulated data sets and found no
evidence of lack of convergence. The same simulated data files were used for both the
Bayesian and penalized estimation to facilitate comparisons between the two methods.

Figure 2 shows simulated β values, Bayesian posterior means, and penalized parameter
estimates from the scenario presented in Table II with nine highly correlated covariates, but
with a sample size of 500. Comparing the penalized estimates to the Bayesian posterior
means, it appears that the penalized estimates were more accurate. Empirical standard errors
were similar between the two methods, but for penalization were larger for class one but
smaller for class two. We believe it worth noting that, notwithstanding the different patterns
as observed, the two methods produced remarkably similar estimates in all scenarios, with
absolute differences not exceeding 0.04 and generally considerably lower. In addition to
potential gains in accuracy, the penalized estimation was far less time-consuming. Using the
same computer, (2.13 GHz, 2 M RAM), the Bayesian analyses took an average of 35.55 h
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for each λ value shown in Figure 2. By contrast, penalized estimation took an average of
0.95 h per λ value.

In the simulations described so far, imposition of either the ridge or LASSO penalties
resulted in a downward bias in the regression coefficients. Ideally, though, one would like to
maximize separation between the classes, such that the coefficient for just one of the classes
(the one that, in truth, was not associated with the covariate) was biased downwards. In the
context of a strong a priori hypothesis, it might be appropriate to employ class-specific
penalization. Table III includes results from simulations with a sample size of 5000, β11 of
0.69 or 1.79, and the log odds ratio between the covariate and the other non-reference class,

β12 equal to 0 in both cases. Here, the ridge penalty was imposed only on . On comparing

these results to those from Table I, where both  and  were penalized, one sees that

much higher values of λ are now optimal, that neither  nor  are substantially biased,
and that imposition of the penalty still results in modest improvements in MSE. Table IV
shows the results from analogous simulations that used the LASSO penalty.

A concern with our approach is that spurious relationships between covariates and class
membership may be created, or legitimate ones obscured. With class-specific penalization,
this could manifest as an artificial separation between classes. Included in Tables III and IV
are additional simulations in which β11 was 1.79, but β12 was now also non-zero. For both
the ridge and LASSO penalties, optimal values of λ were much smaller than when β12 was

0, and bias in  for these optimal λ values is not large. With the ridge penalty, in the case
where both β11 and β12 were 1.79, the optimal value of λ was always 0, providing
reassurance that class-specific ridge penalization does not create an artificial separation
between classes with respect to the regression coefficient estimates.

4. Application
The Cache County Study on Memory and Aging is a prospective, population-based study of
cognition and aging. Accurate prediction of who is likely to develop dementia would be
useful both in terms of targeting prevention and treatments as well as opening a window on
the pathological process. Even among non-demented elderly, there is substantial variability
in cognitive performance. This is attributable to a combination of innate abilities, normal
senescence, and prodromal dementia. We hypothesize that latent classes of cognitive
performance exist, and that APO-E4 genotype, a well-replicated dementia risk factor [19],
will usefully refine the estimation of these latent classes, along with other known risk
factors.

In April 1995, all current identified residents of Cache County, Utah (N=5677) were invited
to participate, and 5092 were enrolled. Individuals were screened for dementia and those
who were dementia-free were re-screened 3 (wave 2) and seven (wave 3) years later.
Screening included administration of the 3MS-R [20], an adaptation of the 3MS [21], an
expanded 100-point version of the MMSE [22], which included measures of verbal fluency
and abstract reasoning as well as additional delayed recall items. These analyses include
only those individuals who were dementia free at wave 1, though individuals with CIND
(cognitive impairment no dementia) were included. Seven 3MS-R items (knowledge, word
registration, orientation to time, verbal fluency, sentence writing, pentagon drawing, and
combined word recall) were chosen as latent class indicators. In all cases, ‘1’ was better, and
‘0’ was worse. In this sample, the 2-class model had the lowest BIC (31 204.21) and the 3-
class model had the second-lowest BIC (31 245.88). However, based on the bootstrap
likelihood ratio test, the 3-class model fit the data significantly better than the 2-class model
(-2LL difference: 24.87, p=0.03). Since simulations have shown the BLRT to be superior to
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the BIC for choosing the appropriate number of classes [23], and since it was consistent with
a priori theory, a 3-class model was chosen. This model consisted of an ‘impaired’ group
(class 1), characterized by uniformly lower probabilities of correctly answering items,
particularly knowledge and combined recall, an ‘intermediate’ group (class 2) with higher
conditional probability estimates, and an ‘unaffected’ group (class 3) with the highest item
probabilities. Parameter estimates for the measurement model are shown in Table V;
conditional probability estimates from models with and without covariates, penalized or
unpenalized, were all very similar.

Next, we fit a series of latent class regressions, with the final models including covariates for
the presence of one and two APO-E4 alleles, age, education, history of cerebrovascular
accident (CVA, or stroke), head injury, hypertension, high cholesterol, coronary artery
bypass graft surgery (CABG), myocardial infarction, or diabetes, lifetime history of two
weeks or more of sadness or apathy, and parental history of memory loss. A priori theory
guided the imposition of a class-specific penalty. We believed that while both classes 1 and
2 were characterized by cognitive deficits, only the more severe class 1 represented
individuals at imminent risk for dementia, with class 2 representing individuals experiencing
normal/non-pathological cognitive decline. As such, we expected membership in class 1 to
be more strongly associated with risk factors for dementia, and we chose to penalize only
associations between covariates and membership in class 2. A priori theory also drove the
choice of which covariates to penalize. Since age and education have been shown to be
associated with both dementia and normal cognitive decline, these covariates were left
unpenalized. By contrast, APO-E4 has been strongly and specifically associated with
dementia, and the choice to impose a class-specific penalty on that covariate was
straightforward. The scientific support for specific associations between the remaining
covariates and dementia risk as opposed to more general associations with any degree of
cognitive decline was less strong, so we fit two penalized models, (a) and (b), representing
different assumptions regarding those covariates. In model (a), only the covariates for the
association between membership in class 2 and APO-E4 genotype were penalized. In model
(b), covariates for the association between membership in class 2 and all risk factors except
age and education were penalized. We chose the ridge penalty over the LASSO based on the
class-specific simulations in Tables III and IV, which showed better performance in cases
where covariates were associated with both classes 1 and 2.

Table VI shows estimates from the penalized latent class regression models (a) and (b),
along with estimates from an unpenalized model. In the unpenalized model: age, education,
and CVA were strongly associated with increased odds of membership in both classes 1 and
2, relative to class 3. APO-E4 hetero- and homozygosity, head injury, and myocardial
infarction were associated with increased odds of membership in class 1 only.
Unexpectedly, hypertension was associated with decreased odds of membership in either
class 1 or 2, and lifetime history of two or more weeks of sadness was associated with
decreased odds of membership in class 1. Model (a), which only penalized APO-E4
genotypes, yielded a modest improvement in R (28 929.00–28 927.30) at the optimal (based
on R) λ of 9.7. Compared to the unpenalized model, model (a) showed improvement in
precision for APO-E4 genotype coefficients for both classes, and a substantial decrease in
the absolute magnitudes of the estimates for class 2, thus representing an increase in the
separation between classes 1 and 2. Model (b), which penalized all of the dementia risk
factors except age and education, resulted in a further modest improvement in R (to 28
926.75) at the optimal λ value of 1.1. As expected, penalization resulted in decreases in
absolute magnitude and improvements in precision of the estimates of the associations
between membership in class 2 and each of the penalized risk factors.
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Though addition of covariates had little or no effect on conditional probability estimates
( ), addition of covariates to the latent class model did affect the measurement model
through changes in latent class probabilities. Prevalence estimates for classes 1–3,
respectively, went from (0.05,0.44, 0.52) to (0.10, 0.51, 0.39), suggesting that some
individuals in class 3 ‘moved’ into classes 1 and 2. Latent class probabilities and conditional
probabilities for both penalized models were virtually unchanged from the unpenalized
latent class regression model. Model diagnostics using pseudoclass assignments [5, 24]
showed no evidence of conditional dependence or differential measurement in any of the
latent class regression models.

Since study participants were re-evaluated at two subsequent waves, it was possible to
examine the external validity of the latent classes by observing who progressed to either
CIND [25] (Cognitive Impairment, No Dementia) or dementia. ROC curves [16] were
constructed using posterior probability of membership in class 1 (‘Impaired’) as the test
value. At wave 3, addition of the covariates improved prediction (from AUC of 0.709–
0.788), but AUCs for penalized estimation models (a) and (b) were the same as that for the
unpenalized model with covariates to three decimal places. Posterior probability of
membership in class 2 ‘intermediate’ showed no predictive value for progression to CIND or
dementia.

5. Discussion
The ultimate goal of this work was to adapt the standard latent class regression model to
allow covariates to influence class definition in such a way as to produce a distinct
phenotype that was preferentially associated with the known risk factors or predictors.
Toward that goal, and building on work by Houseman and colleagues [6], a model in which
estimation of the regression covariates was penalized was developed. Simulation studies
using two stock penalties, the ridge and LASSO, were conducted under of variety of
conditions. The LASSO penalty, even with very small values of λ, resulted in unacceptably
large biases, typically reducing all penalized coefficient estimates to 0. Its weak utility for
the modeling scenarios we studied is not surprising, as the LASSO typically shows utility in
scenarios with larger numbers of covariates. The ridge penalty, as expected, biased
coefficient estimates downwards, but improved precision and convergence. In cases of
positive differential measurement, penalization also resulted in improved accuracy, but in
cases of negative differential measurement, penalization decreased accuracy. As such,
penalties that shrink coefficients toward the null should only be imposed in cases of
differential measurement after diagnostics of the unpenalized model have demonstrated that
the differential measurement is positive. In cases with multiple correlated covariates, ridge
penalization again increased bias somewhat, but improved precision.

Simulations with class-specific penalization were the most promising. When one class had a
true regression coefficient value greater than the other class, penalization increased
separation between the classes, but in simulations of scenarios in which both classes were
similarly associated with the covariate, optimal λ values were close to or equal to 0, and
penalization did not increase the separation between the classes. This suggests that class-
specific penalization is a useful tool in enhancing the separation between classes, but does
not create an artificial separation. In practice, choice of which classes to penalize would be
guided by the existing scientific knowledge; this, along with choice regarding which
covariate coefficients to penalize are the avenues through which penalization allows for the
incorporation of such knowledge.

We applied the ridge penalty to experimental data from the Cache County Study on Memory
and Aging. As in the simulation studies, absolute magnitudes of regression coefficient
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estimates were lowered, and precision was improved. Class-specific penalization resulted in
a wider separation between the classes with respect to the covariates. ROC curves, based on
prediction of dementia as a function of posterior probabilities of membership in the impaired
class, demonstrated that penalization did not adversely affect the external validity of the
latent classes, but did not appreciably improve prediction.

We predict that our method would have utility in a number of situations. First, our
simulations have shown that the typical action of these penalties, regularization in the
context of a small sample size or large numbers of collinear covariates, also occurs when
applied to latent class regression. Our method should also be useful when observed variables
(latent class indicators) show considerable imprecision in measuring latent classes.
Additionally, our method may be useful in some cases where measurement model
assumptions are incorrect, as shown in our simulation studies of positive differential
measurement.

Methodologically, several areas for fruitful investigation remain. The ridge and LASSO
penalties were chosen because they are used commonly, and their behavior in a variety of
settings has been previously described. Given the stated goal of producing distinct classes, a
‘penalty’ that both rewards increased strength of covariate association with one class and
penalizes associations with other classes might be more appropriate. Simulation studies of a
wider variety of scenarios (e.g. more classes, more covariates, different parameter values)
are also needed. Bayesian analyses are a clear alternative to those we have proposed,
replacing cross-validated distributions through which penalties may be made operational
with prior distributions. Clarity of translation of prior beliefs about, say, gene–class
relationships into posterior ones is an advantage of such an approach. Our simulations
comparing penalization to an analogous Bayesian approach suggest that penalization is at
least as accurate and far less computationally intensive. It is possible that a fully Bayesian
approach (with a hyperprior on λ) would produce a gain in accuracy to offset this
computational burden.

The primary drawbacks to this work lie in the substantive assumptions of our approach.
First, it assumes that psychiatric phenotypes are discrete; this is quite possibly not the case.
In the dementia example, the conditional probabilities for the indicators showed a clear
gradient from the ‘impaired’ to the ‘unaffected’ class. Use of a continuous latent variable
method, such as latent trait analysis, might have been more appropriate, and penalization of
these models has also been explored [26]. Further, the model we have described suggests a
one-to-one relationship between genotype and phenotype; for most psychiatric conditions,
this is clearly not the case. It is likely that a given phenotype is the result of a number of
genes acting singly or in concert. However, this model can be easily expanded to include
multiple genes, environmental factors, and interactions, thus addressing genetic variability.
Pleiotrophy presents a more fundamental difficulty; it is not clear how this model would be
adapted for scenarios in which a gene or set of genes and other factors is expressible as any
of a number of phenotypes.

It should be noted that, as described in Bollen [27], there are (at least) two schools of
thought regarding the nature of latent variables. The first is that they are only hypothetical
constructs, and the second is that they do represent something ‘real’ but can only be
measured imperfectly. Our paper has in mind applications for which the second school of
thought is tenable. We would argue that the modeling of phenotypes (effects of genotypes)
as latent variables is predicated on the assumption that the latent variable is measuring
something real—in this case, the underlying pathophysiology. As Sobel [28] noted, only this
type of conceptualization is compatible with treatment of latent variables as causes or
effects.
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Potential applications for this method extend beyond genetics. Possibilities include studying
which types of depression are most likely to respond to specific treatments, or which
characteristics among children might signal increased risk of future violence or drug use. In
all cases, because the outcome itself is aiding in the formation of the phenotypic definition,
findings cannot be viewed as confirmatory in their own right. External validation will
always be necessary. Instead, such findings can be used to focus researchers’ efforts in a
process of ‘iterative validation’ [29].

In conclusion, methodology for the implementation of penalization for latent class models
has been developed, and performance of these methods with two commonly used penalty
functions has been examined. Further exploration, particularly with novel penalty functions
is needed. Penalized latent class regression models may become a useful tool in
understanding the nature and antecedents of psychiatric disorders, working as a compromise
between the goals of identifying homogenous subgroups and distinguishing classes by
subgroup.
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Appendix A: Iteratively re-weighted quadratic programming

IRQP-0 set 

IRQP-1 set  where each μi is a 1×(J–1) vector.

IRQP-2ei j=θi j–μi j where e is a n×(J–1) matrix

IRQP-3 

IRQP-4 

IRQP-5  is a (J–1)×(J–1) matrix:

 where

IRQP-6Zi=Xiei’–Λσ where

Leoutsakos et al. Page 12

Stat Med. Author manuscript; available in PMC 2013 February 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



IRQP-7  (where multiplication is element-wise)

IRQP-8 set δ equal to solve. QP minimum of (δ*Wδ*–Z’δ*) Such that σδ*≥Z0

IRQP-9 set βt+1=βt+δ
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Figure 1.
Posterior probability of class membership as a function of λ and Y1. Each graph plots
posterior probability of class membership for λ=0 and λ=0.01 from the differential
measurement scenario in Table I, where β11=δ=1.79. Points above the diagonal line
represent cases where the posterior probability of membership in that class had increased as
a result of the penalty, and those below represent cases where that probability had decreased.
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Figure 2.
Comparison of estimates from Bayesian and penalization simulations. Estimates are
analogous to the scenario in Table II, with ρ=0.9, and all non-intercept coefficients

penalized, but with N=500. The optimal λ value was 0.2. Each graph plots  (Y-axis) for
the intercept and nine covariates by class and λ value.
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Table I

Ridge penalty: variations of β11 and δ (N =5000).

β * 11 δ † λ ‡ Bias§ Empirical precision¶ Accuracy of precision∥ MSE**

0.69 0 0.0 0.001 0.033 −0.004 0.033

1 −0.036 0.030 −0.010 0.031

1.79 0 0.0 0.011 0.035 0.007 0.036

0.2 −0.016 0.033 0.006 0.033

1.79 0.69 0.0 0.297 0.051 0.039 0.139

0.1 0.279 0.048 0.038 0.126

1.79 1.79 0.0 1.146 0.056 0.041 1.369

0.1 1.113 0.051 0.036 1.290

1.79 −1.79 0.0 −0.296 0.046 0.036 0.134

0.2 −0.317 0.044 0.035 0.144

*
Simulated log odds ratio for association between x1 and membership in class 1, relative to class 3.

†
Simulated log odds ratio for the independent association between covariate and the first of six latent class indicators.

‡
Candidate value for tuning parameter. Results are shown for λ=0 and the candidate λ value which minimized R, the cross-validated log-

likelihood loss for the largest number of simulated data sets.

§
, where si are simulation iterations.

¶
.

∥
—empirical precisionλ.

**
Mean square error = empirical .
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Table II

Ridge penalty: nine covariates, variations of ρ (N =5000).

Penalized estimates* ρ † λ ‡ Bias§ Empirical precision¶ Accuracy of precision∥ MSE**

0 0.0 −0.023 0.058 0.006 0.058

0.9 0.0 −0.022 0.138 0.024 0.139

β̂1 j 0 0.1 −0.046 0.054 0.008 0.056

0.9 0.2 −0.128 0.109 0.031 0.125

β̂ pj, p=(1,…,9) 0 0.4 −0.071 0.048 −0.002 0.054

0.9 0.4 −0.101 0.127 0.004 0.137

*
Values for bias, precision, etc. refer to , where the simulated value of β11 is 1.79.

†
Bivariate correlations among covariates.

‡
Candidate value for tuning parameter. Results are shown for λ=0 and the candidate λ value which minimized R, the cross-validated log-

likelihood loss for the largest number of simulated data sets.

§
, where si are simulation iterations.

¶
.

∥
—empirical precisionλ.

**
Mean square error = empirical .
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Table III

Class-specific ridge penalization (only β12 penalized) (N =5000).

β 11 β 12

β * 11 β † 12 λ ‡ Bias§ MSE¶ Bias MSE

0.69 0 0 0.001 0.033 0.015 0.010

1000 0.001 0.034 0.001 0.000

1.79 0 0 0.011 0.036 −0.009 0.013

1000 0.011 0.036 0.000 0.000

1.79 0.69 0 −0.010 0.038 0.011 0.008

1 −0.013 0.035 −0.001 0.007

1.79 1.79 0∥ 0.049 0.038 0.005 0.009

1 0.031 0.033 −0.028 0.010

*
Simulated log odds ratio for association between x1 and membership in class 1, relative to class 3.

†
Simulated log odds ratio for association between x1 and membership in class 2, relative to class 3.

‡
Candidate value for tuning parameter. Results are shown for λ=0 and the candidate λ value which minimized R, the cross-validated log-

likelihood loss for the largest number of simulated data sets.

§
, where si are simulation iterations.

¶
Mean square error = .

∥
In the case of β11=β12=1.79, R was minimized with λ=0 in all 100 simulated data sets.
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Table IV

Class-specific LASSO penalization (only β12 penalized) (N =5000).

β 11 β 12

β * 11 β † 12 λ ‡ Bias§ MSE¶ Bias MSE

0.69 0 0 0.001 0.033 0.015 0.010

1.1 −0.039 0.031 0.015 0.009

1.79 0 0 0.011 0.036 −0.009 0.012

0.1 −0.003 0.034 −0.009 0.012

1.79 0.69 0.0 −0.011 0.037 0.010 0.008

0.1 −0.024 0.036 0.009 0.008

1.79 1.79 0.0 0.049 0.038 0.005 0.009

0.1 0.037 0.036 0.002 0.009

*
Simulated log odds ratio for association between x1 and membership in class 1, relative to class 3.

†
Simulated log odds ratio for association between x1 and membership in class 2, relative to class 3.

‡
Candidate value for tuning parameter. Results are shown for λ=0 and the candidate λ value which minimized R, the cross-validated log-

likelihood loss for the largest number of simulated data sets.

§
, where si are simulation iterations.

¶
Mean square error = .
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Table V

Latent class regression measurement model.

Class 1—‘Impaired’ 2—‘Intermediate’ 3—‘Unaffected’

η̂ 0.10 0.51 0.39

Knowledge 0.148(0.032)* 0.434(0.020) 0.705(0.019)

Registration 0.716(0.033) 0.902(0.010) 0.982(0.006)

Time 0.391(0.043) 0.766(0.015) 0.871(0.012)

Fluency 0.262(0.037) 0.512(0.020) 0.804(0.018)

Sentence 0.600(0.035) 0.757(0.014) 0.908(0.012)

Pentagons 0.585(0.037) 0.807(0.013) 0.896(0.011)

Combined Recall 0.158(0.030) 0.506(0.022) 0.743(0.017)

*
Conditional probability  (SE).
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Table VI

Latent class regression parameter estimates.

Class 1 Class 2

Unpenalized* Penalized (a)† Penalized (b)‡ Unpenalized Penalized (a) Penalized (b)

Age (y) 0.381 (0.032)Ÿ 0.377 (0.032) 0.373 (0.031) 0.204 (0.029) 0.200 (0.026) 0.197 (0.026)

Education (y) −0.741 (0.081) −0.733 (0.080) −0.719 (0.079) −0.431 (0.059) −0.431(0.053) −0.408 (0.054)

APO-E4 1.327 (0.347) 1.177 (0.299) 1.311 (0.335) 0.359 (0.234) 0.178 (0.161) 0.329 (0.210)

APO-E44 2.800 (0.761) 2.468 (0.652) 2.659 (0.734) 0.543 (0.716) 0.050 (0.215) 0.272 (0.468)

CVA 2.549 (0.979) 2.597 (0.955) 1.628 (0.565) 2.067 (0.905) 2.139 (0.895) 1.077 (0.423)

Head injury 0.833 (0.342) 0.824 (0.333) 0.780 (0.333) 0.428 (0.291) 0.398 (0.267) 0.382 (0.270)

Cholesterol 0.117 (0.299) 0.106 (0.278) 0.090 (0.286) 0.310 (0.255) 0.306 (0.225) 0.273 (0.238)

Hypertension −1.487 (0.427) −1.462 (0.383) −1.438 (0.432) −0.454 (0.226) −0.443 (0.215) −0.370 (0.206)

CABG 0.118 (1.141) 0.179 (0.941) −0.189 (1.035) 0.934 (0.535) 0.961 (0.526) 0.608 (0.365)

Myocardial infarction 0.970 (0.452) 0.956 (0.431) 0.972 (0.413) 0.316 (0.431) 0.299 (0.384) 0.318 (0.358)

Diabetes 0.687 (0.415) 0.672 (0.393) 0.707 (0.402) 0.126 (0.302) 0.119 (0.297) 0.153 (0.265)

Parental memory loss −0.351 (0.353) −0.312 (0.336) −0.346 (0.359) 0.026 (0.212) 0.044 (0.211) 0.031 (0.193)

Sadness −0.833 (0.398) −0.811 (0.388) −0.781 (0.394) −0.485 (0.314) −0.485 (0.298) −0.393 (0.277)

Apathy 0.213 (0.510) 0.197 (0.499) 0.149 (0.500) 0.225 (0.340) 0.210 (0.334) 0.135 (0.288)

*
No penalization, R=28929.00.

†
Only genotype covariates for class 2 penalized, optimal λ=9.7, R=28927.30.

‡
All non-intercept covariates for class 2 penalized except age and education, optimal λ=1.1, R=28926.75.

§
Estimates (SE) for log odds of association between covariate and class membership , relative to class 3.
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