Skip to main content
. Author manuscript; available in PMC: 2013 Feb 17.
Published in final edited form as: Stat Med. 2010 Dec 5;30(7):784–798. doi: 10.1002/sim.4137

Table I.

Ridge penalty: variations of β11 and δ (N =5000).

β * 11 δ λ Bias§ Empirical precision Accuracy of precision MSE**
0.69 0 0.0 0.001 0.033 −0.004 0.033
1 −0.036 0.030 −0.010 0.031
1.79 0 0.0 0.011 0.035 0.007 0.036
0.2 −0.016 0.033 0.006 0.033
1.79 0.69 0.0 0.297 0.051 0.039 0.139
0.1 0.279 0.048 0.038 0.126
1.79 1.79 0.0 1.146 0.056 0.041 1.369
0.1 1.113 0.051 0.036 1.290
1.79 −1.79 0.0 −0.296 0.046 0.036 0.134
0.2 −0.317 0.044 0.035 0.144
*

Simulated log odds ratio for association between x1 and membership in class 1, relative to class 3.

Simulated log odds ratio for the independent association between covariate and the first of six latent class indicators.

Candidate value for tuning parameter. Results are shown for λ=0 and the candidate λ value which minimized R, the cross-validated log-likelihood loss for the largest number of simulated data sets.

§

β11[(1nsi)Σsi=1nsiβ^11,si,λ,],, where si are simulation iterations.

Σsi=1nsi(β^11,si,λβ11,λ)2(n1).

(1nsi)Σsi=1nsiva^r(β^11,si,λ)—empirical precisionλ.

**

Mean square error = empirical precisionλ+biasλ2.