
Polyamines as mediators of APC-dependent intestinal
carcinogenesis and cancer chemoprevention

Nathaniel S. Rial*,†, Frank L. Meyskens Jr‡, and Eugene W. Gerner*,§,1

*Department of Internal Medicine, The University of Arizona, 1501 North Campbell Avenue,
Tucson, AZ 85724 U.S.A.
†Cancer Biology, Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724,
U.S.A.
‡Chao Family Comprehensive Cancer Center and Departments of Medicine and Epidemiology,
University of California, Irvine, CA 92868 U.S.A.
§The University of Arizona, Department of Cell Biology and Anatomy and Gastrointestinal Cancer
Program, Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, U.S.A.

Abstract
Combination chemoprevention for cancer was proposed a quarter of a century ago, but has not
been implemented in standard medical practice owing to limited efficacy and toxicity. Recent
trials have targeted inflammation and polyamine biosynthesis, both of which are increased in
carcinogenesis. Preclinical studies have demonstrated that DFMO (difluoromethylornithine), an
irreversible inhibitor of ODC (ornithine decarboxylase) which is the first enzyme in polyamine
biosynthesis, combined with NSAIDs (non-steroidal anti-inflammatory drugs) suppresses
colorectal carcinogenesis in murine models. The preclinical rationale for combination
chemoprevention with DFMO and the NSAID sulindac, was strengthened by the observation that
a SNP (single nucleotide polymorphism) in the ODC promoter was prognostic for adenoma
recurrence in patients with prior sporadic colon polyps and predicted reduced risk of adenoma in
those patients taking aspirin. Recent results from a phase III clinical trial showed a dramatic
reduction in metachronous adenoma number, size and grade. Combination chemoprevention with
DFMO and sulindac was not associated with any serious toxicity. A non-significant trend in
subclinical ototoxicity was detected by quantitative audiology in a subset of patients identified by
a genetic marker. These preclinical, translational and clinical data provide compelling evidence for
the efficacy of combination chemoprevention. DFMO and sulindac is a rational strategy for the
prevention of metachronous adenomas, especially in patients with significant risk for colorectal
cancer. Toxicities from this combination may be limited to subsets of patients identified by either
past medical history or clinical tests.

Introduction
Increased concentrations of polyamines are found in cancerous tissue [1]. Polyamines are
influenced by factors such as import, export, biosynthesis and catabolism. ODC (ornithine
decarboxylase) is a rationale target in several cancers, with the goal to decrease cellular
polyamine pools. ODC inhibition may not be sufficient therapy in situations where
polyamine synthesis is not the rate-limiting step regulating polyamine pool sizes.
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The ODC gene is regulated by the Wnt signalling cascade [2]. Activated WNT signalling
up-regulates MYC [3], a transcriptional activator of ODC [4]. The WNT cascade is silenced
in the majority of adult intestinal tissues, but can be dysregulated through mutations. The
APC (adenomatous polyposis coli) tumour suppressor gene is a component of the WNT
cascade and has been identified as the germ-line mutation in FAP (familial adenomatous
polyposis) [5]. Over 80% of sporadic colorectal cancers also carry mutations in APC. APC
mutations and WNT signalling lead to up-regulation of MYC activity and increased
expression of ODC, and increased polyamine pools. Other genetic influences of CRC
(colorectal cancer) are mutant K-RAS, a proto-oncogene that also activates ODC.

Colorectal carcinogenesis is also influenced by high-fat diet and sedentary lifestyle. Long-
term use of aspirin and the reduction of CRC mortality led to the COX (cyclo-oxygenase)-
based hypothesis [6]. These environmental risk factors influence an individual's genetic
susceptibility and produce a risk profile for cancer. A mechanism for CRC involves
mutated-APC and K-RAS in combination with environmental risk factors that elevate
polyamines and inflammation. A rationale strategy for cancer chemoprevention would be
the combination of inhibitors of polyamine biosynthesis and inflammation.

Pre-clinical data
Cancer burden

In the United States, cancer is the leading cause of death in people under the age of 85 years
[7]. There were an estimated 1437180 new cases and 565650 deaths attributed to cancer in
2008, whereas 10.8 million Americans are living with a history of cancer. Cancer
therapeutics are most effective in the early stages of disease, but are less effective in treating
advanced cancers. This point underscores the need for prevention, early detection and
effective treatment.

The vast majority of US cancer incidence and mortality are epithelial-derived cancers of the
lung, colon, breast and prostate. Epithelia provide a protective barrier while also importing
nutrients and exporting waste, especially the colon. The ACS (American Cancer Society)
estimated that there were 148810 new cases of colorectal cancer in 2008, with a mortality of
49960 deaths.

APC: the genetic risk factor for CRC
Carcinogenesis occurs by inactivation of a tumour suppressor gene or activation of an
oncogene. Inherited loss of a single allele in the APC gene increases an individual's risk of a
hereditary carcinogenesis, known as FAP [5]. FAP is characterized by an increase in
adenomatous polyps of the colon with advancing age. The risk is malignant transformation
of the polyps and treatment is colectomy. Greater than 80% of sporadic CRCs also have
mutations in the APC gene. Shown in Figure 1 is a representation of the WNT pathway in
normal tissue and in carcinogenesis.

The APC protein interacts with GSK-3β (glycogen synthase kinase-3β) and β-catenin. This
interaction allows GSK-3β to phosphorylate β-catenin and marks it for proteosomal
degradation. In carcinogenic tissue, GSK-3β and β-catenin are disrupted by mutant-APC. As
a result GSK-3β can no longer phosphorylate β-catenin. β-Catenin accumulates in the
cytoplasm and then translocates to the nucleus forming a heterodimer with its cognate
binding partner, TCF/LEF (T-cell factor/lymphoid-enhancing factor). The heterodimer binds
to promoter regions of genes and alters expression [2]. Dysregulation of WNT signalling
leads to changes in c-MYC gene expression. MYC activation occurs in neuroblastoma,
breast and prostate cancers, but its dysregulation in CRC is unique given mutations in the
upstream APC gene and rapid cellular turnover.
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In APC-dependent carcinogenesis c-MYC activation affects transcription of ODC through
binding regions in the promoter. An SNP (single nucleotide polymorphism) occurs in ODC
between two MYC-binding regions. Differential repression of ODC occurs by MAD1
binding at the SNP sequence to the A-allele, not the G-allele. In a population-based study of
humans with prior colonic adenomas, aspirin use was associated with a 90% reduction in
relative risk for development of metachronous adenomas among individuals homozygous
for the minor ODC A-allele compared with the non-aspirin users homozygous for the major
ODC G-allele [8]. This ODC polymorphism appears to be a genetic marker for CRC risk.
Our group has sought to test features of the hypothesis depicted in Figure 1. We have
developed a transgenic mouse expressing a mutant Apc and conditional deletion of the c-
Myc alleles in the intestinal and colonic mucosa. Conditional suppression of Myc in the
intestinal tract was associated with reduced intestinal tumour number, compared with these
same ApcMin/+ mice expressing intestinal Myc [9]. Treatment with DFMO
(difluoromethylornithine) also suppresses intestinal tumorigenesis in ApcMin/+ mice [10].
These results implicate both Myc and Odc as downstream mediators of APC-dependent
intestinal carcinogenesis.

The MYC protein can act as a transcription factor activator when bound to MAX. The
MYC–MAX heterodimer can activate the expression of genes through binding on consensus
sequences (enhancer box sequences or E-boxes), as well as recruiting HATs (histone
acetyltransferases). In contrast, when MAX is bound to MAD1, transcription is repressed. In
the presence of normal APC, C-MYC was suppressed whereas MAD1 was elevated. In the
presence of mutant-APC, C-MYC was elevated whereas MAD1 was suppressed [2]. This
interaction is shown in Figure 2.

Mutant-APC led to elevations in c-MYC that increased expression of ODC [2]. The results
indicated that ODC was a modifier of APC-dependent signalling in models of CRC. Mouse
models were employed to determine whether mutant-APC led to elevated polyamines in
vivo. Murine models recapitulate this finding, with elevated polyamines found in the small
intestine of ApcMin/+ mice [10].

Polyamine-dependent regulation and colon carcinogenesis
Arginine is a component of the urea cycle which converts nitrogenous waste for excretion
[11]. Elevated dietary arginine can also increase polyamine levels through its conversion
into ornithine in the urea cycle. ApcMin/+ mice fed a diet of elevated arginine had an
elevated tumour burden [12]. In patients with CRC, increased meat consumption was a
surrogate for arginine and was associated with decreased overall survival [13]. Polyamines
are exported, as depicted in Figure 3, via a mechanism which involves an arginine
transporter [14].

K-RAS mutation is another significant risk factor for CRC. The RAS-family of proteins is a
mediator of extracellular signals through the cytoplasm and eventually into the nucleus; the
effect of which is to alter gene expression and enhance proliferation. In cell culture models,
mutant K-RAS increases ODC transcription and decreases transcription of SAT1
(spermidine/spermine acetyltransferase; also referred to as SSAT in other chapters in this
volume), an enzyme important in the catabolism of polyamines. Mutant K-RAS increases
polyamine biosynthesis via ODC activation and decreases acetylation of polyamines.

Polyamine pool limitation
One strategy to inhibit polyamine levels is to decrease biosynthesis. Selective inhibition of
ODC by the suicide-inhibitor, α-DFMO, was developed at the Merrell Dow Research
Center in Strasbourg, France [11]. Although α-DFMO showed promise in cell culture
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models, compensatory polyamine import limited the success of DFMO in early murine
models.

SAT1 is an important factor in polyamine export. As shown in Figure 3, SAT1 can acetylate
both spermidine and spermine, targeting them for export. SAT1 can be induced by NSAIDs
(non-steroidal anti-inflammatory drugs), including aspirin, sulindac, ibuprofen and
indomethacin [15]. SAT1 induction can lead to apoptosis in CRC cell lines [16]. Sulindac
induced Sat1, decreased intestinal levels of monoacetylspermidine, spermidine and
spermine, and reduced tumour number in the small intestine of mouse models [17]. Dietary
putrescine restored tissue polyamine content and partially abrogated the antitumour effects
of sulindac, indicating that sulindac was acting via a polyamine-dependent mechanism.

Inflammation and colorectal carcinogenesis
In 1863 Virchow hypothesized a causal interaction between chronic inflammation and
cancer mediated via the tumour microenvironment [18]. Within the microenvironment of
carcinogenesis both intrinsic and extrinsic cellular factors contribute to a pro-inflammatory
state. The intrinsic pro-inflammatory factor NF-κB (nuclear factor κB) is activated by many
signals. Activation of NF-κB up-regulates target genes facilitating cancer growth by
initiation, promotion and progression. One of the target genes of NF-κB is the enzyme
COX. COX-1 is a constitutive gene that mediates homoeostatic functions, whereas inducible
COX-2 is associated with inflammation. PGE2 (prostaglandin E2) is downstream of COX-2
and is associated with tumorigenesis (Figure 4). In cell culture models the NSAID sulindac
decreased both COX-2- and PGE2 synthase-mediated inflammation. While NSAIDs block
COX-2, they also inhibit production of NO (nitric oxide) via inhibition of NOS-2 (inducible
nitric oxide synthase). NO is a known activator of inflammation. As shown in Figure 4,
arginine can be converted into NO, leading to increased inflammation.

Clinical data with DFMO
Cancer therapeutic experience

DFMO has been evaluated as a cancer therapeutic agent. It was not especially active as a
single agent and its use was associated with ototoxicity at high doses [11,19]. Based on
mouse model studies, DFMO was subsequently evaluated as a potential cancer
chemopreventive agent [11].

Clinical trials of DFMO for colon cancer prevention
Early studies have confirmed that ODC and polyamine contents were elevated in human
colon cancer tissue compared with adjacent normal colorectal mucosa [20]. Measurements
of colorectal tissue polyamine contents were subsequently validated as measures of DFMO
effects in patients. Validation of these markers allowed for the conduct of clinical trials to
assess efficacy of DFMO dose, oral dose delivery and frequency of dosing. Consequently,
we were able to conduct a dose de-escalation trial to determine the lowest DFMO dose
capable of suppressing colorectal polyamine contents while minimizing toxicities, including
ototoxicity [21]. A subsequent trial built on these findings evaluated three oral doses of
DFMO given daily for 1 year. Patients were randomized to a control or treatment group with
three separate doses of DFMO: 0.075, 0.2 and 0.4 g/m2 per day [22]. The end of trial
analysis showed that the 0.2 g/m2 per day dose had similar biological effects compared with
the 0.4 g/m2 per day dose, with a decreased report of toxic side effects and decreased drop-
out rate. The implications were that a low dose of DFMO inhibited colorectal polyamine
content in rectal mucosa while demonstrating a safe toxicity profile.
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Sulindac
While a phase IIb/III trial was being considered with DFMO, strong and extensive
epidemiological evidence accumulated suggesting that aspirin and other NSAIDs might be
effective as colon cancer prevention agents. Sulindac decreased polyp formation in high-risk
patients with FAP [23]. It was hypothesized that sulindac and DFMO in combination would
have a greater effect than either agent alone on the development of colon polyps, and this
point was established in preclinical models [24]. As shown in Figure 5, NSAIDs and DFMO
affect multiple targets related to inflammation.

Phase IIb and III DFMO and sulindac trials in non-cancerous patients
Cell culture models indicated that DFMO and sulindac could act at least additively to
suppress growth and cell survival [24]. With mounting cell culture, murine model, clinical
and epidemiological data, a prospective, randomized, placebo-controlled, phase IIb trial,
with the combination of DFMO and sulindac, for 3 years was initiated in patients with prior
sporadic colon polyps. The study used 0.2 g of DFMO/m2 per day and was converted from a
liquid oral dose into an oral pill form. A dose of 500 mg/day closely approximated the 0.2 g/
m2 per day liquid form. The study also used 150 mg of sulindac, 50% of the conventional
dose [23]. In addition to the need for efficacy, a major intent was to evaluate potential
toxicity. The phase IIb trial of DFMO and sulindac, with biochemical markers as primary
endpoints, was subsequently modified and converted into a phase III trial with metachronous
adenomas as the primary endpoint of the study.

Baseline and serial audiological tests were performed to assess potential long-term
ototoxicity. Participants with greater than 20 dB uncorrectable hearing loss above the age-
adjusted norms were ineligible for the phase III trial. The eligible patients were randomized
to receive placebo or 500 mg of DFMO plus 150 mg of sulindac. Patients were stratified
according to two parameters: the seven clinical sites and low-dose aspirin use (either 81 mg/
day or less than 325 mg twice weekly). Safety evaluations of the patients occurred after the
1 month run-in as well as at 3, 6 and 9 months, and every 6 months for the remainder of the
phase III trial. Evaluations included physical examination and laboratory evaluations. Pure-
tone audiograms were performed at 0, 18 and 36 months. Adenomas removed during any
part of the phase III trial were submitted to a central pathology facility with standardized
diagnostic objectives. The colorectal polyps were counted, measured and graded according
to predetermined criteria. Safety analysis included investigator-reported adverse events and
were coded according to the COSTART (Coding Symbols for Thesaurus of Adverse
Reaction Terms) Body System [25]. An independent DSMB (Data and Safety Monitoring
Board) reviewed the safety and efficacy of the data twice yearly. The investigators were
blinded to the results of the DSMB's findings throughout the phase IIb and phase III trials. A
pre-specified early stopping point was made based on potential efficacious or futile results.
Interim analysis was planned at approx. 60% and 80% of the total accrual of patient
information.

Based on the primary and secondary endpoints of the phase III trial, as well as oversight by
the DSMB, the blind study was broken at the second interim analysis. The phase III trial
intervention of combination DFMO and sulindac was found to be significantly effective.
The combination of 500 mg of DFMO and 150 mg of sulindac decreased the number and
severity of adenoma recurrence without significant toxicity [25]. The results are presented in
Table 1 and summarized here. There was a 70% reduction in metachronous adenomas for
those in the treatment arm. In addition, there was a 92% reduction in advanced adenomas
and a 95% decrease in the recurrence of multiple adenomas in patients in the treatment arm
compared with those in the placebo arm. Sporn and Hong [26] wrote an accompanying
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editorial with this publication and stated that “the clinical results represent a landmark
advance to [reduce the number] of cancer deaths”.

Toxicity
An adjusted, non-significant, mean decrease in hearing threshold of 1.08 dB was detected in
the treatment arm compared with placebo [27]. There was no difference in the clinical
audiotoxicity between the two arms. Cardiotoxicity was also evaluated in this study. Patients
were stratified into low-, moderate-and high-CV (cardiovascular) risk factors. Among high-
risk patients, the number of CV events was higher in the treatment than the placebo arm.
Excluding the high-risk CV patients, the numbers of CV events were similar between
treatment and placebo arms [28].

These clinical results from a phase III trial proved to be consistent with preclinical studies in
mouse models. Combination DFMO and sulindac was effective in reducing tumour number
by more than 80% when compared with the untreated controls in the ApcMin/+ mouse model
(P < 0.0001) [29]. Combination sulindac–DFMO was effective in reducing the number of
high-grade adenomas when compared with the sulindac alone (P = 0.003). The clinical
implications are twofold: (i) first DFMO is effective in the reduction of adenomatous polyps
and (ii) secondly, the combination of DFMO and sulindac can further reduce the risk of
CRC through the reduction in the number of high-grade intestinal adenomas. These high-
grade adenomas are those lesions most likely to progress to colon cancer.

Phase III DFMO and sulindac in patients with cancer
Although the phase III trial with DFMO and sulindac provided strong evidence for
preventing disease recurrence in patients with prior adenomas, the chemoprevention has not
been evaluated in higher risk populations. Even after surgical resection and optimal
treatment with chemotherapy (when indicated), stage I–III colon cancer patients remain at
considerable risk for distant recurrence, secondary colonic tumour formation and subsequent
mortality. A phase III trial of these key compounds among surgically resected colon cancer
patients is in the planning stages.

Future
Clinical practice

Approx. 30 million patients over the age of 50 years will develop adenomatous polyps each
year in the United States. A proportionally similar number will develop these lesions in
Western Europe. Approx. 10% will progress to advanced polyps or frank cancer. Genetically
at-risk patients along with those with a history of CRC [sporadic, FAP, HNPCC (hereditary
nonpolyposis colorectal cancer) or prior CRC] are the target population for
chemoprevention. Current techniques for CRC screening include endoscopy at regular
intervals with polyps removed. There is a significant risk reduction for CRC through
endoscopy and polypectomy, but barriers of cost, preparation and the procedure translates
into approx. 50% screening of eligible populations.

Endoscopy is also a poor screening method for right-sided cancers, as well as flat or
depressed lesions. Further complicating the role of endoscopy is the frequent overuse by
patients with previously diagnosed disease. The resultant gaps in screening with overuse by
others necessitate another disease prevention strategy. Chemoprevention clearly has the
potential to reduce disease burden.

The results from the phase III trials potentially affect the surveillance of higher risk
populations. As previously stated, approx. 50% of CRC patients with Stage I, II or III
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disease recur. Patients’ and physicians’ anxieties may decrease with combination therapy
and lessen the overutilization of endoscopic procedures in patients with a moderate risk of
colon cancer. Combination chemoprevention may also have applications in high-risk
populations such as those with FAP. The positive results of this combination in the
Apc Min/+ model of FAP may lead to trials in this high-risk group. Positive results of such
trials could increase the time to surgery in patients with FAP.

Dietary sources of polyamines
A database has been developed to assess dietary polyamine content [30]. It is hypothesized
that a reduction in total-body polyamine pools may reduce carcinogenesis. Table 2 presents
some of the foods for which the polyamine content has been determined. The intention for
the database is to quantify dietary polyamines and qualify them as a risk factor for
carcinogenesis.

Conclusions
Epithelia provide a protective barrier from the external environment. It is a mediator of
transport. In the process, epithelia are exposed to harmful substances and harbour genetic
mutations. In this context, cells are transformed from normal to neoplastic and the
carcinogenic process is initiated. For the past several decades, collaborative efforts of
scientific research have led to a new paradigm in cancer management: chemoprevention.
Chemoprevention is an approach that is not applicable to everyone. It should target people
with elevated risks of cancer. The caveat for chemoprevention is that target populations are
still relatively healthy compared with patients who currently have cancer. Therefore
chemoprevention must have a clear benefit that exceeds the risk of treatment. The
development of DFMO and sulindac underscore this sentiment.

Summary
• Polyamine pools are elevated in cancerous tissue.

• ODC is a committed step, converting ornithine into putrescine.

• DFMO is an irreversible, competitive inhibitor of ODC.

• In CRC cell culture models, DFMO decreased polyamine levels.

• Murine models of CRC with mutant-Apc have increased Myc and Odc activation.

• DFMO alone had limited efficacy in therapeutic clinical trials.

• NSAIDs decrease COX activity.

• NSAIDs can activate polyamine export pathways.

• Polyamine pools are dynamically regulated by anabolism, catabolism, import and
export.

• Low-dose DFMO was evaluated as a chemopreventative agent for CRC by
biomarker assays, efficacy, safety, toxicity and dose de-escalation before large
clinical trials.

• Combination DFMO and sulindac was evaluated in a large, randomized,
prospective, multi-centre, double-blind clinical trial.

• Combination DFMO and sulindac was effective in reducing adenoma recurrence by
number, size and grade.

• Ototoxicity was measured in the treatment arm, but without clinical significance.
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• Patients with baseline high-CV risk had a higher number of CV events.
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Figure 1. The WNT pathway in normal and carcinogenic cells
The WNT pathway in a normal, adult, colonic epithelial cell is depicted on the left-hand side
of the Figure. On the basolateral portion of the cell the WNT receptor is activated and
transmits the signal intracellularly to the APC, GSK-3β and β-catenin complex. GSK-3β
phosphorylates β-catenin, marking it for proteosomal degradation. The WNT pathway in
carcinogenesis is depicted on the right-hand side of the Figure. The WNT receptor may be
activated and transmission of the signal intracellularly may occur, but inactivation of β-
catenin by GSK-3β does not. Cytoplasmic accumulation of β-catenin leads to its nuclear
translocation and binding with its cognate partner TCF/LEF. This heterodimerization
regulates genes through transcription, notably of MYC.
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Figure 2. ODC regulation occurs through both positive and negative mechanisms
ODC is suppressed by MAD. Transcriptional activation of ODC can occur through MYC,
RAS or both. Upstream activation of c-myc may occur via mutant APC. Pharmacogenetic
manipulation of ODC occurs through identification of SNP status. The combination of these
factors may increase individual risk stratification.
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Figure 3. Polyamine transport is shown schematically via import, export, anabolism and
catabolism
Arginine is imported into the cell and then converted into ornithine which contributes to the
polyamine pools. Polyamine pools may be further increased by import or decreased by
catabolism and export.
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Figure 4. Inflammation within a colonic epithelial cell may occur through multiple mechanisms
Imported dietary arginine may either be converted into NO or processed in the polyamine
pathway. NSAIDs can disrupt these and other pathways via inhibition of NOS-2, up-
regulation of polyamine export or inhibition of COX-2. External sources of polyamines and
bile acids may also contribute to inflammation.
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Figure 5. The interaction among mutant-APC, polyamines and inflammation is depicted in a
colonic epithelial cell
Mutant-APC and activated K-RAS lead to increased MYC production and up-regulate ODC
which increases the polyamine concentration. Elevated dietary arginine can also contribute
to increased polyamine pools. NSAIDs and DFMO can inhibit multiple targets in both the
polyamine and inflammatory pathways.
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Table 2
Polyamine content in food

The three polyamines: putrescine, spermidine and spermine are listed. The amount of polyamines, in nmol/
day, is given for multiple food items. Data taken from [30].

Polyamine Food item Amount (nmol/day)

Putrescine Orange juice and grapefruit juice 44441

Oranges, grapefruit and tangerines (excluding juice) 17613

Fresh tomatoes 10042

Bananas 7344

Beer (all types) 6374

Spermidine Green peas 3283

Cheese, such as American and cheddar 3124

Lasagne and pasta with meat sauce 2900

Potatoes (boiled, baked and mashed) 2388

Burritos, tacos, tostadas and quesadillas 1890

Spermine Ground meat 2186

Lunch meats (e.g. ham, turkey, bologna and salami) 1977

Green peas 1905

Lasagne and pasta with meat sauce 1443

Peanut butter, peanuts and other nuts and seeds 1237
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