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Abstract
Objective—Analyses of individual differences in change may be unintentionally biased when
versions of a neuropsychological test used at different follow-ups are not of equivalent difficulty.
This study’s objective was to compare mean, linear, and equipercentile equating methods and
demonstrate their utility in longitudinal research.

Study Design and Setting—The Advanced Cognitive Training for Independent and Vital
Elderly (ACTIVE, N=1,401) study is a longitudinal randomized trial of cognitive training. The
Alzheimer’s Disease Neuroimaging Initiative (ADNI, n=819) is an observational cohort study.
Nonequivalent alternate versions of the Auditory Verbal Learning Test (AVLT) were administered
in both studies.

Results—Using visual displays, raw and mean-equated AVLT scores in both studies showed
obvious nonlinear trajectories in reference groups that should show minimal change, poor
equivalence over time (ps≤0.001), and raw scores demonstrated poor fits in models of within-
person change (RMSEAs>0.12). Linear and equipercentile equating produced more similar means
in reference groups (ps≥0.09) and performed better in growth models (RMSEAs<0.05).

Conclusion—Equipercentile equating is the preferred equating method because it
accommodates tests more difficult than a reference test at different percentiles of performance and
performs well in models of within-person trajectory. The method has broad applications in both
clinical and research settings to enhance the ability to use nonequivalent test forms.

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Introduction
The identification of cognitive decline requires repeated assessment of the same individual
over time. Alternate forms of a test are often used to minimize practice effects under the
assumption that the forms are equivalent. Thus, the ability to equate alternate forms of
neuropsychological tests is highly important in both clinical and research settings.
Importantly, inferences about differences between groups, or change within persons over
time, may be erroneous or biased when versions of a test are not equivalent.

Methods for test equating are particularly important for neuropsychological assessments in
population-based research and clinical practice. Alternate versions of a test are considered
equivalent if they produce the same mean and variance in a sample (Borsboom, 2005). Tests
that are parallel but nonequivalent could be similar in content and length, but yield different
scores for the same individual because they differ in item difficulty or administration
characteristics. A relevant example is provided by word list-learning tests, for which use of
alternate forms is common. Word lists in particular have an extensive history in Western
psychology (Ebbinghaus, 1895/1964; Underwood, 1963). Different versions are intended to
be equivalent, but often are not. One reason for non-equivalence is test length. For example,
tests are often shortened due to time limitations or to reduce participant burden, as was done
for the CVLT (Mitrushina et al., 2005), and equipercentile equating methods were used to
equate a 9 item version with the original 16 item version. Other reasons for non-equivalence
of forms are more complicated. In word list-learning tests, the word’s frequency of use in
the English language (Anderson & Bower, 1972; Battig & Montague, 1969; Fuller et al.,
1997), number of syllables, serial position in the list, and imagery value (Paivio, 1968) all
contribute to its difficulty. Fuller and colleagues (1997), for example, reported that two
forms of the Auditory Verbal Learning Test (AVLT, described in Methods), Lists B and C
(see Lezak et al., 2004), are not of equivalent difficulty. In a systematic review, Hawkins
and colleagues (2004) showed recall differences of about three words (8% difference) across
alternate forms that were studied.

Test equating is an analytical approach to adjust nonequivalent tests. The goal of test
equating is to define a transformation of a variable that returns the same cumulative
probability plot as the other variable being compared. There are many ways to equate tests.
Given relevant characteristics of two distributions, equating methods can be applied in
almost any setting in which multiple scores for each person are on different metrics. Two
tests that measure the same outcome are equivalent if they place individuals in the same
relative position in a group (Livingston, 2004). Widely used methods include mean, linear,
and equipercentile equating. These methods differ by how relative position is defined. In
mean equating, relative position is defined by the absolute difference from the sample mean
of a test, and each individual’s score is changed by the same amount to equate the sample
mean to that of a reference test (Kolen & Brennan, 1995). In linear equating, relative
position is defined in terms of standard deviations from the group mean. Linear equating is
accomplished by adjusting scores from the new form to be within the same number of
standard deviations of the mean of the original form. A formula is provided in the Methods
section. Equipercentile equating defines relative position by a score’s percentile rank in the
group. It is accomplished by identifying scores on two measures with the same percentile
rank and transforming the score on a new test to the corresponding score on the reference
form with the same percentile rank.
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The reason for administering alternate versions of a word list is to reduce retest or practice
effects, but alternate forms do not completely correct for retest. Practice effects are
attributable to general testing factors that arise from repeated exposure to the same task (e.g.,
learning to take tests) in addition to retention of particular test content (e.g., recall for
specific words) (Crawford et al., 1989). Verbal learning tests are a mainstay in memory
research and assessment, but are particularly susceptible to practice effects under repeated
administration, such as in longitudinal research and in clinical settings when a patient must
be re-evaluated over time. Alternate forms cannot account for general testing factors that
contribute to practice effects, and may actually introduce greater problems in examining
within-person trajectories in longitudinal studies if forms are not equivalent.

The objectives of the present study were to compare three equating methods – mean, linear,
and equipercentile equating – and demonstrate their utility in longitudinal research. To
demonstrate the generalizability of the approaches, examples are presented from two large
studies of older adults, a cognitive intervention study and an observational study of
predictors of conversion to Alzheimer’s disease. Equating methods were contrasted using
visual displays, tests of mean equivalence over time in reference groups, and with models of
person-level growth.

Methods
Study samples

Participants were drawn from two large-scale, multi-site cohorts of older adults, the
Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). These studies were selected because
both provide longitudinal data using word list-learning measures collected using similar
methods. Although the data are similar and nonequivalent forms pose similar challenges, the
objectives of these studies differ considerably, which highlights the generalizability of
equating approaches.

ACTIVE is a longitudinal randomized trial of cognitive training in cognitively intact,
community-dwelling adults age 65 and older (Ball et al., 2002; Jobe et al., 2001; Willis et
al., 2006). Participants (n=2,802) were randomized to one of four intervention groups
(memory, reasoning, speed of cognitive processing, and no-contact control) after a baseline
assessment, and followed up immediately after training and after one, two, three, five, and
ten years. For the sake of parsimony, the present study used data from two of these groups,
the memory-trained (n=703) and no-contact control (n=698) groups, which were collected at
baseline before the intervention, immediately following training, and at the one, two, three,
and five year follow-up assessments.

ADNI began in 2003 as a five-year observational cohort study of Alzheimer's disease (AD),
with the primary goal of assessing the extent to which serial magnetic resonance imaging,
positron emission tomography, other biological markers, and cognitive tests can be used to
predict progression to mild cognitive impairment (MCI) and AD. Further information is
available at http://www.loni.ucla.edu/ADNI. The present study used baseline and 6, 12, 18,
24, and 36 month follow-up data for normal subjects (n=229) and MCI (n=397) and AD
(n=193) patients. MCI patients were assessed at all waves. Normal healthy controls were not
followed at 18 months, and AD patients were not followed at the 18 or 36 month waves.
Data from a 48 month wave were not included in the present study because data collection
was still underway. Data, which are continuously updated, were downloaded for the present
study on March 15, 2011.
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Measures
The AVLT (Rey, 1964; Schmidt, 2004) was administered in both the ACTIVE and ADNI
studies. During administration of the AVLT, participants are read a list of 15 unrelated
words and asked to recall as many words as they can remember. The same list is repeated
over five trials, followed by an interference trial with a new 15-word list, a short-delay free
recall trial, and a long-delay free recall trial thirty minutes later. The present study used the
sum of recall from the five immediate AVLT recall trials. The administration of the AVLT
in ACTIVE differed from that in ADNI in two ways. First, the long-delay free recall trial
was dropped due to time constraints. Second, the ACTIVE protocol modified the test for
group administration by having participants write down responses instead of speaking them.

In ACTIVE, the original AVLT List A and interference list B (Taylor, 1959) were used at
the baseline and third annual visits, lists by Geffen and colleagues (1994) were used in the
immediate post-training and fifth annual visits, lists by Crawford and colleagues (1989)
were used at the first annual visit, and lists described by Jones-Gotman and colleagues were
used for the second annual visit (Lezak et al., 2004, pp. 423). In ADNI, lists from Taylor
(1959) were used at the baseline, 12, and 24 month visits and lists by Crawford and
colleagues (1989) were used during 6, 18, and 36 month visits. These visits are delineated in
Tables and Figures with letters.

Statistical analyses
To account for differences in test difficulty, we conducted mean, linear, and equipercentile
equating in ACTIVE and ADNI separately following similar procedures (Kolen & Brennan,
1995). We adapted weighted versions of each equating procedure to preserve aging, cohort,
and group differences using a two-stage approach. In the first stage, we selected an equating
sample from which to collect necessary characteristics of test distributions and derive the
equating algorithm. The goal of this stage was to define a sample of participants at each
follow-up visit whose memory ability was equivalent, such that any differences between
visits could be attributed to form differences and not aging or group differences. In the
second stage, we applied the equating algorithm to the full study sample in a way that
preserved attrition, aging, cohort, and group differences but eliminated form differences.
Equated scores were then compared visually using plots of mean recall over time and
cumulative probability plots and statistically using tests of equivalence of means in
reference groups as well as estimates of within-person change using latent growth models.

Stage 1: Defining the equating sample—An important assumption underlying any
application of equating is that the populations producing responses on differently scaled
tests at each time point must have the same underlying ability. To preserve differences in
memory performance attributable to attrition, normal aging, and training status or diagnostic
group, the equating sample was restricted in ACTIVE to control participants and in ADNI to
MCI patients, respectively. Although the healthy control group in ADNI was the preferred
reference group, the MCI group was used as the equating sample because by design ADNI
assessed them at all waves and they provided a better coverage of AVLT scores observed
across both healthy control and AD groups. Although the ADNI MCI group served as the
equating sample, we subsequently restandardized the entire ADNI sample to make the
healthy control group the reference sample by subtracting a model-implied mean difference
in equated performance at each study visit between healthy controls and other participants.
Equated performance at each time point was estimated from a weighted mixed effects model
of test scores on indicators for time. Annotated code is available from the authors upon
request.
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To adjust for attrition over time, we used inverse propensity score weights in the equating
sample to model the probability of dropout (Rosenbaum & Rubin, 1983). To preserve
normal aging effects when the equating algorithm was applied to the full sample, we further
restricted the equating sample to participant visits with ages that were common across all
visits (ages 72 to 90 in ACTIVE and 63 to 90 in ADNI). Because ACTIVE and ADNI
included long follow-up periods, we estimated analytic weights using a direct adjustment
procedure for age to ensure the same age distribution at each study visit. This removes aging
effects in the equating sample, but preserves aging in the full sample for individual
differences analyses using equated test scores.

After procedures in this first stage, the only differences in memory performance between
groups should be those attributable to form differences. These form differences are
addressed to varying degrees with equating algorithms, key elements of which were carried
over to be used on the full sample in the second stage.

Stage 2: Apply equating algorithms—Once equating samples were selected in
ACTIVE and ADNI, equating algorithms were derived and applied to the full samples.
These algorithms involve means at each study wave for mean equating (described earlier),
means and standard deviations for linear equating, and test score percentiles for
equipercentile equating. Linear equating was accomplished using the following formula:

Test2adjusted = (SDTest1 / SDTest2) * (Test2i – Test2) + Test1

Here, Test2adjusted is the linear-equated AVLT score for a follow-up Test2 visit for person i.
The raw Test2 distribution had mean Test2 and standard deviation SDTest2. The baseline test
had mean Test1 and standard deviation SDTest1. The means and deviations were identified in
the equating sample but, as for all equating methods, was applied to all participants in the
second stage of equating.

The goal of equipercentile equating is to define a non-parametric transformation of one
variable, in the present study a follow-up AVLT recall score, that returns the same
cumulative probability plot as the baseline test. Test scores at follow-up visits were scaled to
baseline scores with the same percentile rank. For example, a score of 47 on the baseline
AVLT in ACTIVE had a percentile rank of 43.7%. The first annual AVLT score with that
percentile ranking is 44, demonstrating that for this score range, the first annual test was
more difficult than the baseline test by 3 words, assuming individuals did not truly decline
after only 10 weeks. This example is over-simplified because the adaptation used for the
present study does accommodate normal age-related decline. Additionally, our
equipercentile equating algorithm used a loglinear function to smooth out equated score
distributions (Albano, 2011).

Evaluation of equating methods with visual displays—Line graphs showing mean
AVLT scores over time, or time trend plots, and cumulative probability plots were
constructed to compare equated scores. Equivalent tests should yield identical cumulative
probability plots in the reference sample. To account for data missing at random conditional
on indicators for time and group, estimated means from random effects models were used in
time trend plots. Cumulative probability plots show the cumulative proportion of the sample
(y-axis) who recalled up to a given number of words on the AVLT (x-axis).

Evaluation of equating methods with tests of mean equivalence over time—
The equivalence of test score means in reference groups (ACTIVE control, ADNI healthy
controls) was tested for raw, mean, linear, and equipercentile equated scores using χ2 tests
for nested confirmatory factor analysis models. In the first of two models for each equating
set, trial recall means at each study visit were constrained to be equal. In the second model,
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means were freely estimated. Twice the difference in the log likelihood follows a chi-
squared distribution. These tests are similar to repeated-measures ANOVA that tests for
differences in means over time, but they are less stringent because they do not make the
assumption that variances around the means are equal at each visit.

Evaluation of equating methods with models of within-person longitudinal
trajectories—We used multiple group latent growth models to model person-level changes
in recall over time (McArdle & Bell, 2000; Muthén, 1997; Muthén & Curran, 1997). Latent
factors represent initial or baseline status and trajectories of change over time. These
parameters are formed from observed scores at each study visit. We fixed factor loading
paths from the intercept to observed recall sum scores for each assessment at 1, and factor
loadings from the latent slope to values corresponding to a linear trajectory in time. In
ACTIVE, a second intercept factor was also included to accommodate immediate training
gains between baseline and post-training for trained participants (Bollen & Curran, 2006).
We constrained its factor loadings to 0 at the baseline visit and to 1 at follow-up visits and
its variance to 0.

Latent growth curve models and factor analyses were conducted using the Mplus (version
6.11) software package (Muthén & Muthén, 1998–2010). The models accommodate data
missing at random conditional on observed covariates (Donders, van der Heijden, Stijnen, &
Moons, 2006). Models using different equating methods were compared using standard
model fit statistics including the root mean square error of approximation (RMSEA; Steiger,
1989) and comparative fit index (CFI; Hu & Bentler, 1999). These fit statistics were of key
importance because they provide a measure of how much the model-estimated baseline
levels and trajectories fit to observed trajectories using each method of equating. An
RMSEA less than 0.05 and CFI greater than 0.95 are considered indicators of excellent
model fit (Hu & Bentler, 1999). Graphical displays and equating algorithms were generated
using Stata 12.0 (StataCorp, 2011) and R software packages (R Development Core Team,
2009).

Results
Table 1 shows baseline characteristics and AVLT test scores at each follow-up time for
ACTIVE and ADNI samples. ACTIVE participants were mostly white females aged 65–94
and cognitively intact at baseline. On average, ADNI participants were younger, more
highly educated, and a higher proportion of them were males compared to the ACTIVE
sample.

Evaluation of equating methods with visual displays
Mean recall over time for ACTIVE control and memory-trained participants under different
equating methods are plotted in each panel of Figure 1. Figure 2 provides similar
information using the ADNI MCI diagnostic group. In ACTIVE, plots of raw scores give the
impression that both groups start at about the same level at the baseline visit, decline up to
two years after training, and then recover inexplicably (Figure 1). In ADNI, the MCI group
zigzags in performance at every other visit by approximately 0.3 standard deviations. AVLT
test scores in Table 1 show that raw score trends in Figure 1 generalize to all intervention
and diagnostic groups. The effect of nonequivalent forms is demonstrated more rigorously
using cumulative probability plots in the Appendix (see Legends for a detailed
interpretation). They reveal different difficulty levels across the score distribution for
different waves: participants in both ACTIVE and ADNI performing at the 50th percentile
on follow-up tests had systematically lower scores than participants at the 50th percentile of
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the baseline test. Scores at the lowest and highest performance percentiles were more
comparable across visits.

Mean equating in ACTIVE produced more similar means, but overcompensated for
differences in forms at the third and fifth annual visits (Figure 1). Mean equating in ADNI
produced a plot of a declining trajectory, although some residual form differences remained
at the 24 month visit (Figure 2). Cumulative probability plots for mean equating did not
overlap as well as for other equating methods (Appendix).

Linear equating, like mean equating, revealed boosted performance at one year followed by
decline in ACTIVE but also suggests improvement at the immediate post-training visit and a
plateau in performance after the third annual visit (Figure 1). Linear equating in ADNI
nearly eliminated any indication of decline in the mean level of performance over time,
which should be expected in a sample of MCI patients.

Equipercentile equating produced the smoothest trajectories in ACTIVE, with an expected
pre-post training gain and age-related cognitive decline (Figure 1). In ADNI, the wave
pattern over time was successfully removed while an average decline of 1.8 AVLT words
through three years was still apparent (Figure 2).

Although the graphical displays demonstrate the superiority of equating methods in relation
to raw scores, they also indicate residual imprecision of these methods: in ACTIVE, the
second visit was a post-test assessment only 10 weeks after the first. The equating methods
should theoretically produce equal means between the baseline and immediate post-test
assessments because there was almost no attrition or aging in the control group. Mean
equating does not because of small residual form differences that persist after equating.
Linear and equipercentile equating produce means at baseline and immediate post-training
in ACTIVE very close to each other (Figure 1).

Cumulative probability plots are shown in the Appendix. Plots for equated scores
demonstrate excellent overlap, especially for equipercentile equating in ACTIVE (Figure
A1) and linear and equipercentile equating in ADNI (Figure A2). Thus, equipercentile
equating visually demonstrates the best adjustment for learning effects and smoothes out
mean trajectories.

Evaluation of equating methods with tests of mean equivalence over time
Negligible change over time was assumed in the ADNI healthy control and ACTIVE control
groups. In ADNI, raw (χ2=14.8, df=4, p=0.001) and mean equating (χ2=16.7, df=4,
p<0.001) produced significantly different means over time, but linear (χ2=6.8, df=5,
p=0.18) and equipercentile equating (χ2=7.6, df=4, p=0.09) produced statistically equivalent
means over time in the healthy control group. In the ACTIVE control group, there were
significant differences in raw AVLT recall sum score means (χ2=45.3, df=5, p<0.001),
mean-equated means (χ2=58.2, df=5, p<0.001), linear-equated means (χ2=63.6, df=5,
p<0.001), and equipercentile-equated means (χ2=31.9, df=5, p<0.001).

By the fifth year visit, n=749 of 1,401 (53%) participants were still in the study sample and
attrition did not differ by intervention group. Follow-up in ADNI after three years was
higher (n=591/819, 72%). Our propensity adjustment for sample attrition, which had a larger
effect in the ACTIVE study, is likely responsible for the lack of equivalence of
equipercentile-equated means, which as shown in Figure 1 demonstrates a smooth declining
trajectory.

Gross et al. Page 7

J Clin Exp Neuropsychol. Author manuscript; available in PMC 2013 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Evaluation of equating methods with models of within-person longitudinal trajectories
Results from ACTIVE and ADNI are shown in Tables 2 and 3, respectively, for raw, mean,
linear, and equipercentile-equated scores. Means and variances of growth parameters in the
Tables characterize level and variability in within-person trajectory of AVLT performance
over time. An immediate contrast is in poor RMSEA and CFI model fits using raw AVLT
scores, shown in Tables 2 and 3, that improve dramatically given any equating method but
are best after equipercentile equating. The model with equipercentile-equated AVLT scores
in ADNI fit perfectly with the data (RMSEA: 0.0; CFI=1.0).

Besides fit statistics, three key substantive inferences change depending on the type of
equating used. First, using raw scores in ACTIVE, the immediate training “boost” appears to
be in the negative direction for memory-trained participants (pre-post change: −5.0 words)
but flips to a positive direction after equating (Table 2). Second, in both ACTIVE and
ADNI, annual memory decline in all groups, as indicated by slope means, is overestimated
or underestimated to varying degrees using raw scores, while equated scores show less
annual decline in ACTIVE control participants (Table 2) and ADNI MCI and AD
participants (Table 3). A third substantive change in inferences is the correlation between
initial recall and aging trajectory is overestimated using raw scores relative to equated
scores. Based on model fits and substantive knowledge of trajectories of cognitive aging,
latent growth models suggest differences in test difficulty are handled best with either linear
or equipercentile equating.

Discussion
The present study investigated different methods of equating AVLT word list versions in
longitudinal aging research. We adapted accepted test equating methods using a novel
approach to the study of longitudinal cognitive aging. These methods are broadly applicable
to within- and between-group comparisons of test performance data in both research and
clinical settings. Equipercentile equating uses observed percentiles of a distribution, and is a
more generalizeable non-parametric transformation than linear equating, which assumes
normally distributed variables whose distributions are fully characterized by a mean and
standard deviation. Graphical displays clearly show equipercentile equating accommodates
tests that are more difficult than the reference test at different percentiles of performance,
and models of within-person change show it also satisfactorily adjusts for practice, or retest,
effects. Importantly, an implicit assumption of mean, linear, or equipercentile equating is
that the populations producing two sets of scores, whether they are the same people followed
over time or two different groups, have the same underlying ability. Because this may not be
a valid assumption for older adults followed for years, the present study described equating
procedures that used age standardization to preserve aging effects, propensity weighting to
adjust for attrition, and restriction to preserve group differences due to diagnostic and
intervention group membership.

ACTIVE is the largest study of cognitive training among older adults to date, and ADNI is a
$60 million public-private partnership that is being used to stimulate innovative methods for
evaluating progression of AD in clinical trials. The roller coaster trajectory in ACTIVE and
waves in ADNI are attributable to nonequivalent AVLT forms used at different study visits.
The ACTIVE study cycled through four versions of the AVLT until repeating the baseline
list at the third annual follow-up. ADNI cycled between two AVLT lists, which explains the
wave-like pattern. These method artifacts may be present in other settings. Indeed, important
form differences are seen for the Hopkins Verbal Learning Test (Brandt & Benedict, 2001)
in the ACTIVE study (data not shown) and for the ADAS-Cog word list-learning task in
ADNI (Crane et al., under review). Similar plots and statistics presented in this study can be
replicated using these measures. The reason these studies used alternate word lists was to
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reduce practice effects, but in doing so they introduced complications for making inferences
about cognitive performance. All ACTIVE publications involving comparisons of within-
person memory performance over time use equipercentile-equated scores (e.g., Gross et al.,
2010a, 2010b, 2011; Parisi et al., 2011). Aside from work in ACTIVE, we are not aware of
equipercentile equating being used in longitudinal settings with cognitive performance data.
We believe the field can benefit by being aware of and adopting these equating methods. To
date, most published studies that have used longitudinal neuropsychological data from
ADNI have not examined the AVLT from visits in which different AVLT forms were
administered (e.g., Hinrichs et al., 2011, Murphy et al., 2010, Petersen et al., 2010). In other
studies using ADNI data, word lists are treated as components in composite measures (e.g.,
Beckett et al., 2010), but results of some studies are potentially susceptible to nonequivalent
form differences (e.g., Carmichael et al., 2010; Okonkwo et al., 2011). Future work in ADNI
should pay close attention to form differences on the AVLT and ADAS-Cog.

Equating methods are powerful tools, but their use comes with several caveats. First,
measures should not be equated that have different meanings. For example, it is statistically
possible to equate short-delay and long-delay recall trials, but the trials measure qualitatively
different constructs. Relatedly, equating methods can equate test scores but do not address
qualitative differences in behaviors, such as different strategies used on more difficult tests
at different measurement occasions (Crawford et al., 1989; Light, 1991). A second limitation
of equating is that populations that produce two sets of test scores must have the same
underlying ability to be validly equated. This is an easy assumption to make when the same
cognitively normal persons are being retested over time, but may not be achievable (or
measurable) in all situations. The application of equating methods in the present study
would have been fairly straightforward if we had assumed this. However, in studies with
several years of longitudinal follow-up such as those in the present study, one can divide the
equating task into two stages as we have done: identify a subset of observations as an
equating sample in which underlying abilities can be assumed to be the same over time, then
apply the equating algorithm derived in that sample to the full sample. A third limitation is
that, in longitudinal settings, equating procedures assume the magnitude of retest effects is
exchangeable across groups. This assumption may be unreasonable when comparing
patients with different clinical syndromes or diseases, such as delirium or amnesia. Fourth, a
limitation specific to equipercentile equating is that the outcome should be continuously
distributed and have enough range to reliably distinguish different quantiles. Applying
equipercentile equating to individual AVLT trial recall scores, for example, would be more
challenging. This is not a concern in linear equating, which presumes a normally distributed
outcome. Another limitation of this study is that we assumed that the underlying trajectory
of change in AVLT performance is in fact linear over time. We used this assumption in
growth models to assess the different equating methods. Previous work in ACTIVE has
demonstrated memory follows a linear pace of change following the immediate post-training
visit (Gross & Rebok, 2011; Parisi et al., 2011). The assumption of linear change in
cognitive function among older adults is a commonly accepted fact in many other studies of
older adults (e.g., Proust et al., 2006). Nevertheless, because true change is a latent and
unobserved phenomenon, whether the AVLT in ACTIVE and ADNI in fact shows linear
decline over time is uncertain. A final potential limitation specific to the ACTIVE study is
that modifications in test administration of the AVLT from standard clinical administration
limit the generalizability of findings from these data to clinical settings. However, our
purpose in the present study was to illustrate equating methods and not to make inferences
about training effects on memory function in ACTIVE, which have been reported elsewhere
(e.g., Gross & Rebok, 2011; Parisi et al., 2011; Willis et al., 2006).

Mean, linear, and equipercentile equating, based in classical test theory, are not the only
equating methods. Item response theory (IRT) methods can be used if populations producing
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two sets of scores differ in the underlying ability being measured, but require some items in
common between the tests to anchor the two groups with respect to each other (Livingston,
2004). Counterbalancing is a method of adjusting for form differences in the study design
before analysis, but is useful only for making inferences about group differences and not
within-person change (Cozby, 2009).

Although equipercentile equating proved to be ideal for the applications of the present study,
the same procedure may not apply in all cases. Mean equating is intuitive and produces the
same grand mean on two tests, but it does not change an individual’s absolute difference
from the mean. Thus, mean equating can lead to impossible or improbable scores among
some individuals; for example, if two tests means are 60 and 50, and the maximum possible
value is 100, then an individual scoring a 95 on the second test will have a mean-equated
score of 105. Similar to mean equating, a limitation of linear equating is that extreme scores
on a new test may yield equated scores outside the possible range of values in the original
test. This is not a concern in equipercentile equating. The principal advantage of
equipercentile equating over linear equating is that it does not assume the reference test is
normally distributed, but there are cases in which that assumption is viable. The AVLT in
ACTIVE and ADNI was approximately normally distributed, which explains the similarities
in findings between linear and equipercentile equating.

Clinically, a patient’s test scores can only be interpreted using appropriate reference norms,
but normative values are unhelpful if normative test scores come from a different population
from which the patient came. Tests shown to be equivalent in certain groups defined by
education, sex, or age may not be equivalent in other subpopulations (Ivnik et al., 1990). For
this reason, Schmidt (2004) reports AVLT word lists that produce similar scores for older
adults in addition to which lists produce similar scores to other lists. Equating techniques
require data from cohorts of individuals to carry out, so it would not be possible to perform
similar analyses for any particular person being evaluated clinically. Nevertheless, important
differences in form difficulty should be kept in mind, and if different forms are used across
time, this should be documented. Data from studies similar to the one presented here may be
useful to assist the practitioner in understanding whether change has occurred, and if so, its
likely direction and magnitude. Ignoring differences in difficulty across forms in clinical
settings could lead to unnecessary confusion at least and incorrect conclusions or diagnoses
at worst. Finally, it is important to acknowledge that equated data contribute to only a small
part of the clinical picture. A clinician's judgment of change will depend on multiple test
results and findings, the clinical history, non-quantitative observations about the patient's
abilities (Lezak et al., 2004), and on his or her expert judgment and prior experience
(Mitrushina et al., 2005).

In conclusion, equating challenges are pervasive but often unrecognized in research studies
and clinical practice. When prior knowledge about form equivalence is unavailable or
unclear when planning a study, we recommend that researchers use the same form and apply
established methods to control for practice effects (e.g., Ferrer et al., 2004, 2005; Rabbitt et
al., 2004; Salthouse et al., 2004, 2008, 2010). Thorough data exploration is necessary both to
recognize the need for equating and to understand the relative merits of different equating
procedures. The replication of findings across two cohorts, utilizing special weighting
adaptations, highlights the versatility and generalizability of the equating methods used in
the present study.

The method of equipercentile equating may have broad applications in both clinical and
research settings to enhance the ability to use nonequivalent test forms, to evaluate change
over time, to quantify retest effects, and to align scores on different tests of the same
construct (such as identifying cutpoints for dementia on cognitive screening tests).
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Equipercentile equating is a well-accepted tool for comparing psychiatric diagnostic
instruments (Furukawa et al., 2009; Leucht et al., 2005; Montoya et al., 2011; Noonan et al.,
2011; Schennach-Wolff et al., 2010) and for identifying clinically relevant benchmarks and
crosswalks on neuropsychological tests (Fong et al., 2009, 2011). The procedure represents
a robust and innovative approach to better understanding longitudinal changes over time.
The present study demonstrated an innovative application of equating methods for
longitudinal settings in which participants or patients are followed over long periods of time.
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Appendix

Figure A1.
Parallel but Nonequivalent Forms: Cumulative Probability Plots of Raw and Equated AVLT
Scores in ACTIVE
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Legend. Cumulative probability plots overlay distributions of raw or equated AVLT recall
sum scores among control participants from each ACTIVE study visit (n=698). Plots for
each visit are not labeled clearly because the purpose of this diagnostic plot is to assess
degree of overlap of each visit’s cumulative distribution; visits are plotted in the following
colors (baseline: gray; immediate post-training: black; first annual: red; second annual: blue;
third annual: green; fifth annual: orange). Results suggest linear and equipercentile equating
produces more overlap than other methods. As an example of how to interpret this plot, in
the raw scores panel, the blue line shows that about 30% of ACTIVE control participants
recalled up to 39 words in year 1, and 100% of participants at all waves recalled 75 words or
less (the test's ceiling).

Figure A2.
Parallel but Nonequivalent Forms: Cumulative Probability Plots of Raw and Equated AVLT
Scores in ADNI
Legend. Cumulative probability plots overlay distributions of raw or equated AVLT recall
sum scores among MCI patients from each ADNI study visit (n=397). Plots for each visit
are not labeled labeled clearly because the purpose of this diagnostic plot is to assess degree
of overlap of each visit’s cumulative distribution; visits are plotted in the following colors
(baseline: black; 6 month: red; 12 month: blue; 18 month: green; 24 month: orange; 30
month: yellow; 36 month: gray). Results suggest equipercentile equating produces more
overlap than other methods. As an example of how to interpret this plot, in the raw scores
panel, the gray line shows that about 10% of ADNI MCI participants recalled up to 12
words at 36 months, and 100% of participants at all waves recalled 75 words or less (the
test's ceiling).
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Figure 1.
Parallel but Nonequivalent Forms: Plots of Raw and Equated AVLT Scores Over Time in
ACTIVE (N=1,401)
Legend. Time trend plots present means of AVLT scores by study visit in the ACTIVE
control and memory-trained groups. Means in the time trend plots are adjusted for selective
attrition using random effects models that assume data are missing at random conditional on
indicators for time and group. Letters correspond to AVLT list versions administered at a
visit: in ACTIVE, the baseline and year 3, and post-training and year 5, study visits used the
same AVLT form.
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Figure 2.
Parallel but Nonequivalent Forms: Plots of Raw and Equated AVLT Scores Over Time in
ADNI MCI Participants (N=397)
Legend. Time trend plots present means of AVLT scores by study visit in the ADNI MCI
group. Means in the time trend plots are adjusted for selective attrition using random effects
models that assume data are missing at random conditional on indicators for time and group.
Letters correspond to AVLT list versions administered at a visit: in ADNI, the baseline, 12
month, and 24 month visits used the same form and the 6 month, 18 month, and 36 month
visits used a different form.
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Table 2

AVLT Growth Parameters Using Different Equating Methods: Results from ACTIVE (N=1,401)

Raw scores Equating method

Mean Linear Equipercentile

Estimate
(SE)

Estimate
(SE)

Estimate
(SE)

Estimate (SE)

Means

 Control group

  Baseline (initial level) 47.0 (0.4) 48.1 (0.4) 48.1 (0.4) 47.9 (0.4)

  Immediated pre-post training change 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

  Slope −0.5 (0.1) −0.9 (0.1) −0.9 (0.1) −0.7 (0.1)

 Memory-trained group

  Baseline (initial level) 48.9 (0.4) 48.9 (0.4) 48.9 (0.4) 48.9 (0.4)

  Immediated pre-post training change −5.0 (1.3) 5.7 (1.3) 5.9 (1.3) 4.1 (1.2)

  Slope 0.0 (0.1) −0.8 (0.1) −0.8 (0.1) −0.6 (0.1)

 Group differences (Memory trained - Control)

  Baseline (initial level) 1.9 (0.6) 0.8 (0.6) 0.8 (0.6) 0.9 (0.5)

  Immediated pre-post training change −5.0 (1.3) 5.7 (1.3) 5.9 (1.3) 4.1 (1.2)

  Slope 0.4 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1)

Variances

 Baseline (initial level) 91.5 (5.5) 91.6 (5.4) 93.3 (5.4) 89.0 (5.3)

 Immediated pre-post training change 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

 Slope 0.4 (0.2) 0.6 (0.2) 0.6 (0.2) 0.5 (0.2)

Correlation (Baseline, Slope) 0.2 (0.1) 0.1 (0.1) 0.1 (0.1) 0.0 (0.1)

Model fit statistics

 RMSEA 0.148 0.051 0.058 0.023

 CFI 0.889 0.987 0.983 0.997

Legend. Multiple group latent growth models in ACTIVE of raw AVLT recall and mean, linear, and equipercentile equated scores. Results suggest
equipercentile equated scores fit the hypothesized model best and that estimates of pre-post training change, long-term change, and correlation
between initial level and slope are sensitive to the equating method used. Models assumed a linear function for time and accommodated nonlinear
change in trajectory between baseline and post-training in the memory-trained group. The slope terms reflect annual change in AVLT recall, in
units of total words recalled. The pre-post change parameter’s mean in the control group and variance in both groups were fixed to 0 to identify the
model.
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Table 3

AVLT Growth Parameters Using Different Equating Methods: Results from ADNI (N=819)

Raw scores Equating method

Mean Linear Equipercentile

Estimate
(SE)

Estimate
(SE)

Estimate
(SE)

Estimate (SE)

Means

 Healthy control group

  Baseline (initial level) 42.4 (0.6) 44.5 (0.6) 43.2 (0.6) 43.3 (0.6)

  Slope 0.8 (0.3) 0.0 (0.3) 0.2 (0.2) −0.2 (0.2)

 Mild cognitive impairment (MCI) group

  Baseline (initial level) 30.2 (0.4) 32.3 (0.4) 30.7 (0.4) 30.8 (0.4)

  Slope −1.4 (0.2) −2.2 (0.2) −0.6 (0.2) −0.9 (0.2)

 Alzheimer’s disease (AD) group

  Baseline (initial level) 22.6 (0.5) 24.7 (0.5) 23.0 (0.5) 23.2 (0.5)

  Slope −3.2 (0.3) −4.2 (0.3) −1.4 (0.3) −1.7 (0.3)

 Group differences (MCI - AD)

  Baseline (initial level) 7.6 (0.7) 7.6 (0.7) 7.7 (0.7) 7.7 (0.7)

  Slope 1.8 (0.4) 1.9 (0.4) 0.9 (0.3) 0.8 (0.3)

Variances

 Initial level 59.4 (8.1) 61.9 (7.6) 65.9 (7.7) 65.5 (8.0)

 Slope −0.7 (2.7) 4.6 (1.4) 2.9 (1.1) 3.5 (1.1)

Correlation (Baseline, Slope) 0.3 (0.1) 0.3 (0.1) −0.1 (0.1) 0.0 (0.1)

Model fit statistics

 RMSEA 0.12 0.07 0.06 0.00

 CFI 0.95 0.98 0.99 1.00

Legend. Multiple group latent growth models in ADNI of raw AVLT recall and mean, linear, and equipercentile equated scores. Results suggest
equipercentile equated scores fit the hypothesized model best and that estimates of pre-post training change, long-term change, and correlation
between initial level and slope are sensitive to the equating method used. Models assumed a linear function for time. The slope terms reflect annual
change in AVLT recall, in units of total words recalled. Latent growth parameter variances were held constant over diagnostic group.
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