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Populations of marine species wax and wane
over time and space, reflecting environmental
forcing, biological dynamics, and in some
cases human perturbations, such as fishing,
habitat destruction, and climate change (1).
The growing availability of multidecadal ob-
servational records opens new windows on
how ocean ecosystems function, but the
analysis and interpretation of such long
time-series also requires new mathematical
tools and conceptual models (2). Population
time-series often show strong variations at
decadal time-scales, and a central question is
whether this arises from nonlinear biological
processes or simply tracking of external
physical variability (3). Borrowing from
climate research, Di Lorenzo and Ohman
(4) develop a new approach for deciphering
links between physical forcing and biological
response, using as a test case time-series of
marine zooplankton abundances off the
coast of California.
Upwelling favorable winds bring cold,

nutrient-rich water to the surface near the
coast, supporting the highly productive Cali-
fornia Current System. The California Co-
operative Oceanic Fisheries Investigations
(www.calcofi.org) and California Current
Ecosystem Long-Term Ecological Research
site (cce.lternet.edu) have sampled a grid of
coastal and open-ocean stations since 1950,
one of the longest comprehensive marine
ecological datasets. Di Lorenzo and Ohman
(4) examine two krill species, Nyctiphanes
simplex and Euphausia pacifica, large plank-
tonic crustaceans that feed on smaller phy-
toplankton and microzooplankton, export
sinking fecal pellets to depth, and are preyed
upon by higher trophic level organisms, fish,
marine mammals, and seabirds (Fig. 1).
E. pacifica is a resident species in the Cali-
fornia Current that exhibits substantial in-
terannual variability tied to rates of coastal
upwelling. In contrast, N. simplex is a sub-
tropical species largely found south of the
California Current System; multiyear var-
iations in its abundance off California ap-
pear to reflect regional-scale poleward trans-
port (5).

Ecological metrics often are correlated with
one or more large-scale climate indices, such
as El Niño-Southern Oscillation or the Pacific
Decadal Oscillation (PDO) (6). Standard
techniques can be used to test the statistical
significance of such cross-correlations (7),
but this approach implicitly assumes a linear
relationship between the physical forcing
and biological response. In fact, populations
of organisms have an inherent time-scale,
roughly a generation or so, and biological
responses to environmental variability should
reflect the cumulative effects over this time-
scale (8). Unlike many short-lived plank-
tonic species, krill can live for months to
several years, setting up the possibility for
interesting dynamics with sub- to interan-
nual climate forcing.
Similar temporal inertia is common to

many geophysical systems, where low-
frequency signals can emerge naturally from
stochastic or random forcing. Expressed
mathematically, the response of a slowly-
evolving variable y(t) depends on the time-
integral of a forcing variable f(t):
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where τ is the time-scale of y, and y and f
are anomalies from some mean state. The
damping term y/τ modulates the effective
integration window for the forcing and
keeps the system stable. The integral trans-
forms high-frequency variability in the forc-
ing f(t) into a time-lagged, smoothly varying
response in y(t). Consider a simple illustra-
tion in Fig. 1, Right. Monthly atmospheric
weather variations are assumed to be purely
random, white noise (black line with ap-
proximately constant power at all frequen-
cies); the resulting ocean physical response
is red-shifted (blue line with reduced power
at high frequencies and elevated power at
low frequencies) (9). The stochastic forc-
ing-response model generates broad-band,
physical red noise spanning from days to
decades. If the model in Eq. 1 holds, then

the response variable should be better cor-
related with the integral of forcing rather
than raw-forcing time-series.
Using just such a test, Di Lorenzo and

Ohman (4) argue that they detect the in-
fluence of physical and biological inertia,
as well as remote forcing, in the subtropical
N. simplex zooplankton time-series. The
strength of the Aleutian Low atmospheric
pressure index reflects North Pacific wind
patterns, which in turn affect basin-scale sea
surface temperatures and ocean circulation
encapsulated in the PDO index. Thus, a
double integration is required: first from the
Aleutian Low index to a model estimate of
the PDO; the second from the PDO to an
estimate of zooplankton trends. Similar to
the model results in Fig. 1, Right, each in-
tegration step shifts more of the variance to
lower frequencies when the biological time-
scale τbio is longer than the ocean physical
timescale τocean. In Di Lorenzo and Ohman
(4) the resulting modeled zooplankton
time-series is well correlated with the actual
N. simplex data, better than any correlation
with direct or time-filtered physical cli-
mate variables.
This finding brings us back to the vigorous

debate in the literature on whether low-
frequency biological variability reflects exter-
nal forcing or internal ecological dynamics
(or likely some combination). In a seminal
paper, Hare and Mantua (10) argue that
North Pacific climate and ecological met-
rics undergo relatively abrupt transitions
from one state to another on decadal time-
scales, referred to as regime shifts. Subsequent
analysis suggests a simpler explanation for
physical variations like the PDO; patterns
arise by chance because of the integration
of random weather events (3, 11). To show
the presence of more complicated nonlinear
regime shifts, one must first reject the null
hypothesis of stochastic red-noise, as in the
blue ocean physics line in Fig. 1, Right.
Di Lorenzo and Ohman (4) go one step

further, showing that smoothly varying
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decadal patterns in a coastal zooplankton
population can be explained by a “double-
integration” stochastic process model; white-
noise atmospheric weather produces red-
noise in ocean physics that in turn produces
even redder (lower frequency) biological
trends. The further shift to lower frequen-
cies in the biological time series arises be-
cause of the relatively long lifespan for krill
(months to years) and would not hold for
all zooplankton, such as the tiny microzoo-
plankton that may only live for a few days.
Not all biological time-series arise so simply
(or randomly), and many do indeed ex-
hibit more interesting nonlinear behavior
(3). Linear tracking of environmental var-
iability, such as shown for N. simplex, may
be a special case occurring when organism
lifespans approximately match physical forc-
ing time scales (8). Nevertheless the double-
integration model presented in Di Lorenzo
and Ohman (4) offers a straightforward and
linear baseline for unraveling the growing
number of long ecological data records (2).
Understanding the role of random versus

nonlinear deterministic processes has impor-
tant implications for marine resource man-
agement (12). Statistical indicators can be de-
signed for some nonlinear systems to forecast
imminent abrupt transitions (13), perhaps
forewarnings of dramatic climate change or
anthropogenic damage. In contrast, purely
random processes have limited inherent
predictability (14).
The stochastic integration model (Eq.

1) predicts a temporal lag between climate

forcing and population trends that would
hinder detection of ecological transitions;
faster responding metrics—recruitment,
physiology, reproduction—should be ex-
amined where possible. Climate-driven
fluctuations in individual zooplankton pop-
ulations also shift wholescale planktonic
food-web structure and dynamics (15). Fi-
nally, climate variations alter spatial patterns
as well as temporal trends: for example,
large-scale reorganizations of zooplankton
in the North Atlantic (16) and poleward
displacements of marine species along the
West Antarctic Peninsula (17). Thus, time-

series need to be augmented by spatial sur-
veying of large-scale population distribu-
tions (18) and exploiting new capabilities
with autonomous robotic instruments and
remote sensing (17). Together, enhanced ob-
servations and improved theory and model-
ing may help disentangle the potential wide
range of abrupt and continuous ecosystem
responses to subannual to decadal, stochastic
ocean physical variability (19).
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Fig. 1. (Left) A photo of the dominant species of Southern Ocean krill, Euphausia superba, similar to the crustacean zooplankton analyzed by Di Lorenzo and Ohman (4) (Photo
courtesy of A. McDonnell, University of Alaska, Fairbanks, AK). (Right) Spectral analysis of results from a linear stochastic model (Eq. 1), where low-frequency responses in ocean
physics and biology can be generated by integrating high-frequency atmospheric forcing over time (see text for more details).
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