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Abstract
Almost all primary transcripts in higher eukaryotes undergo several splicing events and alternative
splicing is a major factor in generating proteomic diversity. Thus, the spliceosome, the
ribonucleoprotein assembly that performs splicing, is a highly critical cellular machine and as
expected, a very complex one. Indeed, the spliceosome is one of the largest, if not the largest,
molecular machine in the cell with over 150 different components in human. A large fraction of
the spliceosomal proteome is organized into ribonucleoprotein particles (snRNPs) by associating
with one of the small nuclear RNAs (snRNAs), and the function of many spliceosomal proteins
revolve around their association or interaction with the spliceosomal RNAs or the substrate pre-
messenger RNAs. In addition to the complex web of protein-RNA interactions, an equally
complex network of protein-protein interactions exists in the spliceosome which includes a
number of large, conserved proteins with critical functions in the spliceosomal catalytic core.
These include the largest conserved nuclear protein, Prp8, which plays a critical role in
spliceosomal function in a hitherto unknown manner. Taken together, the large spliceosomal
proteome and its dynamic nature has made it a highly challenging system to study, and at the same
time, provides an exciting example of the evolution of a proteome around a backbone of
primordial RNAs likely dating from the RNA World.
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Introduction
The last decade has witnessed major advances in our understanding of spliceosomal function
and has heightened our appreciation of its daunting complexity. Indeed, the spliceosome is a
very large ribonucleoprotein assembly that performs the splicing reaction in eukaryotes with
over 150 different components in human [1–3]. In addition, it is also highly dynamic and
undergoes several major conformational rearrangements during its complicated assembly
process. On the other hand, its critical function in the expression of almost all eukaryotic
genes, which often undergo several splicing events, and its role in generating proteomic
diversity via alternative splicing, highlights the need for functional accuracy. While the role
of spliceosomal components, their mode of interaction and function, and the way the
spliceosome ensures splicing fidelity are largely unknown, recent progress has started to
provide insights into the function of this highly interesting and complex cellular machine.
This review is by no means a comprehensive account of the function of the spliceosomal
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proteome, but rather attempts to provide a brief overview of our knowledge of the major
spliceosomal proteome as a whole, and subsequently focus on a small number of exciting
new discoveries on the role of several proteins whose function directly impacts the
spliceosomal active site.

The evolution of a large RNP enzyme
The close mechanistic similarities between the spliceosome and group II self-splicing
introns, RNA enzymes found in all three kingdoms of life (Fig. 1), has raised the possibility
that the two may be evolutionarily related [4,5]. Both systems are complex enzymes which
catalyze a mechanistically identical two-step splicing reaction [6,7]. In both systems, the
splicing reaction occurs in two steps entailing SN2-type transesterification reactions. In the
first step, the 2′OH of the conserved branch site adenosine attacks the 5′ splice site and
generates a free 5′ exon and a lariat intron that is still attached to the 3′ exon. In the second
step, the 3′OH of the free 5′ exon launches an attach on the 3′ splice site, leading to a
transesterification reaction that ligates the two exons together [1–5]. In addition to these
mechanistic similarities, the snRNAs, the RNA components of the spliceosome, closely
resemble a number of critical RNA domains of group II self-splicing introns. The major
spliceosomes, which are the focus of this review, contain five snRNAs, named U1, U2, U4,
U5 and U6. All except U4 contain functional counterparts in group II introns (Fig. 1, 2), and
sequence swapping experiments have indicated the functional equivalence of U5 and U6
snRNAs with the EBS1 and DV elements in group II introns [6]. In the case of U6 snRNA,
the similarity to the corresponding group II intron domain extends to both the primary
sequence and the secondary structure, in addition to the extensive functional similarities
(Fig. 1, 2) [4,6,7]. In addition, the snRNAs are highly conserved, and even point mutations
in them, especially in the case of U6, are often incompatible with splicing [6,7]. These have
led to the hypothesis that the spliceosomes may have evolved from group II intron-like
ancestors and thus the snRNAs may be direct descendants of group II introns [8,9].

An extensive body of data support this possibility [6,10]. The snRNAs play critical roles in
splicing by recognition of the 5′ splice site and branch site through basepairing (U1 and
U2), regulating the catalytic activity of the spliceosome by basepairing to a catalytically
critical snRNA (U4), binding to the reacting groups of the splicing reaction and juxtaposing
them (U2 and U6), maintaining the positioning of the splicing intermediates for the second
step of splicing (U5), keeping the reactive groups in a constrained conformation required for
optimal catalysis (U2) and binding of functionally critical metal ions (U6)[4,6,7,10]. In the
spliceosomal catalytic core, three snRNAs, U2, U5 and U6, maintain close contact with the
splice sites and branch site and indeed, the first step of splicing occurs in the vicinity of an
evolutionarily invariant sequence in U6, which may form part of the spliceosomal active site
[6,11,12]. Finally, in vitro synthesized, protein-free U2 and U6 snRNAs can catalyze a two-
step splicing reaction on small RNA oligonucleotides which is indistinguishable from the
group II intron splicing and the second step of spliceosomal catalysis [13].

These evidence suggest that the snRNAs play a central role in many aspects of spliceosomal
function. Comparing the size of snRNAs with the much larger group II introns raises the
possibility that many group II intron domains are replaced by proteins in the spliceosomes
during evolution, giving rise to the modern ribonucleoprotein eukaryotic splicing machines.
While no one-to-one tally yet exists, it is easily possible to identify proteins which perform a
function mediated by RNA elements in group II introns. For example, several U2-associated
proteins function in initiating and stabilizing the U2 snRNA-branch site interaction (Fig. 2,
see below). In group II introns, the U2 equivalent is covalently linked to the branch site via a
hyperstable hairpin loop, which ensures the formation and stability of their interaction (Fig.
1). From this evolutionarily perspective, it is not surprising that a large fraction of
spliceosomal proteins exist in association with an snRNA, often assisting it in its function
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(Fig. 3). However, as detailed below, many spliceosomal proteins are involved in regulatory
functions not required in the context of a self-splicing intron and are likely more recent
additions to the spliceosomal protein complement.

How many spliceosomal proteins?
It is thought that the last common ancestor of eukaryotes had a highly evolved, fully
functional spliceosome which resembled those found in modern eukaryotes. Although it
likely contained significantly fewer components compared to even the smallest of modern
spliceosomes, data indicate that most of the key components were present in even the
earliest versions of the spliceosomes [14,15]. Indeed, a subset of the spliceosomal proteome
shows a significant level of conservation among different eukaryotic species, with a number
of spliceosomal protein being among the most conserved cellular proteins.

The study of spliceosomal proteome is complicated by the dynamic nature of the
spliceosome, which undergoes a large number of compositional rearrangements each
involving recruitment and discard of several proteins [Ref. 1 and see below]. Initial attempts
using a mixture of spliceosomes at various stages of assembly placed the total number of
spliceosomal proteins in a range of 150–300 distinct proteins [16,17]. More recent analyses,
however, have taken advantage of the technical advances allowing the purification of
individual spliceosomal complexes to near homogeneity, resulting in much more
informative proteomic pictures [18–24]. Depending on the species, the latest studies indicate
that the spliceosomes contain between nearly 80 proteins in the budding yeast to ~ 170
different proteins in human, with clear counterparts in human for almost all yeast
spliceosomal proteins [1].

The protein complement of snRNPs and the non-snRNP complexes
1) The U1 snRNP and recognition of the 5′ splice site—The association of U1
snRNP with the 5′ splice site is one of the earliest events in the spliceosomal assembly
pathway [1,3]. The recognition and binding of 5′ splice site is mediated both by basepairing
of U1 snRNA to the 5′ splice site and through an intricate web of interactions between the
pre-mRNA and U1C, a U1-specific protein [25]. U1, similar to all other spliceosomal
snRNAs except U6, contains seven Sm proteins, namely B/B′, D1, D2, D3, E, F and G,
which form a ring structure with a hole in the middle, through which a U-rich sequence in
the snRNA passes [26–29]. In addition, it contains three U1-specific proteins, namely the
RNA-recognition motif (RRM)-containing U1A and U1-70K and the zinc-finger domain
containing U1C. The structure of an almost complete U1 snRNP particle, which contains the
U1 snRNA and the ten associated proteins, has been determined by both cryo-EM and X-ray
crystallography at 5.5 A resolution [30,31]. In addition, the structure of several of its
components including U1A, U1C and the Sm ring either in part or in their entirety has been
determined at higher resolution [for a review, see Ref. 32], which allowed a detailed
interpretation of the low resolution structure of the entire particle. Importantly, this high-
resolution structure indicated the presence of a number of interactions between U1C and the
nucleotides at the 5′ end of U1, which basepair to the 5′ splice site, thus providing a
structural basis for the dual RNA-protein recognition of the 5′ splice site [31].

2) The U2 snRNP and recognition of the branch site and 3′ splice site—Similar
to the binding of U1 to the 5′ splice site, the recognition and interaction of U2 snRNP with
the branch site and 3′ splice site is one of the earliest events in the spliceosomal assembly
pathway (Fig. 4) [33,34]. U2 was initially described as a 12S particle consisting of a set of
seven Sm proteins and only two additional proteins, the U2 specific proteins A′ and B″.
The functionally active 17S U2 snRNP, however, contains several additional proteins
including SF3a (itself composed of SF3a 120, 66 and 60 subunits) and SF3b (which contains
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SF3b155, 145, 130, 49, 14a, 14b and 10 subunits) [1,34]. The RNA-protein interactions
within the 17S particle were studied by Dybkov and colleagues [35], which indicated a
significant level of dynamic RNA-protein interactions within the particle. SF3a and b are
required for the formation of the spliceosomal commitment complex and function in
stabilizing the functionally critical basepairing interaction between the U2 snRNA and the
branch site of introns, with at least one of the subunits (SF3b14a) directly contacting the
branch site adenosine [1,36].

In addition to the essential role of U2 snRNA and the associated proteins in recognition of
the branch site of introns, a non-snRNP protein, the U2 auxiliary factor (U2AF), also
significantly contributes to both branch site and 3′ splice site recognition during the early
steps of spliceosomal assembly. In human, U2AF contains a large subunit, U2AF65, and a
small subunit, U2AF35. U2AF65 contains an RNA binding domain through which it binds
the polypyrimidine track at the 3′ end of introns, and an activation domain which mediates
recruitment of the rest of the U2 snRNP particle to the vicinity of the branch site and
stabilization of the basepairing interaction between U2 snRNA and the branch site
nucleotides. U2AF35 interacts with the 3′ splice site and plays an important role in its
recognition, especially in introns with weak splice site consensus sequences [1,34].

3) The U5 snRNP and its complement of regulatory proteins—In the spliceosomal
catalytic core, the U5 snRNA is involved in aligning the exons to ensure their optimal
positioning for the second step of splicing, which as mentioned above involves a
nucleophilic attack by a hydroxyl group at the end of the newly cleaved 5′ exon on the 3′
splice site (Fig. 4) [34]. In addition, U5 binds several functionally critical U5-specific
regulatory proteins, including Prp8/P220K, Brr2/200K, Snu114/116K, Prp6/102K,
Prp28/100K, 40K, 15K and 52K in addition to the set of the seven common Sm proteins.
Together, the U5 snRNA and its associated proteins form the largest RNP in the
spliceosome and make up a large part of the fully assembled spliceosomes [34,37]. The
structure of the isolated U5 snRNP has been determined using cryo electron microscopy
(cryo-EM)[38]. Using a labeling approach, Sander and colleagues could show that the
conserved loop I of U5 snRNA is located in a central position in the U5 snRNP particle,
with its 5′ end located nearby, suggesting that the snRNA forms the center of the particle,
with the associated proteins on the periphery [38]. Since loop I in U5 snRNA plays an
important functional role in the spliceosomal catalytic center, these studies together with
cryo-EM studies of the tri-snRNP particle (see below) suggest that the other catalytic center
components likely contact the U5 snRNP particle at this site during the assembly of the
spliceosome.

4) The U4/U6 di-snRNP: keeping the catalyst in check?—U6 is the most conserved
spliceosomal snRNA and contains two invariant domains which play a critical functional
role in splicing. Further, it contains a stemloop which is almost identical to the catalytic
domain of group II introns (Fig. 1) and similar to its group II intron counterpart, binds a
functionally required divalent cation [6,7,10,39–41]. As mentioned above, in the
spliceosomal catalytic core, U6 closely interacts with the 5′ splice site at the time of the first
step of splicing and along with U2 snRNA can catalyze a two-step splicing reaction in the
absence of proteins in vitro ([11–13]. Perhaps in order to prevent it from prematurely
forming a catalytically active spliceosomal complex, U6 is kept in an inactive conformation
with the formation of its group II intron-like stemloop disrupted through a mutually
exclusive basepairing interaction with U4. Current data do not indicate any additional
functions for U4 snRNA except acting as a negative chaperon for U6. Once the basepaired
U4/U6 complex joins the spliceosome in association with U5, the U4/U6 duplex is unwound
in a tightly controlled manner and U2 snRNA replaces U4 as the basepairing partner of U6
(Fig. 4) [33,34].

Valadkhan and Jaladat Page 4

Proteomics. Author manuscript; available in PMC 2013 February 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Several additional characteristics make U6 an unusual snRNP particle: unlike the other
snRNAs which are transcripts of RNA polymerase II, are transported to the cytoplasm
during their assembly into snRNPs and receive a set of seven Sm proteins, U6 is transcribed
by RNA polymerase III and is assembled into an RNP within the nucleus [33,34]. Further, it
contains a set of LSm (like Sm) proteins composed of LSm proteins 2–8, which are thought
to be an evolutionarily ancient paralog of Sm proteins [14]. In addition to the LSm proteins,
U6 contains only one additional protein, Prp24, which contains four RNA recognition motif
(RRM) domains, of which at least two contribute to binding to U6 snRNA [for a review, see
Ref. 1]. It has been suggested that the LSm ring and Prp24 may act as chaperons, preparing
the U6 snRNA for interacting with its binding partner, U4. The cryo-EM structures for the
U6 and U4/U6 snRNP particles have been described [38,42]. It is interesting to note that
while the proteins associated with other snRNAs at least partly remain bound to the RNA
and perform functions in the spliceosome which in many cases are related to that of the
snRNA, the U6 associated proteins leave the spliceosome after the integration of U6 into the
assembling spliceosomes and do not seem to have a function beyond escorting U6 to the
assembling spliceosomal complexes (see below).

5) The tri-snRNP: U5.U4/U6 complex—The U4/U6 di-snRNP and U5 snRNP form a
ternary complex termed the “tri-snRNP” which is the form that can integrate into the
assembling spliceosomes. Sander and colleagues determined the three dimensional structure
of the 1.8 Mega Dalton tri-snRNP by cryo-EM [38] and could identify the position of the U5
and U4/U6 di-snRNPs within the tri-snRNP complex. The U5 snRNP accounted for ~ 60%
of the total mass of the particle, and determined the overall shape of the complex. Labeling
of different positions of the snRNAs and proteins within the complex permitted the
identification of the location of the RNAs and several critical protein component, including
Prp8, Brr2, Snu114, Prp6, Prp3 and Prp31 within the tri-snRNP. These studies indicated that
the C-terminal domain of Brr2 was localized in the head domain where as that of prp8 and
snu114 were localized in the neighboring so-called body of the particle [37,43], and
provided a first glimpse into the structural organization of this important snRNP particle.

6) The SR proteins—A large portion of the non-snRNP spliceosomal proteins belong to
the SR protein family, including ASF/SF2, SC35 and both subunits of U2AF. These
typically consist of one or two copies of an N-terminal RRM and a serine and arginine-rich
C-terminal domain (the RS domain). While several of the snRNP-associated proteins are
related to SR proteins (e.g., U1-70K, Snu66, Srm160 and U5-100K/Prp28), many of them
fall into the category of non-snRNP proteins [44–46]. SR proteins in general stimulate
splicing by binding to exonic sequences and recruiting spliceosomal proteins and stabilizing
RNA-RNA interactions. However it has been shown that the binding of SR proteins within
an intron can be inhibitory [47,48]. The RS domains mediate protein-protein or RNA-
protein interactions and their function is often regulated by phosphorylation. Several kinases
with a high specificity for the serine residues of the RS domains have been described,
including Clk/Sty and related kinases, DNA topoisomerase I and the SRPK family of
kinases [1]. The RS domains have also been shown to interact with the pre-mRNA in the
branch site region in a tethering experiment [49]. A functionally unusual SR protein, SRp38,
has all the features of a classical SR protein with an N-terminal RRM and a C-terminal RS
domain, however, it acts as a potent inhibitor, rather than activator, of splicing once
dephosphorylated [50,51]. SRp38 is dephosphorylated upon heat shock treatment of nuclear
extracts and during M phase in cell cycle, suggesting that it plays a role in global regulation
of splicing under these conditions [52]. It should be mentioned that the spliceosome contains
many non-snRNP, non-SR-family protein components, a detailed description of which has
been recently reviewed in detail [1–3]. The remainder of this review focuses on the subset of
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spliceosomal proteins which directly impact the assembly of the active site and catalytic
function of the spliceosome.

The proteome of spliceosomal complexes
As mentioned above, spliceosomes assemble on the pre-messenger RNAs in a highly
elaborate, stepwise fashion. However, a complex containing all five snRNPs, termed the
penta-snRNP, has been purified from yeast [53]. This finding suggests that the spliceosome
can exist in a pre-assembled form which undergoes a myriad of rearrangements during the
different stages of spliceosomal assembly by remodeling and stabilization of a subset of
interactions. The first stage in the spliceosomal assembly pathway is the formation of the
ATP-independent E or early complex, in which the 5′ splice site is recognized and bound by
U1 snRNP, and the branch site and 3′ splice site are loosely recognized by U2 snRNPs (Fig.
4). In the next stage, the A complex, the association of U2 with the branch site/3′ splice site
region is remodeled in an ATP-dependent fashion to stabilize its binding to this region. The
proteomic analysis and cryo-EM structure of the human A complex has been described by
Behzadnia and colleagues [21] at ~40Å. As expected, the complex contains nearly all U1
and U2 snRNP protein components and the pre-mRNA, in addition to close to 50 non-
snRNP proteins [21]. These include members of the Prp19/CDC5 complex (see below),
which were previously thought to be added to the spliceosomes at later stages.

Next, the U4/U6.U5 tri-snRNP joins the assembling spliceosome to form the B complex
(Fig. 4). The B complex undergoes several conformational rearrangements, several of which
are regulated by phosphorylation. In one, a tri-snRNP associated protein kinase, SRPK2,
phosphorylates the RS domain of the RNA helicase Prp28. Prp28 phosphorylation is
required for its stable association with the tri-snRNP and also for the tri-snRNP association
with the assembling spliceosomes during B complex formation [54]. It has been shown that
in yeast, Prp28 is an RNA helicase which mediates the dissociation of U1 snRNP from the
5′ splice site, however the yeast protein lacks the N-terminus RS domain which may explain
its lack of stable association with the tri-snRNP [55,56]. The functional significance of the
lack of RS domain in yeast Prp28 in B complex formation in yeast remains to be understood.

After the dissociation of U1 snRNP, the U4/U6 basepairing interaction is unwound by Brr2,
a U5-associated RNA helicase [1,34]. U1 and U4 leave the assembling spliceosome, and U6
replaces U1 at the 5′ splice site as the B complex progresses toward the B* complex, which
is catalytically active and is competent to perform the first step of splicing. A set of proteins
including Prp19 stably associate with the assembling spliceosomes subsequent to U4
dissociation and likely play a role in the transition of the B complex to the catalytically
active B* complex [1,19]. Two additional tri-snRNP components, Prp6 and Prp31, are
phosphorylated by Prp4 kinase (Prp4K) as they incorporate into the B complex to form
stable, functional assemblies [57]. Prp4K also interacts with Prp8 and Brr2, and thus may
have additional roles in spliceosomal function [58]. The proteomic analysis and cryo-EM
structure of the pre-catalytic complex B, which contains ~130 proteins in human and
Drosophila and ~60 proteins in the yeast S. cerevisiae, have been described [59–61].
Comparison of the B complex proteome in the yeast and human has indicated a high level of
evolutionary conservation. While over 85% of the yeast splicing factors found in purified
spliceosomal B and B* complexes had clear evolutionary counterpart in human, a large
fraction of the proteins found in human spliceosomal complexes have no yeast homologs,
including several SR and hnRNP proteins [61]. Using antibodies containing colloidal gold,
Wolf and colleagues [62] used electron microscopy to identify the location of the two exons,
as well as SF3B155, a component of U2 snRNP, in B complexes. While this was a
promising first step, further use of such molecular mapping approaches, combined with high
resolution study of the individual components, are needed to provide a thorough
understanding of this large spliceosomal assembly.
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The B*Complex, in which the spliceosomes become catalytically competent, follows the B
complex. Fabrizio and colleagues purified the B, Bact (which is a pre-catalytic complex
formed immediately prior to B*) and C complexes from the budding yeast S. cerevisiae, and
performed a thorough proteomic analysis. These studies indicated that conversion of B to
Bact involves a dramatic compositional change [61]. In yeast, B and Bact complexes contain
60 and 40 proteins, respectively. This contrasts with the ~130 proteins found in B complexes
in human and Drosophila [20,60]. As expected, U1 and U4/U6-specific proteins are present
in the B complex but absent in Bact complex, in addition to the U6 LSm proteins [61]. 12
proteins that were not present in the B complex were recruited to the Bact complex,
including the NTC proteins (see below). How all the above conformational changes will
lead to the activation of the spliceosomes for performing the first step of splicing is poorly
understood. Recent evidence suggest that the addition of Cwc25, a protein previously
identified to be associated with the Prp19-associated complex, to spliceosomes that are fully
assembled but not catalytically active can result in catalysis of the first step of splicing [63].
Two other factors, Yju2 and an unknown heat-resistant factor, likely function in the same
final step of spliceosomal activation, although their function is again poorly understood
[1,64]. Finally, ATP hydrolysis by the RNA helicase Prp2 and its dissociation from the
spliceosome marks the very last known step before the catalysis of the first step of splicing
and conversion of the Bact to the B* complex.

Recently, using a temperature-sensitive mutant of the RNA helicase Prp2, Warkocki and
colleagues [65] succeeded in purifying spliceosomes stalled before the first step of splicing,
which likely correspond to an inactive Bact complex, and determined their protein
composition and structure using mass spectroscopy and cryo-EM studies. They could show
that by the addition of Prp2, Spp2 and Cwc25, the stalled spliceosomes could undergo the
first step of splicing and that the U2 snRNP proteins SF3a and SF3b were dissociated during
this process, likely as a result of remodeling activity of Prp2. Once purified Prp16, Slu7,
Prp18 and Prp22 were also added, the spliceosomes transitioned to the C complex and
became competent to also perform the second splicing step [65].

Comparison of purified Bact and C complexes also indicated that further rearrangements
occur during the conversion of these two complexes. In yeast this includes the recruitment of
nine additional proteins including Prp22, Slu7, Cwc23, Cwc25, Prp43, Spp382/Ntr1, Ntr2
and Prp18 [61]. This is a longer list compared to the minimal set of proteins mentioned
above which are absolutely required for the spliceosomes to undergo the second splicing
step [65]. However, all proteins present in Bact were also present in the C complex in yeast.

In metazoans, the C complex contains 110–150 proteins compared to the 40–50 in yeast,
which likely reflects the more complex splicing regulation in higher eukaryotes
[18,20,60,61]. Proteomic analysis of an isolated but functionally active human C complex,
in which the second step of splicing was shown to occur, indicated that it contains 150
proteins, of which 105 were also present in the B complex [18]. These included most of the
U5 and U2 snRNP protein complement plus the Prp19-CDC5 complex and related factors,
in addition to the components of the Retention and Splicing (RES) complex [18]. As
expected, the U1 and U4 snRNP components were almost completely absent in the human
complex C, in addition to U6 LSm proteins and a number of non-snRNP factors.
Interestingly, Prp16, a helicase which plays a central role in the conformational transition
between the first and second step spliceosomes, is absent in this complex, suggesting that it
is either loosely associated with spliceosomes or that the purified complexes belong to a
stage after the one in which Prp16 functions. On the other hand, several proteins in complex
C seemed specific to this complex and were not found in other spliceosomal assemblies.
These included proteins known to be important in the second step of splicing such as a
number of DEAD-box helicases and peptidyl-prolyl isomerases, which likely help facilitate
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the conformational changes associated with the second step of splicing. Importantly, the
core components of the exon junction complex (EJC), an assembly of proteins deposited
~20 nucleotides upstream of the exon-exon junctions in spliced mRNAs, are also
significantly enriched in the C complex [18].

Further analysis of the human C complex showed that it contained a salt-stable RNP core
which consisted of a number of critical components of the spliceosome, including members
of the Prp19 complex and related factors as well as Prp8 and Snu114 and the U5-40K
protein, in addition to equimolar amounts of the snRNAs U2, U5 and U6 and splicing
intermediates [18]. Although this salt-stable complex was not functionally active, it may
correspond to a stalled version of the catalytic core of the spliceosome [18]. Interestingly,
the pre-mRNA splicing intermediates may play a role in stabilization of the C complex,
since removal of part of the 3′ exon by nucleolytic cleavage in pre-assembled C complexes
resulted in loss of a fraction of the particle in cryo-EM studies [66]. While a complete
understanding of the significance of each conformational rearrangement in the spliceosome
awaits future studies, a number of interesting findings have elucidated the functional
importance of at least some of the spliceosomal rearrangements. The following passages
discuss a select number of these findings which involve the spliceosomal catalytic core in
detail.

A central role for helicases: the timers and the remodelers
At least eight DExD/H-box proteins function at various steps of the spliceosomal cycle and
several show weak helicase activity in vitro [44,67]. The spliceosomal helicases play central
roles in remodeling of RNA-RNA, RNA-protein and protein-protein interactions and in a
number of cases, their remodeling activity seem to be tied to the spliceosomal quality
control mechanisms [2,68,69]. UAP56, a DExD/H-box helicase originally discovered as a
U2AF65-associated protein, is known to promote the early steps of spliceosome assembly
through interaction with U2AF65 in an ATP-dependent way [71]. Further, it has been shown
that UAP56 is also required in later steps of spliceosomal assembly, when it contacts U4 and
U6 snRNAs and likely help in the unwinding of the U4/U6 basepaired duplexes, a step
previously shown to be dependent on Brr2 (see below) [71]. Interestingly, UAP56 is also
involved in a number of other aspects of cellular RNA metabolism, including mRNA
nuclear export and cytoplasmic localization [72–75].

A major remodeling helicase in the spliceosome is the U5-associated DExD/H-box protein
Brr2, a large protein (~2100 amino acids in yeast and human) which disrupts the interaction
of U6 with its basepairing partners in both pre-catalytic and post-catalytic spliceosomes
[34]. The protein contains two helicase-like domains followed by a Sec63 domain of
unknown function. High resolution structural studies indicate that the second Sec63 domain
is closely similar to the DNA helicase Hel308, which also contains similar helicase-like
domains, suggesting mechanistic similarities between Brr2 and Hel308 [76,77]. The ATPase
and helicase activity of Brr2, at least in vitro, is modulated by Snu114 and the C-terminal
domain of Prp8, which also improves the binding of Brr2 to one of its targets, the U4/U6
basepaired complex [78,79].

The remodeling function of a number of spliceosomal helicases is tied to the spliceosomal
quality control. The activation of this class of helicases leads to remodeling of the existing
spliceosomal conformation to the next stage in the spliceosomal cycle and thus limits the
amount of time the spliceosome dwells in that particular conformation. If this conformation
is associated with a given function, for example performing the first step of splicing, the
remodeling activity of the helicase would limit the amount of time available for catalyzing
the first step. While the allocated amount of time is more than enough for optimal substrates
to react, it is not sufficient to allow the suboptimal splice sites, which react more slowly, to
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go through the first step. Thus, the helicase-mediated remodeling would prevent suboptimal
splice sites and branch sites from undergoing splicing, providing a quality control
mechanism [68–70].

Perhaps the best-studied example of this class of helicases is Prp16, which associates with
the spliceosomes before the first step of splicing; however, it functions in proofreading of
the first step of splicing by performing its remodeling action after the first step of splicing on
optimal substrates has occurred [1,33,34,70]. Mutations that impair the ATPase or helicase
activity of Prp16 would result in splicing of suboptimal branch site and 5′ splice site
substrates which would have been otherwise discarded. Interestingly, the Prp16-mediated
rejection of erroneous splicing events is reversible, requiring a downstream discard pathway
which involves Prp43, a helicase that mediates spliceosomal disassembly [80]. The direct
molecular target of Prp16 is not yet determined, however, it has been shown to directly
interact with the pre-messenger RNA in the 3′ splice site region and also to have a role in
remodeling of one of the U6/U2 basepaired helices [81,82].

Another RNA helicase, Prp22, interacts with a region immediately downstream of the 3′
splice site in the fully spliced mRNAs after the second step of splicing [81,83]. Through its
3′ to 5′ helicase activity, it likely disrupts the mRNA/U5 snRNP contacts, thus leading to
the release of the spliced mRNA at the end of the splicing cycle [83]. Mayas and colleagues
[84] studied the effect of mutations in Prp22 that impaired its ATPase or RNA unwindase
activity, and showed that these mutations resulted in loss of splicing fidelity, since pre-
mRNAs with mutations in 3′ splice site could be spliced with much higher efficiency. These
data indicated that the Prp22-mediated step in spliceosomal disassembly is yet another
quality control checkpoint which controls the fidelity of the second step of splicing.

Prp43, a DExD/H-box RNA helicase which is involved in ribosomal biogenesis [85,86] also
plays an important role in the disassembly of spliceosomes. Together with Ntr1/Spp382 and
Ntr2, Prp43 forms the NTR complex which mediates spliceosomal disassembly. Ntr2
interacts with Brr2 and U5, suggesting that it may be involved in the recruitment of the NTR
complex to the post-catalytic spliceosomes [87,88]. Ntr1 functions by activating the
inherently weak helicase activity of Prp43, which upon activation triggers the release of the
lariat intron from the post-catalytic spliceosomes [70, 89]. Mutations in Ntr1 and Prp43
suppressed the splicing defects of Prp8 and Prp38 mutants, suggesting that Prp43 is yet
another quality control checkpoint in the spliceosomal cycle [90]. More recently, it has been
shown that Prp43 is also involved in rejection of suboptimal 5′ exon and lariat intermediates
which are blocked from undergoing splicing in a Prp16-dependent way (see above). This
data suggests that similar to a normal splicing reaction, aberrant, stalled spliceosomes also
depend on Prp43 for disassembly [91].

In addition to the examples discussed above, several other helicases play important roles at
various stages of spliceosomal assembly, for example, Prp28 mediates the release of U1
snRNA from the 5′ splice site in the B complex (see above) and Prp5, also a DExD/H-box
protein, functions in recruiting the U2 snRNP to the pre-mRNA in early steps of
spliceosomal assembly ([1,3,92].

A G-protein in control
As mentioned above, Brr2 is involved in two critical remodeling steps in the spliceosomal
cycle, namely, the unwinding of U4/U6 duplex as the B complex is transitioning to the B*
complex, and the release of U6 from its interaction with U2 after the second step of splicing.
These two functions of Brr2 are in turn regulated by Snu114, a U5 snRNP-associated
GTPase with significant homology to the ribosomal translocase EF-G [79]. In an elegant
series of experiments, Small and colleagues showed that Snu114 functions as a classic
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regulatory G protein, serving as a signal-dependent switch [79]. Based on their studies,
Snu114 transduces signals to Brr2, thus regulating its molecular remodeler function. Binding
of Snu114 to GDP prevented Brr2 from performing its function in both spliceosomal
assembly and disassembly, while replacing GDP with GTP or a non-hydrolyzable GTP
analog removed this block [79]. These findings are consistent with previous observations,
which indicated that Snu114 extensively interacts with U5-specific proteins Prp8, Prp28 and
Brr2 [93,94]. Further, Brenner and colleagues [93] showed that truncation mutations in the
C-terminal domain of Snu114 allows the initial stages of spliceosomal assembly to happen
but blocks the release of U4 during the conversion of B to B* complex. Finally, mutations in
the GTPase domain of Snu114 prevent its interaction with Prp8 and U5 snRNA and blocks
the assembly of U5 snRNP particle [93]. It is plausible that the interaction of Snu114 with
Prp8 through its GTPase domain may be one of the mechanisms by which Prp8 and other
factors regulate the spliceosomal cycle.

Activating the spliceosome: the role of Prp19 complex
A set of 7 proteins in human and 8–11 proteins in yeast associate with Prp19 through a
complex set of interactions to form the Prp19/CDC5 complex (in humans) or the so-called
NineTeen Complex (NTC) in yeast (Table 1) [95,96]. The NTC complex is required for
stable association of U5 and U6 with the exonic sequences and the 5′ splice site in the
assembling spliceosomes after the dissociation of U4 and U1 snRNAs [96–98]. It has been
shown that NTC is involved in mediating a conformational change in U6 which involves
remodeling of its interaction with the 5′ splice site and removal of the LSm proteins [19,96].
In human, Prp19 is also found together with CDC5 in a larger complex containing ~30
proteins and is likely to play a role in the second step of splicing [99]. Recently, it has been
shown that Cwc21, a member of the NTC, binds directly to both Prp8 and Snu114 and thus,
may mediate the interaction of the NTC with the U5 snRNP [100,101]. Another study has
shown that even in the very divergent trypanosomes, the interaction of Cwc21 and U5
snRNP is conserved and essential for splicing, which further underscores its functional
importance [102]. Taken together, the existing data suggest that NTC is involved in
stabilizing a number of RNA-RNA interactions which are among the latest steps before
formation of the catalytically competent spliceosomes [1,63].

The special case of Prp8
Prp8 is arguably the most interesting of the spliceosomal proteins. It is an unusually
conserved protein with 61% identity between yeast and human. However, it lacks clear
functional motifs in its ~ 2300 amino acid length and the few functional domains that have
been discerned are degenerate and likely perform functions unrelated to the original cellular
role of the motif [94]. On the other hand, Prp8 clearly plays a very critical role in the
spliceosomal active site. It has been shown that Prp8 interacts with several spliceosomal
proteins including Snu114 and Brr2 [1,94,103]. Further, it has been crosslinked to the 5′ and
3′ splice sites and the branch site of the pre-messenger RNAs, in addition to crosslinks to
U5 and U6 snRNAs, which indicates that it is present in the spliceosomal catalytic core and
in direct contact with all critical players in the splicing reaction [94,104]. Mutations in Prp8
are associated with a wide range of spliceosomal defects including alterations in the ability
of spliceosomes to reject suboptimal splice sites and suppression of defects caused by
mutations in other spliceosomal components, for example mutations in Prp28, Brr2, U4 and
U6 snRNAs [94,105,106]. A subset of these phenotypes, which are observed in aggregate
with certain Prp8 alleles, are likely to be caused by abnormal stabilization of a particular
spliceosomal conformation by the Prp8 mutant alleles. As mentioned above, the
spliceosomal fidelity mechanism depends on timely conversion of one conformation to the
next one in the spliceosomal cycle. Thus, hyperstabilization of one conformation, for
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example the one which is conducive to catalysis of the first step of splicing, would result in
splicing of substrates with suboptimal 5′ splice sites [2,68,69,107].

Very little is known about the way Prp8 performs its function. Transposon-mediated
screening assays indicated that large regions of Prp8 are highly sensitive to insertion of
transposons and likely function as a single structural unit [104,108]. Apart from a degenerate
nuclear localization signal close to its N terminus and a degenerate RRM motif in the middle
of the protein, only two other functional domains have been identified in the ~2300 amino
acid-long Prp8. A degenerate variant of the MPN/Jab1 domain found in deubiquitinating
enzymes is found near the C terminus of Prp8 [94]. A high resolution structure of this
domain has shown that the metal binding site of the isopeptidase center is impaired and thus,
it likely does not function as a deubiquitinating enzyme [109,110]. In vitro, a fragment of
Prp8 containing this domain could directly bind to ubiquitin with an affinity that was
comparable to other known ubiquitin binding proteins [111]. A number of known Prp8
mutations that disrupted splicing also disrupted ubiquitin binding, raising the possibility of a
functional role for ubiquitination in splicing regulation. Interestingly, proteomic analyses
have indicated that a number of spliceosomal factors, including Sad1, Snu114, Rse1 and
Prp8 itself are ubiquitinated in vivo, and further, Prp19 exhibits E3 ubiquitin ligase activity
in vitro [111–115]. Further, ubiquitin plays a role in the formation and maintenance of tri-
snRNP, likely by modulating the Prp8-mediated regulation of the function of Brr2 [115].
Alternatively, the MPN/Jab1 domain may function as a protein-protein interaction platform.
A number of mutations in Prp8 which fall in this domain result in the hereditary blindness
Retinitis Pigmentosa [94], and these mutations, once introduced into Prp8, result in
weakening of the interaction of Prp8 with Brr2 and Snu114 [109].

High resolution studies of another fragment of Prp8 which encompasses a highly conserved
region (69% amino acid identity between yeast and human) close to its C-terminal domain,
indicated the presence of a β–hairpin finger resembling those found in ribosomal proteins
and a degenerate RNase H-like domain [116–118]. The overall geometry of the RNase H-
like motif at the level of secondary and tertiary structure was well conserved but the primary
sequence showed a much lower level of conservation, for example, only one of the active
site residues was present. Interestingly, amino acids located adjacent to the active site in this
degenerate RNase H domain had been previously shown to be close to the 5′ splice site in
precatalytic spliceosomes [119], suggesting that the degenerate active site may nonetheless
form part of the catalytic core of the spliceosome. However, mutation of the single
conserved amino acid at the RNase H-like active site either did not have a phenotype, which
could indicate redundancy or lack of a critical function [118]; or its effect could not be
examined since the mutation induced misfolding of the protein fragment [116, see also 117].
Interestingly, the fragment demonstrated an affinity for duplex RNAs containing four-way
junction conformations [118]. In activated spliceosomes, U2 and U6 snRNAs are predicted
to form such a structure [120,121]. While these results are intriguing, more in-depth
analyses are needed to elucidate the role of this domain of Prp8 in spliceosomal function.

Concluding remarks
In its heart, the spliceosome is ultimately an enzyme with an RNA substrate. It is also a
ribonucleoprotein complex evolved around a core of five snRNAs which most likely are
descendants of an ancient catalytic RNA. Unlike the self-splicing ribozymes, the
spliceosome has evolved to splice a diverse variety of substrates in trans in a tightly
regulated way and thus, in addition to proteins which have replaced the function of the lost
RNA elements, many of the spliceosomal proteins function in substrate recognition and
regulation of splicing. As expected from an RNP enzyme with an RNA substrate, a large
fraction of spliceosomal proteins are RNA-binding proteins or function in remodeling of
RNA-RNA and RNA-protein interactions. Although our knowledge of the organization and
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function of the many spliceosomal complexes is rudimentary at present, recent proteomic
and structural biology studies combined with genetic and biochemical approaches have
started to provide major insights into the way spliceosomes function. The last decade has
seen a vast increase in our knowledge of all aspects of spliceosomal function. The next
decade is likely to witness the emergence of a detailed working model for this large
ribonucleoprotein cellular machine.
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Fig. 1. Schematic representation of a group II self-splicing intron, from which spliceosomes may
have evolved
The exons are shown in gray rectangles. The identity of each RNA domain is indicated close
to each domain. The sites of 5′ and 3′ splice sites and branch site are marked as 5′SS, 3′SS
and BS, respectively. The functional and/or structural homologue of each RNA element in
the spliceosome is shown in gray circles.
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Fig. 2. The interaction of U6, U5 and U2 snRNAs with the pre-mRNA before the first step of
splicing
The basepairing interactions within each snRNA, between U6 and U2 snRNAs and between
snRNAs and the pre-mRNA are shown. Numbers reflect the human numbering system. The
exons in pre-mRNA are shown as solid rectangles, with the intron shown as a line. The
sequence of the 5′ splice site and branch site are shown.
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Fig. 3. The RNA and protein composition of each snRNP particle
Note that all snRNPs except U6 carry a set of Sm proteins, whereas U6 instead contains
LSm proteins.
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Fig. 4. The spliceosomal cycle
The pre-mRNA is shown in black, and the location of the branch site is marked by an A.
The exons are shown as solid rectangles and the intron is drawn as a thin line. The
spliceosomal complexes and snRNPs are shown in gray. The identity of each spliceosomal
complex and snRNP particle is shown. The main steps of spliceosomal cycle, assembly,
catalysis, disassembly and recycling are marked on the graph. The main proofreading steps
of spliceosomal cycle are marked by clock signs and the main RNA helicases involved in
each conformational rearrangement are indicated. The snRNAs within each spliceosomal
complex are shown.
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Table 1

The protein composition of the Prp19 complex in human and yeast S. cervisiae. The first four yeast proteins
are the homologues of the first four human proteins. The last five components in the yeast column are written
in the order of discovery. Only the 8 characterized components of the NineTeen complex have been listed,
although a number of additional currently uncharacterized components have also been co-purified with this
complex in yeast [94, 122, 123].

NineTeen Complex (yeast) Prp19/CDC5 complex (Human)

Prp19p hPrp19

Cef1p/NTC 85 CDC5L

Prp46p* PRL1

Snt309p/NTC25 SPF27

NTC 30 AD002

NTC 20 CTNNBL1

NTC 90 HSP73

NTC 77

NTC 31

*
Prp46, the yeast homologue of PRL1, is loosely associated with the NineTeen Complex. [94, 119]
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