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Abstract
In the processing and analysis of Diffusion Tensor Imaging (DTI) data, certain predefined
morphological features of diffusion tensors are often represented as simplified scalar indices,
termed Diffusion Anisotropy Indices (DAIs). When comparing tensor morphologies across
differing voxels of an image, or across corresponding voxels in different images, DAIs are
mathematically and statistically more tractable than are the full tensors, which are probabilistic
ellipsoids consisting of 3 orthogonal vectors that each has a direction and an associated scalar
magnitude. We have developed a new DAI, the “Ellipsoidal Area Ratio” (EAR), to represent the
degree of anisotropy in the morphological features of a diffusion tensor. The EAR is a normalized
geometrical measure of surface curvature in the 3D diffusion ellipsoid. Monte Carlo simulations
and applications to the study of in vivo human data demonstrate that, at low noise levels, EAR
provides a similar contrast-to-noise ratio (CNR) but a higher signal-to-noise ratio (SNR) than does
fractional anisotropy (FA), which is currently the most popular anisotropy index in active use.
Moreover, at the high noise levels encountered most commonly in real-world DTI datasets, EAR
compared with FA is consistently much more robust to perturbations from noise and it provides a
higher CNR, features useful for the analysis of DTI data that are inherently noise-sensitive.
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INTRODUCTION
Diffusion Tensor Imaging (DTI) measures the Brownian thermal motion of water molecules
within biological tissues. Geometrically, DTI represents the probabilistic distribution of
motion as an ellipsoid, with its longest axis representing the directional orientation of the
underlying fibers of a tissue. This probabilistic ellipsoid can be expressed mathematically as
a 3×3 symmetric matrix that is positive definite. DTI can reveal detailed local features
within white and gray matter of the brain, and by tracing the diffusion of water across voxels
of an image, DTI can also depict the presence and orientation of fiber tracts. DTI therefore
makes possible the study of tissue organization in white and gray matter of the brain,
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anatomical connectivity in white matter, the myelination status of neurons, and the densities
of neuronal fiber bundles.

The processing and analysis of DTI data are much more difficult than is the processing and
analysis of scalar images in traditional Magnetic Resonance Imaging (MRI), largely because
DTI data are mathematically more complex and computationally more intractable than are
the data that compose scalar images. The 3×3 matrix for each tensor in a DT image, for
example, contains information concerning both the magnitude of diffusion (i.e. the
attenuation ratio measured in the diffusion weighted signal) and its orientation, whereas
voxels of a scalar image contain only a single scalar number representing a single aspect of
the tissue being imaged. Thus, even simple manipulation of a DTI dataset, such as
interpolation or rotation, is complex and computationally demanding.

The magnitude and orientation of a tensor correspond with important biophysical and
microstructural properties of the tissue being imaged. Tensors therefore cannot be treated
simply as the values of the voxels in scalar images without destroying the integrity of the
correspondence of the tensors with the biophysical characteristics of the tissue that they
measure. Because a DT image is reconstructed nonlinearly from a number of diffusion-
weighted (DW) images, for example, the application to tensors of the kind of linear
interpolation used in scalar images may bias the true value of the interpolated tensor [1, 2].
Thus, when coregistering DT images, the orientation of each tensor must be adjusted while
preserving its shape, if its morpohology is to maintain an accurate representation of the local
biophysical properties of the tissue that is imaged [3].

To make DTI data more computationally tractable, investigators have developed a family of
so-called “Diffusion Anisotropy Indices” (DAIs). These are measures of a diffusion tensor
that have a reduced dimensionality compared with the 3×3 matrix of the full tensor.
Fractional Anisotropy (FA) and Relative Anisotropy (RA) are two of the better-known
DAIs. FA is the most commonly used of the DAIs because it is relatively more immune to
noise [4–6] and has a higher contrast-to-noise ratio (CNR) than RA and the other DAIs [6–
8]. Despite these useful features, FA is known to suffer considerably from sensitivity to
noise [9–11], which can introduce bias into the quantification of diffusion anisotropy when
using this index.

We develop herein a new, alternative DAI, which we term the “Ellipsoidal Area Ratio”
(EAR). Monte Carlo simulations and experiments using human data demonstrate that EAR
is superior to FA in its robustness to the effects of noise. Similar to FA, EAR provides a
normalized measure of diffusion anisotropy that ranges from 0.0 to 1.0. EAR relates directly
to the curvature of a diffusion ellipsoid, which encodes the essential biological
characteristics of diffusion that a tensor measures. EAR is therefore a DAI that relates more
intuitively than does FA to the construct of anisotropy. We also show that EAR provides a
similar CNR as FA in white matter when noise levels are low, and it provides a significantly
better signal-to-noise ratio (SNR) than does FA when noise levels are high, as is generally
the case in real-world DTI datasets. Thus EAR is likely to be a useful and convenient DAI
for measuring diffusion anisotropy in white matter.

BACKGROUND
The family of DAIs generally can be divided into 3 groups according to the algebraic
formulae used to relate the tensor’s eigenvalues to one another [7]. These groups include the
original DAIs, the modified DAIs, and other DAIs. The three DAIs of the original group –
RA, FA, and the Volume Ratio (VR) – were the first described [12, 13]:
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Eq. (1)

Eq. (2)

Eq. (3)

where λ1, λ2, and λ3 are the tensor’s three eigenvalues.

These DAIs summarize the shape of an ellipsoid using a scalar index that has small values
for tensors of spherical morphology and large values for tensors that have more elongated
shapes. They do not all fall into the same range of normalized values, however. FA and VR,
for example, lie within the range of 0.0 to 1.0 (although their values change in different
directions with differing tensor morphologies), whereas RA values range from 0.0 to 21/2.
To ensure that the ranges of values for VR and RA run in the same range and direction
(from 0 to 1), modified DAIs were constructed, including the Volume Fraction (VF: VF = 1-
VR) and scaled RA (sRA or Afiber: sRA = RA/21/2) [14].

The other group of DAIs include three “ultimate anisotropy” indices [15], UAsurf, UAvol,
and UAvol,surf.

Eq. (4)

Eq. (5)

Eq. (6)

Additional DAIs have recently been proposed as variants of these DAIs. For example, three
newer indices [6] that nominally measure a tensor’s amplitude, area, and volume are
essentially functions of FA, RA, UA, or VR.

Because the shape of a tensor encodes the diffusion characteristics of water at the location of
the tensor, an ideal DAI would incorporate to some extent the morphological curvature of a
tensor’s ellipsoid. Although the “ultimate” group of DAIs represent slight improvements
over the former two groups in this respect, and although their names include references to
surface area and volume, they actually have nothing -- or, at least nothing directly -- to do
with the true morphological curvature of a tensor’s ellipsoid. All the DAIs in these three
groups and their extensions are in fact calculated using only the three eigenvalues of a
tensor, which provide a primitive profile of a tensor’s morphology.
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One of the mathematical measures that captures quite directly the curvature of an ellipsoid
(tensor) is its surface area. This observation has motivated us to develop a new DAI that
takes a tensor’s surface area as an index of anisotropy. The true surface area S of an
ellipsoid is:

Eq. (7)

where θ and Φ span a polar coordinate system, and where

Eq. (8)

is the elliptic integral of the second kind.

Calculation of the surface area of an ellipsoid using this formula is computationally
intensive, because it involves multiple integrals of trigonometric terms. Fortunately, we can
use the Knud Thomsen approximation1[16, 17] to estimate the true surface area of an
ellipsoid:

Eq. (9)

where p is a constant. This approximation has the least relative error (±1.061% in the worst
case) when p≈1.6075.

As FA is currently the most popular DTI-derived DAI measurement, FA will be the subject
of comparison in assessing the performance of EAR as a new index of anisotropy. Let us
first assess more closely what morphological features of a tensor FA really represents.
Suppose we have a cube whose 3 axes are designated to be the 3 eigenvalues of a tensor, λ1,
λ2, and λ3, each of which ranges from 0 to 1 (Fig. 1). Suppose Dav is the average of the 3
eigenvalues: Dav = (λ1 +λ2 +λ3)/3. Then Eq. (1) can be rewritten as:

Eq. (10)

Because (Dav, Dav, Dav) is a point location inside the cube (Fig. 1) on the diagonal line
segment OF whose equation is X=Y=Z, the numerator in Eq. (10) is actually the distance
between the point Λ(λ1,λ2,λ3) under consideration and the line segment OF. More
specifically, it is the distance between the point Λ and the point of intersection of the
diagonal line OF with the plane that passes through Λ and that is perpendicular to line OF.

1http://home.att.net/~numericana/answer/ellipsoid.htm#thomsen; In lieu of traditional peer review, this approximation has been
discussed and analyzed by Sigma Xi mathematician David W. Cantrell in the sci.math newsgroup (search with keywords ‘knud
thomsen’ and ‘ellipsoid’).
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Moreover, the denominator of Eq. (10) is the distance from the point Λ to the origin O
(0,0,0). Therefore, an FA value is actually the trigonometric Sin operator applied to the
angle between line OF and the line passing through the origin O and Λ (λ1,λ2,λ3). For
instance, P(a, b, c) in Figure 1 is a location with a tensor whose 3 eigenvalues are a, b, and c,
and whose FA value is:

Eq. (11)

Therefore, all locations on a cone whose tip rests on the origin O (0,0,0) will have the same
FA value. Moreover, the section triangle ABC (Fig. 1) is a plane that intersects all possible
FA values of a tensor, and therefore the triangle ABC can serve well as a snapshot for
surveying all possible FA values, as well as all EAR values, for a similar reason. The
triangle ABC is thus a perfect region-of-interest for a general comparison of FA with EAR
values.

THEORY
A DAI is most commonly a normalized scalar value ranging from 0 to 1, so that tensors with
differing morphologies can be compared and distinguished using the magnitude of this
scalar index. To normalize the surface area of a tensor into a common scale as an index for
the anisotropy of diffusion, we scale the tensor according to its largest axis, max(λ1, λ2,
λ3). Suppose that

Eq. (12)

A tensor’s Ellipsoidal Area Ratio (EAR) is then defined in terms of the surface area of a
sphere with radius λ -- i.e., with a radius equaling the largest eigenvalue of the tensor:

Eq. (13)

The range of possible values of the EAR is [0,1), exactly the same as most DAIs. Moreover,
EAR behaviors like the other DAIs, in that it approaches a value of 1.0 when a tensor
becomes more needle-like in shape, and it decreases to a value of 0 when the tensor
degrades to a sphere.

Because DTI methodologies were developed particularly for the mapping of fiber tracts
within the brain, and because nerve fibers are cylindrically symmetrical in their morphology,
assessing tensors of cylindrical symmetry is of particular interest [6, 10, 15]. Cylindrical
symmetry refers to instances in which a tensor has two identical eigenvalues (e.g. λ2 = λ3)
that differ from the remaining eigenvalue (i.e. λ1 ≠λ2). Whereas some investigators use the
so-called eigenvalue ratio, λ1/λ2, as a simplified index of cylindrical symmetry[6, 18], DAIs
are most commonly examined and compared as indices of anisotropy for tensors with
cylindrical symmetry “A” [7, 9, 14, 15], in which
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Eq. (14)

Although the simplified version of the mathematical approximation of EAR in Eq. (13)
reduces to a function of the three eigenvalues of a tensor, similar to the construction of other
DAIs, this mathematical approximation of EAR still relates directly to a tensor’s curvature.
This measure should therefore provide a more meaningful approximation of diffusion
anisotropy compared with the other DAIs, and this should be discernible in measures of
image quality, such as SNR and CNR, and in discriminating among tensors of known
morphology.

Following studies of other DAIs that were based on cylindrical symmetry A [6, 7, 15, 18],
and studies of FA in particular, we too will use tensors having cylindrical symmetry A when
measuring the sensitivity of EAR to discriminate tensors of differing morphologies (Fig. 2a).
A ranges from a value of −0.5 for oblate tensors (i.e., those that are discoid in shape, when
λ1 is near 0), to 0.0 for isotropic tensors (i.e., those that are spherical in shape, in which
λ1=λ2=λ3), to 1.0 for prolate tensors (i.e., those that are needle-like in shape, with λ2 and
λ3 both close to 0.0). Because the degree of cylindrical symmetry A between 0.0 and 1.0
(for needle-like tensors) is of particular interest in DTI studies[6, 7, 15, 18], DAI is plotted
as a function of values of A within this range. In general, EAR acts like a non-linear
amplifier of this function for FA, particularly for FAs >0.20 or >0.25 (Fig. 2a), which are at
the lower threshold that is typically applied to segment white matter in FA maps and
therefore are of particular interest in applied DTI studies. The derivatives with respect to A
(Fig 2b) show that in the same segment (where FA > 0.20 or >0.25), EAR is less sensitive to
disturbances induced by noise than is FA.

We calculate SNR and CNR to compare quantitatively the image quality that maps of EAR
and FA provide. SNR is the ratio of DAI to noise (noise is the standard deviation σ in the
value of the DAI) and CNR is the ratio of contrast (the difference of two DAI values across
tensors of differing morphologies) to noise. To compare CNR across differing degrees of
anisotropy, we scale CNR with the difference in anisotropy at two DAI values [7]:

Eq. (15)

When CNR is measured in the limit of infinitesimal changes in A, this equation becomes:

Eq. (16)

To scale the SNR to correct for Rician and normal distributions of noise, as in previous
studies [18], we divide by the square-root of 2:

Eq. (17)

In certain cases, however, true cylindrical symmetry may be absent (e.g., in biological
samples, where eigenvalues are always biased by noise). Therefore, calculations based on
cylindrical symmetry may not be feasible. Considering the fact that sRA=A when A>0,
CNR can be generalized using sRA instead of A[7]:

Eq. (18)

Xu et al. Page 6

Magn Reson Imaging. Author manuscript; available in PMC 2013 February 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



When CNR is measured across tensors that have the same degree of anisotropy, or for
tensors across differing tissues, A (i.e., sRA) is either the same or it varies in a range that
cannot be factored into the calculation. Therefore, A (or sRA) must be omitted to calculate
CNR:

Eq. (19)

When the noise σ is similar across differing DAI measurements, CNR is related to SNR as:

Eq. (20)

where k is a constant.

Obviously, an increase in SNR need not necessarily increase CNR [4].

MATERIALS AND METHODS
General Comparison of FA and EAR

We first generated a cube of tensor fields taking the three eigenvalues λ1, λ2, and λ3 as 3
variables ranging from 0.0 to 1.0 along the coordinate axes (Fig. 1). As discussed above, we
used the section triangle ABC as our study platform because it is a snapshot of all possible
FA and EAR values for tensors of varying morphologies, and it spans the largest area inside
the cube along the direction perpendicular to the diagonal line OF. This facilitates visual
inspection of the differences between the DAIs. The resolution within the cube was
256×256×256. Therefore, each location (x,y,z) in this cube represented a tensor D whose
eigenvalues were (x,y,z). We then calculated FA and EAR for each location within the cube,
thereby generating one FA volume and one EAR volume across the entire cube. Because the
three eigenvalues were interchangeable, only one tetrahedron (constituting 1/6 of the cube)
was needed in the cube (e.g. the tetrahedron OADF, in which λ1 ≥ λ2 ≥ λ3, where λ1 = λ2
= λ3 along the line segment OF, λ1 = λ2 along the OD and λ2 = λ3 along AF). In addition,
for a more comprehensive view, we used a snapshot of triangle ABC to study the
differences between FA and EAR.

Monte Carlo Simulations of Tensors with Cylindrical Symmetry
To compare and evaluate the SNRs and CNRs provided by FA and EAR in the
discrimination of tensor morphologies, we performed Monte Carlo simulations with respect
to cylindrical symmetry in software package developed in-house using Matlab (version 6.5,
MathWorks, Natick, MA). Dav was held constant for all simulations. Using procedures
similar to those in prior publications [7, 10, 18, 19], our simulation involved the generation
of tensors with differing eigenvalues, the estimation of DW signals, the superposition of
differing noise levels on the DW data, the reconstruction of tensors, and the calculation of
FA and EAR values:

Step_1 Let Doriginal = R•Diag(λ1,λ2,λ3) •RT, where R is a randomized rotation.

Step_2 Select a set of k gradient directions, d1, d2, …, dk, di=(di,x, di,y, di,z), that are
evenly distributed in 3D space. These will serve as the directions along which
the DW images are measured.

Step_3 Recover the attenuation ratio of DW measurements along each selected
direction di (i= 1,…,k):

For each noise-free tensor Doriginal, calculate every Si along the i-th
direction:
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where

b is the b-value and di is the gradient direction vector

Step_4 Add to Si a noise component having a Gaussian distribution of N(0,σ):

Step_5 Reconstruct the Si’s (i= 1,…,k) to a noise-superimposed tensor Dnoise using
linear regression

Gaussian-distributed random noise at 1%, 2%, 5%, and 10% levels (relative to the baseline
image S0 at b=0) were superimposed on the Si data. These 4 levels of noise were simulated
with the corresponding SNRs of 70.7, 35.4, 14.1, and 7.1 for S0 [18]. A total of 200,000
repetitions were simulated for each of the 4 noise levels. FA and EAR were calculated based
on the noise-imposed data. Mean DAI values, SNR, CNR were then computed and
compared, following the equations defined in the “Theory” section above. CNR values were
calculated with differences in A of 0.01.

Human Study
The Monte Carlo simulations provides empirical support for our theoretical analysis
addressing only tensors of cylindrical symmetry. To test our theoretical results on an in vivo
biological sample containing tensors across a wide range of realistic morphologies, we
acquired DW imaging data from five healthy subjects on a GE 3.0-Tesla whole body MRI
scanner (General Electric, Milwaukee, WI, USA). Written informed consent was obtained.
DW imaging data were acquired along 25 gradient directions plus 3 baseline images without
a diffusion-sensitive gradient. Imaging parameters included a b-value = 1000 s/mm2,
repetition time (TR) = 17000ms, echo time (TE) = 77 ms, Field of view (FOV) = 240 mm,
matrix size = 132 × 128, number of excitation (NEX) = 2. Slice thickness was 2.5 mm at 65
slice locations with no gaps, with a duration of acquisition of 15 minutes. DWI data were
first visually inspected to guarantee no obvious motion, and AIR software[20, 21] was used
to correct misalignments in the DWI data. We examined the quality of the DW data and
found that distortion induced by eddy currents was negligible when compared with the
baseline images acquired without the application of a diffusion-sensitive gradient; we
therefore elected not to correct for eddy-current distortions. The DWI data were then
constructed into tensors using linear regression least-squares-fitting to the logarithmic
measurements of the DWIs [10].

To remove non-brain tissue, we first averaged all the DWI data acquired along different
gradient directions in a voxel-wise manner and thus obtained a so-called isotropic map for
each participant, in which brain tissues have a relatively higher intensity compared with the
scalp and other non-brain tissues. A simple intensity threshold removed most non-brain
tissue. An automated software tool developed in-house removed residual tissue to provide a
brain-tissue mask, which was then used to extract the brain from the raw DW images.
Finally, we inspected each image visually and manually removed any remaining non-brain
tissue on the raw images.

We used a human brain atlas [22] to identify 10 brain regions for a more detailed
examination. These included major fiber pathways within the white matter (e.g. anterior
corona radiata, sagittal stratum, corpus callosum, and anterior limb of the internal capsule)
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(Fig. 3) and several regions in gray matter and cerebrospinal fluid (CSF). An independent
operator with two years of experience in brain anatomy manually defined in these structures
representative portions that appeared visually homogeneous. Within these regions we
compared the mean and standard deviations of EAR and FA, as well as their SNRs and the
CNRs across tissues (using Eq. 19), using a Student’s t-test.

Eq. (21)

where IMP is the difference between EAR and FA (or the degree of improvement when
using EAR relative to FA), and N is the number of samples.

RESULTS
In the snapshots that correspond to the triangle ABC in Figure 1, the FA-map forms
concentric circles (Fig. 4a) along the center of the equilateral triangle, whereas the EAR
naturally divides the map into 3 parts, each corresponding to the situation in which one of
the 3 eigenvalues is more prominent than the other two (e.g. the portion AMGT of Fig. 4b,
in which triangle AGM corresponds to the one-sixth portion of the cube in which λ1 ≥λ2
≥λ3). A line beginning at point A (where λ1 = 1 and λ2 =λ3 = 0) through G (the center of
triangle ABC) to N (the mid-point between B and C) corresponds to the region of
cylindrical symmetry of measure A, in which λ1 ≠ λ2 = λ3. Moreover, the line segment AG
depicts λ1 >λ2 =λ3, and the line segment GN represents λ1 <λ2 =λ3. Subtracting FA from
EAR (Fig. 4c) demonstrates that EAR is the superior anisotropy measure in most regions,
particularly in regions where tensors are close to cylindrically symmetric (i.e., in regions
along line segments AG, BG, and CG). Moreover, these regions of superior anisotropy
discrimination are symmetric along these lines of cylindrical symmetry, with the greatest
discrimination on line segments in which cylindrical symmetry is positive (i.e., where A >
0). Again, these regions represent tensors that have a cylindrical shape, the tensors that DTI
was primarily developed to study. The differences in values of EAR and FA are as large as
0.17.

Regions with FA values larger than 0.2 or 0.25 are conventionally segmented as white
matter, leaving background noise, CSF, and gray matter within a very limited range of FA
values to provide contrast across differing tissues within the image. EAR, in contrast, has
rescaled these ranges. The EAR values corresponding to these conventional FA thresholds
are 0.35 and 0.41 (Fig. 2a), which has increased by 75% and 64%, respectively, the range of
values for CSF and gray matter. As white matter occupies nearly two-thirds (59% to 65%)
of the total range of possible EAR values, the allocation of EAR values to differing tissues
seems more appropriate than does the allocation of FA.

Monte Carlo simulations confirm the impression (from Fig. 2b) that the SNR of EAR is
consistently higher than that of FA (Fig. 5), suggesting a relatively greater immunity of EAR
to the presence of noise. Although we expected that EAR could be relatively more sensitive
to noise when A < 0.2 (Fig. 2b), its SNR was nearly identical to the SNR of FA in this
region, perhaps because the tensors were nearly round, rendering the effects of noise on
tensor morphology relatively inconsequential. In fact, in regions where the needle-like
tensors were very thin (Fig. 5), SNR values of both EAR and FA dropped precipitously, for
similar reasons -- i.e., λ2 and λ3 are close to 0 for thin tensors, so that even low noise levels
significantly alter anisotropy values. As simulated noise increased from 1% to 10%, SNR
curves for EAR and FA diverged, and the SNR of EAR was consistently higher than that of

Xu et al. Page 9

Magn Reson Imaging. Author manuscript; available in PMC 2013 February 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FA (Fig. 5c, d), again demonstrating the greater immunity of EAR to noise. SNR levels
lower than 15 are in fact quite typical of DTI data acquired in real-world applications.

Greater SNR does not necessarily mean greater CNR. In fact, the similar SNR curves at low
noise levels accompanied nearly identical CNR curves for EAR and FA in the Monte Carlo
simulations (Fig. 6a, b). The SNR of EAR, however, became consistently higher than that of
FA at higher noise levels (Fig. 5c, d). Simultaneously, the CNR of EAR surpassed that of
FA (Fig. 6c, d) in regions where FA tends to have slightly higher CNR values when noise
levels are relatively low. The standard deviations of FA varied much more than did those of
EAR in the presence of high noise levels (Fig. 7).

Similarly, in vivo comparison of FA and EAR in five human subjects (Table 1) indicated
that EAR offered significantly better SNRs in white matter regions with confident p-values,
ranging from 44–60% (average = 49% across all 8 regions) (Tables 1 & 2). However,
improvements in SNR for EAR were not as substantial in gray matter (~ 8%) or CSF (~ 4%)
because DAI values in those regions are in the lower end of the range from 0.0 to 1.0;
consequently, noise has a relatively greater effect there than in other regions (such as white
matter) where DAI values are higher. The standard deviation of EAR is smaller than that of
FA in most regions (Fig. 7), and therefore the EAR map appears generally smoother than the
FA map (Fig. 8a & b).

The CNR with respect to a difference in A of 0.01 assessed the contrast characteristics of
DAIs for tensors with slightly differing shapes (Fig. 6). For the routine processing and
segmentation of DT images, measuring CNR across differing tissues containing tensors with
a wide variety of shapes is preferred. We found in human data that EAR offers better CNR
between white matter and other tissue types than does FA (Table 3 and Fig. 8), which
subsequently yielded better visibility of anatomical details in the EAR compared with FA
maps (Fig 9), particularly when the color map of the unit principal directions of the tensors
was scaled by the DAIs. The CNR for EAR across gray matter and CSF was nearly identical
to that for FA (1.11 versus 1.26), although EAR did offer better SNR in these regions.

DISCUSSION
We have developed a new index, EAR, for the measurement of the anisotropy of diffusion.
We propose it as an attractive alternative to the more routine use of FA in measuring
anisotropy. EAR does not require the sorting of eigenvalues, and it is therefore free from the
bias caused by such sorting [23, 24]. Although a complete and exact comparison of EAR
with FA across all possible tensor morphologies is impossible, we have provided a general
analysis (Fig. 1) and an overall comparison (Fig. 4) of the behavior and performance of
these two DAIs. Moreover, we have adopted the convention of studying the performance of
the two DAIs in discriminating tensors of cylindrical symmetry, the types of tensors that are
deemed most important and most representative in studying white matter of the brain. Both
our simulation and in vivo studies demonstrated that EAR may be preferred over FA as a
DAI. The superior performance of EAR was evident even in our study of five real-world
datasets that indeed did encompass tensors of all possible realistic morphologies. Monte
Carlo simulations approximated noise conditions found in typical DTI experiments and
found that EAR outperforms FA in terms of SNR in the presence of high noise levels (5%
noise, SNR=14.1; 10% noise, SNR=7.1) similar to the levels present in real-world datasets.
Indeed, the superior performance of EAR was confirmed in vivo. Although the CNR of
EAR for tensors of cylindrical symmetry within the same tissue type was similar to that of
FA in the presence of low noise levels, EAR provided superior CNR when noise levels were
high. Moreover, the CNR across tissue types in real-world datasets was generally superior
statistically for EAR compared with FA. This improved CNR provides a decided advantage
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for image segmentation and other procedures that depend on tissue contrast. Thus, the
robustness of EAR to noise seems to make it preferable to FA for use in discriminating
tensors of differing morphologies.

EAR also offers a number of advantages over FA for image processing. FA values for the
image background, CSF, and gray matter fall within a narrow range, typically below 0.25,
when the range of possible values for FA is from 0.0 to 1.0. The narrow range of FA values
for portions of the image other than white matter greatly complicates the separation of gray
matter, CSF, and image background from one another. In contrast, these regions within the
EAR maps occupy a wider range of values, although values for white matter still occupy the
majority (>59%) of the total range, which is appropriate for an imaging modality that is used
primarily to study fiber organization in white matter. The wider range of EAR values for
differing tissue types and background noise will allow for easier and more precise
segmentation of differing brain tissues using measures of anisotropy.

EAR may benefit fiber tracking, as well. EAR compared with FA typically yields larger
measures of diffusion anisotropy in white matter (Fig. 2). The vector for the Principal
Direction (PD) of a tensor is therefore estimated with greater confidence in white matter
when using EAR rather than FA, thus improving inferences regarding orientation of local
fibers and thereby increasing the likelihood of successful fiber tracking in tractography
studies. Previous efforts in fiber tracking have applied a nonlinear logarithmic operator of
FA [25] to enhance nonlinearly the length of the vectors within the PDs of tensors.
Enhancing the vectors through the use of EAR may achieve the same goal for fiber tracking
without incurring the added computational demands.

Finally, EAR relates directly to the surface area of a tensor’s ellipsoid. Whereas its
calculation with full precision is readily available but computationally expensive (Eq. 7), we
adopted its approximation with ultrafine error (Eq. 9). Although this simplification has been
reduced to the use of only the three eigenvalues λ1, λ2, and λ3, and thus it appears similar in
form to the other DAIs, the resemblance of EAR to the other DAIs is only superficial, as the
others are not supported naturally by a simple mathematical construct and are not as
amenable to a simple geometric interpretation as is EAR.

In conclusion, EAR is a DAI that has a number of advantages over the other DAIs that are
currently in most common use. EAR is a precise and intuitive approximation of the
curvature of a tensor’s ellipsoid that encodes directly the biologically relevant characteristics
of diffusion that a tensor is intended to measure. Therefore, EAR is likely to enhance
substantially the measurement of diffusion anisotropy and its application to the study of
tissue organization and fiber tracking in the human brain.
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Figure 1.
The Simulated Cube of a Diffusion Tensor Field FA values on the section triangle, ABC,
form a representative snapshot of all possible FA values in this cube. This triangle thus
provides a context in which we can compare the values of FA with values of EAR for the
tensors within the cube. X corresponds to eigenvalue λ1 (L1), Y to λ2 (L2), and Z to λ3
(L3). The tetrahedron OADF occupies 1/6 of the cube, the region in which λ1 ≥ λ2 ≥ λ3.
The FA value for the tensor at P(a,b,c) is the trigonometric Sin operator (multiplied by a
constant) of the angle between lines PO and OF. Thus, the tensors at P and Q have identical
FA values, as do the tensors at P′ and Q′. Indeed, all tensors (except the tensor on origin O)
that lie on a single line passing through the origin O will have identical FA values.
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Figure 2.
Comparison of EAR and FA in terms of discriminating tensor morphologies across the
range of values for the cylindrical symmetry index A. EAR is overall higher than FA,
whereas the derivative of EAR is generally lower than that of FA. Panel (a): DAI values
with respect to A; Panel (b): Derivatives of the DAIs with respect to A. The two dashed
lines approximate the range within which investigators typically establish the lower
threshold of FA values for white matter when segmenting tissue types. The generally lower
derivative of EAR compared with that of FA indicates that EAR is less sensitive than is FA
to noise perturbation in white matter regions. The boxed insert indicates the A values
corresponding to FA values equaling 0.20 and 0.25, the boundary for segmenting white
matter and gray matter in FA-maps. (EAR: Ellipsoidal Area Ratio; FA: Fractional
Anisotropy; A: Cylindrical symmetry index; DAI: Diffusion)
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Figure 3.
Brain Regions within White Matter Used for Comparison of DAIs acr: anterior corona
radiate; ss: sagittal stratum; cc: corpus callosum; scc: splenium of the cc; gcc: genu of the
cc; alic: anterior limb of the internal capsule; rlic: retrolenticular part of the internal capsule;
cg: cingulum.
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Figure 4. Comparison of EAR and FA Values on the Section Plane ABC in Fig. 1
Panel (a) show a map of FA values on plane ABC; FA values form concentric circles along
the center of the equilateral triangle. Panel (b) shows a map of EAR values on plane ABC;
each of the 3 naturally divided regions (i.e., AMGT, BMGN, CNGT) corresponds to the
situation in which one of the three eigenvalues is more prominent than the other two.
Triangle AGM corresponds to the one-sixth portion of the cube in which λ1 ≥λ2 ≥λ3. Panel
(c) shows a map of the differences obtained when subtracting FA from EAR. The Line
segment AGN corresponds to the cylindrical symmetry index A (Fig. 2), on which line
segment AG corresponds to the case in which λ1 >λ2 =λ3 and line segment GN to λ1 <λ2
=λ3. The values for EAR are higher than those for FA, particularly in regions along the line
segment AG. To the right of each image is a color bar that shows the numerical value
corresponding to each gray-scale intensity within the image.
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Figure 5.
SNR of EAR and FA for Monte Carlo Simulations with 200,000 repetitions in the
presence of differing noise levels. (a) Noise level at 1% (~SNR=70.7); (b) Noise level at 2%
(~SNR=35.4); (c) Noise level at 5% (~SNR=14.1); (d) Noise level at 10% (~SNR=7.1). The
SNR of EAR is overall higher than the SNR of FA, although the values are similar in non-
white matter regions (to the left of the dashed lines). With increasing noise levels, the SNR
of EAR is consistently higher than that of FA [e.g. in (d)], suggesting that EAR is more
robust than is FA to the presence of high noise levels.
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Figure 6. Contrast-to-Noise Ratios (CNR) with a Difference in A (cylindrical symmetry) of 0.01
for EAR and FA Using Monte Carlo Simulations with 200,000 Repetitions
(a) Noise level 1%; (b) Noise level 2%; (c) Noise level 5%; (d) Noise level 10%. CNRs of
EAR and FA are generally similar. When noise increases, the CNR for EAR tends to be
higher than that of FA.
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Figure 7. Standard Deviation of EAR and FA using Monte Carlo Simulations with 200,000
repetitions
(a), (b), (c), and (d) are with noise level at 1%, 2%, 5% and 10%, respectively. EAR
generally has smaller deviations in white matter regions than does FA. At higher noise
levels, EAR tends to have consistently lower deviations than FA.
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Figure 8. In vivo DAI Maps in a Human Subject
(a) FA map; (b) EAR map. EAR typically provides a CNR within tissues that is similar to
that for FA, although EAR has relatively greater SNR. Consequently, the EAR map appears
smoother than the FA map (e.g. the region of the corpus callosum within the dotted circle).
EAR, on the other hand, provides a higher CNR across differing tissue types (white matter
vs. other tissues), producing clearer delineation of small structures in regions of mixed tissue
types (e.g. the small structural details in the dashed rectangle). Better CNR should not be
confused with the visibility of the major fiber pathways. Thus in the FA map, only the
skeletons of major fiber pathways (a portion of the white matter) are prominently visible,
because FA does not offer a well-balanced CNR for all ranges of anisotropy values across
white matter and other tissue types. In contrast, almost all white matter regions are visible in
the EAR map.
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Figure 9. In vivo Color Maps of the Principal Direction (PD) of Tensors in a Human Subject
(a) Color map based on FA; (b) Color map based on EAR. Compared with the map using
FA values, the color map of principal directions is enhanced when using EAR values.
Anatomical details are clearer and more discernible. Color schema: red for PDs oriented in
horizontal directions; green for vertical; and blue for perpendicular to the viewing plan.
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Table 3

CNR of White Matter versus Other Tissue Types

Tissues CNR based on EAR CNR based on FA CNR Improvement

WM vs. GM 5.67 4.97 14~15%

WM vs. CSF 6.89 5.63 21~22%
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