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Introduction

The alarming decrease in fertility rates across industrialized coun-
tries is often interpreted to be rooted in a consciously decided 
decline of the desired number of children. This, in turn, is often 
thought to be caused by a change in the social and behavioral 
lifestyle. However, it seems premature to rely only on a sociopsy-
chological explanation for this phenomenon, because prominent 
lifestyle changes as well as exposure to environmental hazards 
might have led to endocrine disruption as well.1 Therefore, thor-
ough understanding of the basic mechanisms and molecular 
players involved in mammalian reproduction is pivotal to tackle 
the ever-increasing problems related to human infertility.

Polyamines are known to be indispensable for successful 
mammalian reproduction at several stages, including spermato-
genesis, oogenesis, embryogenesis, implantation or placentation.2 
Interestingly, some correlative data indicate a possible involve-
ment in the actual fertilization process. For instance, the sem-
inal plasma of infertile men contains markedly lower levels of 
the polyamines spermine and spermidine compared to normo-
spermic controls.3,4 Also, the fertilization efficiency gradually 
declines with advanced paternal age, paralleling the decrease in 
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intracellular polyamine concentrations.5,6 Declining fertilization 
efficiency may be associated with reduced semen volume, sperm 
concentration as well as polyamine-dependent sperm motility and 
morphology.5 However, it remains to be elucidated if polyamines 
also determine the fusion efficiency of oocytes and spermatozoa, 
which would be crucial for the understanding and improvement 
of both in vivo and in vitro fertilization.

The budding yeast Saccharomyces cerevisiae has blossomed into 
a major, genetically tractable model organism for the analysis of 
basic molecular processes like the cell cycle, autophagy and pro-
tein-protein interactions.7,8 In addition, the last two decades have 
established yeast as a model for the study of cancer,9,10 aging11-13 
and neurodegenerative disorders.14-16

During the yeast mating process, two haploid cells of opposed 
mating types (“MATa” and “MATα”) combine to form a single 
diploid cell. This event is reminiscent of the human fertilization 
process, in which the fusion of two haploid cells, the spermato-
cyte and the oocyte, results in a diploid zygote. Here, we estab-
lish the budding yeast S. cerevisiae as a new model organism for 
the analysis of fertilization mechanisms in higher eukaryotes. 
Moreover, we unveil a conserved and specific role of spermidine 
in the positive regulation of this process.
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mating efficiency, which showed similar levels as the wild-type 
control (Fig. 1E). Accordingly, Δspe4 cells displayed no defect 
in shmoo formation (Fig. 1F). Altogether, these results point 
towards a specific role for spermidine (rather than spermine) in 
the promotion of yeast mating.

Spermidine determines yeast mating in an autophagy-
independent manner. We next asked whether the significance of 
spermidine during mating might involve autophagy, a process of 
cellular self-digestion that is potently induced by spermidine.25-30 
Deletion of the autophagy-related gene ATG7, which is essential 
for autophagic execution in S. cerevisiae, did not influence mating 
efficiency (Fig. 1G). Furthermore, the mating efficiency of Δatg7 
yeast cells additionally deleted in SPE2 could still be restored to 
wild-type levels via external spermidine supply (Fig. 1H). These 
data suggest that spermidine-controlled mating in yeast does not 
depend on autophagy.

Spermidine modulates fertilization in the nematode 
Caenorhabditis elegans. In order to establish whether our results 
might be relevant to fertilization in higher eukaryotes, we 
explored the impact of spermidine on fertilization in C. elegans. 
Disruption of spermidine biosynthesis through deletion of sper-
midine synthase (SPDS-1) led to a significant reduction of the 
total number of fertilized eggs laid by the worm (Fig. 2A). As 
in yeast, this deficiency could be largely prevented by external 
supply of spermidine to the culture medium (Fig. 2A). This sper-
midine-mediated fertilization control also seems to be autophagy-
independent in worms, since RNAi-driven knockdown of bec-1, 
a gene encoding a cardinal autophagic regulator in C. elegans, did 
not influence egg fertilization rates (Fig. 2B). Thus, spermidine 
modulates fertilization in worms in a manner akin to yeast, sug-
gesting that yeast mating constitutes a bona fide model for the 
fertilization process of oocytes by spermatocytes.

Discussion

Here, we demonstrate that sexually reproducing yeast may con-
stitute a valuable model for studying basic mechanisms that gov-
ern the fertilization process in higher eukaryotes. Specifically, 
we identified the polyamine spermidine to be indispensable for 
successful mating in S. cerevisiae. Moreover, we observed that 
spermidine is equally crucial for effective fertilization in the 
nematode C. elegans. In both cases, the mechanisms underlying 
this pro-fertilizing effect are autophagy-independent. Altogether, 
we propose that, as it occurs in the sexual reproductive variant 
of baker’s yeast, the fusion of two haploid yeast cells forming 
a diploid cell mirrors the fertilization process of higher eukary-
otes, where two haploid gametes conjugate to generate a diploid 
zygote.

Our hypothesis arguing for a conserved regulation of such 
haploid fusion events during fertilization is supported by recent 
evidence suggesting that mating-associated yeast cell fusion may 
represent a useful model system for studying the mechanisms of 
cytogamy and karyogamy.31-33 Intriguingly, a recent report has 
established structural similarities between proteins involved in 
sperm-egg recognition in mammals and fusion of haploid yeast 
cells.34 Our results with yeast and nematodes now reinforce the 

Results

Disruption of spermidine production entails a severe mating 
defect in yeast. Polyamines are known to be indispensable for 
successful mammalian reproduction and have been implicated 
in both prenatal and postnatal processes, such as embryogenesis, 
placentation and lactation.2 Interestingly, polyamines have been 
suggested to be involved in the modulation of membrane fusion 
events.17 However, their impact on the actual fertilization process 
remains undetermined, perhaps because of the technical diffi-
culty of mechanistically exploring the fusion of spermatocytes 
and oocytes.18 To develop a method to model this process, we 
investigated sexual reproduction in the baker’s yeast S. cerevisiae, 
during which two haploid cells of opposed gender or mating types 
(“MATa” and “MATα”) combine to generate one diploid yeast 
cell. To specifically explore the contribution of the polyamine 
spermidine, yeast mating was monitored between “MATα” wild-
type cells and “MATa” deletion mutants lacking SPE2 (Δspe2), 
the gene coding for S-adenosyl-methionine decarboxylase, which 
is essential for spermidine biosynthesis. This disruption of sper-
midine production in one of the mating partners drastically 
reduced the overall mating efficiency as compared to the con-
trol mating scenario, involving “MATa” and “MATα” wild-type 
cells (Fig. 1A). Preceeding addition of exogenous spermidine to 
cultures of “MATa” Δspe2 cells restored the mating efficiency to 
control levels (Fig. 1A). In conclusion, spermidine is essential for 
efficient mating in S. cerevisiae.

Pheromone-induced shmoo formation depends on sper-
midine. An indispensable step during human fertilization is 
spermatocyte capacitation and the acrosome reaction, which 
is necessary for penetration of the egg by the spermatocyte.19-21 
Similarly, sexually reproducing yeast cells must form a nodule 
called “shmoo” for mating.22,23 The shmoo is produced upon sens-
ing the mating pheromone of the opposite sex, which is released 
by and signalizes the availability of suitable mating partners.23,24 
Thus, to further characterize the impact of spermidine on yeast 
mating, we quantified shmoo formation upon external adminis-
tration of 1 μM α-pheromone to wild-type and Δspe2 “MATa” 
cells. As expected, α-pheromone induced pronounced shmoo 
formation in viable wild-type cells as quantified by microscopic 
analysis (Fig. 1B and C). In contrast, phermone-treated viable 
Δspe2 cells only occasionally developed shmoos (Fig. 1B and C). 
Again, external supplementation of 100 μM spermidine reverted 
the deficient shmoo formation in spe2 disruptants to wild-type 
control levels (Fig. 1B and C). Thus, spermidine is indispensable 
for shmoo formation, which, in turn, is required for successful 
mating in yeast. Of note, intracellular levels of spermidine as well 
as those of its precursor putrescine are significantly elevated upon 
treatment with mating pheromone (Fig. 1D).

Polyamine-mediated mating control in yeast is spermidine-
specific. To evaluate the specificity of spermidine in accounting 
for the observed positive effect on yeast sexual reproduction, we 
performed mating experiments with cells lacking spermine syn-
thase (Spe4p). This enzyme catalyzes the generation of the poly-
amine spermine from spermidine in the polyamine biosynthetic 
pathway. Intriguingly, deletion of SPE4 did not compromise 
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Figure 1. Yeast mating efficiency and shmoo formation depends on the availability of spermidine but is autophagy-independent. (A) Mating effi-
ciency of wild-type and Δspe2 cells with or without external administration of 100 μM spermidine as determined via clonogenic mating assay. Mating 
efficiency of wild-type control was set at 1. Data represent mean ± S.E.M. (n = 3; ***p < 0.001). (B) Representative sample pictures of wild-type and 
Δspe2 cells (MATa) after treatment with 1 μM α -pheromone for 3 h with or without external administration of 100 μM spermidine. (C) Microscopic 
quantification of cells treated as described in (B) and displaying a shmoo. Only viable cells were considered, and at least 3,000 cells per strain and 
experiment were manually counted. The portion of cells displaying a shmoo was normalized to that of the untreated wild type control, which was set 
at 1. Data represent means ± S.E.M (n = 4; **p < 0.01). (D) Relative intracellular concentration of spermidine and its precursor putrescine per OD600 of 
wild-type cells (mating type a) either treated with 1 μM α-pheromone or left untreated (control), as determined using LC/MS/MS and normalized to 
the intracellular concentrations of the untreated control. Data represent means ±S.E.M. (n = 5; ***p < 0.001). (E) Mating efficiency of wild-type, Δspe2 
and Δspe4 strains. Data were determined via clonogenic mating assay and represent means ± S.E.M. (n = 3; ***p < 0.001). (F) Shmoo-formation in wild-
type, Δspe2 and Δspe4 cells (mating type a) after treatment with 1 μM α-pheromone for 3 h (compare to Fig. 1B). Data represent means ± S.E.M. (n = 4; 
**p < 0.01). (G) Mating efficiency of wild-type and Δatg7 cells. Data were determined via clonogenic mating assay and represent means ± S.E.M. (n = 3; 
***p < 0.001). Mating efficiency of wild-type control was set at 1. (H) Mating efficiency of wild-type, Δspe2 and Δspe2Δatg7 strains with or without 
external administration of 100 μM spermidine. Data was determined via clonogenic mating assays and represent means ± S.E.M. (n = 3; ***p < 0.001). 
Mating efficiency of wild-type control was set at 1.
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Spermidine is required for shmooing, which is a pre-
requisite for successful mating and represents the polar-
ized growth of the yeast cell towards the mating partner. 
Shmoo formation in yeast on the one hand and capacita-
tion as well as the acrosome reaction in spermatocytes of 
higher eukaryotes on the other hand exhibit strong simi-
larities: both manifest prior to the fusion of two haploid 
cells; both are indispensable for fusion efficiency, and 
both are morphologically similar to the extent that they 
involve protruding areas of the mating cells. In our hands, 
shmooing depends specifically on spermidine but does 
not seem to involve the generation of the closely related 
polyamine spermine. In contrast, recent in vitro data do 
not suggest such specificity for the acrosome reaction. In 
the ram spermatozoid, externally applied spermine does 
localize to the acrosome,38 and low concentrations of 
spermine can stimulate the acrosome of bovine sperma-
tozoa.39 However, these in vitro studies did not compare 
spermine to spermidine and did not consider the possibil-
ity that spermine oxidase can convert spermine into sper-
midine. As a result, it is conceivable that such supposedly 
spermine-related effects might in fact be connected to the 
generation of effective spermidine levels. This will need 
clarification in future studies. Our conclusion that sper-
midine is specific for shmooing and mating control, how-
ever, is based on the observation that deletion of spermine 
synthase does not affect mating efficiency or shmooing. 
This does not exclude the possibility that spermine gen-
eration may be alternatively achieved through yet to be 
identified biosynthetic polyamine routes.40

Spermidine potently induces autophagy in a range of 
model organisms including mice, worms, flies and yeast.30 
This had raised the question whether the positive effects 
on the sexual reproduction of yeast and nematodes might 
rely on its autophagy-promoting potential. Our data 
demonstrate that mating/fertilization is normal in yeast 
cells and nematodes lacking proteins that are essential 
for autophagy, like Atg7p in S. cerevisiae or beclin-1 in 
C. elegans. Moreover, external administration of spermi-

dine restored the mating efficiency of spermidine biosynthesis-
deficient yeast cells to wild-type levels, even in the context of 
deficient autophagy. Thus, autophagy is not involved in the posi-
tive effects of spermidine on mating/fertilization. Consequently, 
alternative pathways must be responsible for the herein observed 
effects and involve a different molecular target of spermidine. 
Possible candidates include calcium channels, which are regu-
lated by spermidine41 and required for effective yeast mating as 
well as for capacitation and the acrosome reaction in humans.42,43 
It is thus conceivable that a distortion of spermidine-tuned cal-
cium flux regulation deriving from unbalanced spermidine lev-
els might result in adverse mating/fertilization effects. Whether 
spermidine affects calcium channels that are crucial for haploid 
cell fusion remains to be explored.

Altogether, this study provides first in vivo evidence that the 
mechanisms underlying mating-related cell fusion of haploid 
yeast cells might parallel fertilization of higher eukaryotes. It 

concept that the mechanisms accounting for the fusion among 
gametes are much more conserved than anticipated.

This study determines spermidine as a crucial regulator 
of mating/fertilization. Interestingly, spermidine levels have 
been shown to continuously decrease during yeast chronologi-
cal aging11,30 and with increasing human age.5,6 This is, in turn, 
accompanied by decreased fertilization efficiency.5 We show that 
the intracellular concentrations of spermidine and its precursor 
putrescine are significantly elevated upon mating induction via 
treatment with the corresponding mating pheromone. However, 
such increase could also originate in other effects elicited through 
treatment with mating pheromone, which, e.g., also induces cell 
cycle arrest.23 In fact, high spermidine concentrations have been 
previously linked to repression of cell division.35-37 Thus, a causal 
relationship between the herein identified elevation of intracel-
lular spermidine levels and the induction of mating will need to 
be further elucidated in future studies.

Figure 2. Fertilization in C. elegans is modulated by spermidine. (A) Total 
number of fertilized eggs laid by wild-type and spermidine synthase (SPDS-1)-
deficient worms, fed with or without 50 μM spermidine-supplemented food. 
Data represent mean ± S.E.M. (n = 5; **p < 0.01, ***p < 0.001). (B) Total number 
of fertilized eggs laid by wild-type and bec-1-deficient worms. Data represent 
mean ±S.E.M. (n = 5).
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of colonies corresponding to BY4741 cells, i.e. CFU of plate 2/
CFU of plate 1.

Yeast shmooing efficency. For shmooing efficiency experi-
ments, cultures were inoculated from fresh overnight cultures 
to a density with an absorbance of 0.1 as determined using a 
photometer; this absorbance correlated to approximately 1 × 106 
cells/ml. Depending on the experiment, the culture was sup-
plemented or not with 100 μM spermidine and let grow for 
20–24 h. Thereafter, the cultures were inoculated to a density 
with an absorbance of 0.3 in new non-indented flasks containing 
10 ml fresh spermidine-free SCD medium that included 50 μM 
Na-succinate and was adjusted to pH 4.3 to retard pheromone 
proteolysis during subsequent pheromone treatment.48 Cultures 
were then treated with 1 μM α-pheromone. After 3 h, cultures 
were centrifuged (3 min., 3,000 rpm) and diluted in PBS buf-
fer containing propidium iodide (PI) at a concentration of 
0.1 μg/ ml. PI as an intercalating, fluorescent agent was used to 
evaluate cell viability and exclude inviable cells from subsequent 
microscopic quantification. Cells were incubated for 10 min and 
used for microscopy.

Microscopy. Microscopy was performed with a Zeiss Axioskop 
microscope using a Zeiss Plan-Neofluar objective lense with 40× 
magnification and 1.0 numerical aperture in oil (using Zeiss 
Immersol) at room temperature. Imaging medium was PBS. 
Fluorochrome was propidium iodide (PI). Fluorescence micro-
scopic sample images were taken with a Diagnostic Instruments 
camera (Model: SPOT 9.0 Monochrome-6), acquired using the 
Metamorph software (version 6.2r4, Molecular Devices) and pro-
cessed with IrfanView (version 3.97, Wiener Neustadt) software. 
Specifically, picture processing involved coloring of PI pictures, 
creation of corresponding DIC/PI overlays (used to determine 
inviable cells to exclude from quantification) with Metamorph 
and cropping of representative areas with IrfanView.

C. elegans strains and growth conditions. Experiments were 
carried out using the Caenorhabditis elegans N2 wild-type strain. 
The following mutant strain was used: RB2481 spds-1(ok3421) 
II (referred to in the text as SPDS-1). We followed standard pro-
cedures for C. elegans strain maintenance.49 Nematode rearing 
temperature was kept at 20°C.

C. elegans fertility determination. Preparation of Escherichia 
coli (OP50) plates for worm feeding was performed as previ-
ously described.49 Briefly, bacteria on seeded 7 ml NGM 
plates were killed by exposure to UV irradiation for 10 min 
(0.5  J/ cm2) using a UV crosslinker (BIO-LINK-BLX-E365, 
Vilber Lourmat). Spermidine was prepared by dilutions in  
50 μl sterilized water and applied to the top of the OP50 lawn 
on the agar medium (7 ml NGM plates). Identical solutions of 
drug-free water were used for the control plates. Plates were then 
allowed to dry overnight. N2 and SPDS-1 worms previously 
grown to L4 stage were transferred to fresh plates with or with-
out spermidine. After 2 d, the progeny was transferred to cor-
responding fresh plates. Upon reaching L4 stage, single worms 
were transferred to plates without spermidine. One worm was 
transferred per plate. The day of this transfer was defined as  
t = 0. After t = 0, worms were transferred to fresh plates without 
spermidine every day in order to facilitate egg counting for each 

is tempting to speculate that yeast cell fusion might also model 
somatic fusion events as they occur in mammals during the for-
mation of the syncytiotrophoblast, skeleton muscle fibers and 
osteoclasts.44-47 In fact, polyamines have been previously linked 
to the modulation of membrane fusion and aggregation.17 Yeast’s 
enormous technical advantages, such as its inexpensiveness, 
convenient handling, rapid growth and uncomplicated DNA 
modification, have defined its value as a model for many areas 
of molecular biology. Thus, sexual reproduction and specifically 
fertilization might join as a further area to be explored in S. cere-
visiae and thereby even more intimately link yeast and human.

Materials and Methods

Reagents. Spermidine (Sigma) was dissolved in sterilized water 
to a stock solution concentration of 100 mM and stored as single 
use aliquots at -20°C. Propidium iodide (PI, Sigma) was stored at 
-20°C as a stock water solution of 100 μg/ml.

Yeast strains and growth conditions. Yeast experiments were 
carried out in Saccharomyces cerevisiae BY4741 (MATa his3Δ1 
leu2Δ0 met15Δ0 ura3Δ0) and the respective null mutants 
Δspe2 and Δspe4 as well as in BY4742 (MATα his3Δ1 leu2Δ0 
lys2Δ0 ura3Δ0), which were all obtained from Euroscarf. All 
strains were grown on liquid SC medium containing 0.17% 
yeast nitrogen base (BD Diagnostics), 0.5% (NH

4
)

2
SO

4
, 30mg/l 

of all amino acids (except 80mg/l histidine, 60 mg/l lysine and  
200 mg/l leucine), 30 mg/l adenine, 320mg/l uracil and 2% glu-
cose. For experiments, yeast strains from 25% glycerol stocks at 
-80°C were streaked on YPD plates and stored at 4°C for up to 
10 d, from which overnight cultures were inoculated. Incubation 
of all liquid cultures was performed with 145 rpm at 28°C. 
Cell densities were determined using an automated cell counter 
(CASY1, Roche Innovatis).

Yeast-mating efficency. To determine mating efficiency, 
BY4741 cultures were first inoculated into 100 ml quadruple-
indented flasks at 10 ml cell culture each from fresh overnight 
cultures to a cell density of 1 × 106 cells/ml and, depending on the 
experiment, supplemented or not with 100 μM spermidine. After 
20–24 h of growth, 2 × 106 cells of each flask were transferred to 
a new non-indented flask containing 10 ml SCD medium and 
mixed with 1 × 107 cells BY4742 of a freshly made overnight cul-
ture. Of note, comparable viability of all cultures was verified 
by clonogenic survival plating on YPD as described before.12,13 
Three hours after mixing, an aliquot was plated on two differ-
ent agar plates, respectively: (1) 2,000 cells were plated on agar 
plates containing 0.17% yeast nitrogen base, 0.5% (NH

4
)

2
SO

4
, 

320 mg/l uracil, 200 mg/l leucine, 80 mg/l histidine and 30 
mg/l methionine to determine the amount of both viable BY4741 
(addition of methionine, see genotype) and diploid cells (arisen 
from successful mating of one BY4741 and one BY4742 cell) and 
(2) 2,000 cells were plated on agar plates containing 0.17% yeast 
nitrogen, 0.5% (NH

4
)

2
SO

4
, 320 mg/l uracil, 200 mg/l leucine 

and 80 mg/l histidine to assess the number of viable diploid cells 
only. All plates were incubated at 28°C for 2 d, and resulting col-
ony-forming units (CFU) were counted. The mating efficiency 
was determined as the number of diploid colonies per number 
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X, Phenomenex) using eluent A (flow rate 1.5 ml min). After 
2 min, online SPE was switched to the analytical column and 
the polyamines were eluted and separated on the analytical col-
umn within 4 min using isocratic conditions (80% eluent B, 
flow rate 250 μl/ min). Polyamines were detected in MRM mode 
using following transitions: Spermidine (m/z 446 → 298V), 
putrescine (m/z 289 → 115), 13C

4
-spermidine (m/z 450 → 302), 

2H
8
-putrescine (m/z 297 → 123).
Statistical analyses. Error bars (±S.E.M.) are shown for inde-

pendent experiments. In cases when experiments were performed 
in parallel, a common ONC for each strain was used and (1) fresh 
medium in separate flasks was inoculated directly from the cor-
responding ONCs (knockout studies). The number of inde-
pendent data points (n) is indicated in the figure legends of the 
corresponding graphs. Statistical analyses were carried out using 
the Microsoft Office 2003 Excel software package (Microsoft 
Corporation). Mean values were compared using unpaired t-tests.
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day. The number of eggs laid by each single worm was moni-
tored until egg laying ceased.

For fertility experiments involving RNAi-suppression of  
bec-1, a previously described50,51 plasmid, which directs the syn-
thesis of a dsRNA corresponding to the bec-1 gene in E. coli, 
was used. HT115(DE3) bacteria were transformed with either 
this bec-1 RNAi plasmid or the pL4440 control vector. Before 
seeding, 2 mM IPTG were added to the bacterial culture and 
incubated for 15 min. The plates seeded with RNAi or pL4440 
vector-containing bacteria were subsequently used as described 
above for the OP50-seeded plates in the fertility assay experi-
ments. Each fertility assay was conducted at least twice, and fig-
ures represent typical assays.

Extraction and measurements of polyamines. Extraction 
and measurements of polyamines were essentially performed as 
described in Eisenberg et al.30 For acid extraction of polyamines 
from yeast cells, culture equivalents of 2 OD

600
 were washed with 

ddH
2
O, resuspended in 1,000 μl ice-cold 5% TCA with isotopi-

cally labelled internal standards for spermidine (13C
4
-spermidine) 

and putrescine (2H
8
-putrescine) and incubated on ice for 1h, 

with vortexing every 15min. [Calibration standards were pre-
pared by spiking extraction buffer with specific concentrations 
of spermidine and putrescine and internal standards. Polyamines 
were derivatized to carbamyl-derivatives by adding 125 μl of  
1 M carbonate buffer (pH 9), 800 μl water and 20 μl of iso-
butyl chloroformate to 100 μl of sample or calibration standard 
containing internal standards]. Supernatants were neutralized 
with 100 μl of 2M K

2
HPO

4
 and stored at -80°C until polyamine 

measurements.
Polyamines were determined using LC/MS/MS. All analy-

ses were carried out on an Ultimate 3000 System (Dionex, 
LCPackings) coupled to a Quantum TSQ Ultra AM (Thermo 
Scientific) using an electrospray ion source. The system was 
controlled by Xcalibur Software 2.0. The stationary phase 
was a Kinetex 2.6 μm C18 100A 50 mm × 2.1 mm column 
(Phenomenex). Two hundred and fifty microliters of the deriva-
tized samples were loaded on to an online-SPE column (Strata 
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