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Summary

During infection, the host response develops effector mechanisms to com-

bat the parasite. However, this response can become uncontrolled or regu-

lated by mechanisms that modulate the inflammatory reaction. The

number of parasites that infects the host, such as trypomastigotes in Cha-

gas disease, may also influence immune activation and disease pathology.

We evaluated the inflammation and immune regulation that follows

Trypanosoma cruzi infection with low (300), intermediate (3000) or high

(30 000) parasite loads. Our results showed that the load of parasite inoc-

ulum influenced disease outcome: the higher the number of parasites in

the inoculum, the lower were the survival rates. There was a strong asso-

ciation between parasitism and inflammatory infiltrate in the heart and

the parasite inoculum determined cytokine interplay in this tissue, as

shown by increased interferon-c, tumour necrosis factor-a, interleukin-17

(IL-17) and IL-23 in the 300 and 30 000 inoculum groups, higher IL-4

and IL-10 in the intermediate-inoculum mice, and elevated IL-6 produc-

tion in the heart of mice in the 3000 and 30 000 groups. The number of

T cells and antigen-presenting cells was augmented in the infected groups,

especially for the splenic CD4+ CD25+ regulatory T cells expressing

CD45RBlow, GITR, PD-1 and FoxP3 in the group with the highest inocu-

lum. Interestingly, these mice also presented an apparent decrease in

CD4+ CD25+ FoxP3+ cells in the cardiac infiltrate, in contrast to the

intermediate inoculum group, which showed elevated numbers of these

regulatory leucocytes in the heart. Finally, our results demonstrated that

parasite load during T. cruzi infection is linked to the response pattern

that will result in parasite/inflammation control or tissue damage.

Keywords: immune response; inflammation; parasite inocula; regulatory

T cells; Trypanosoma cruzi.

Introduction

During an infection, the effector host response aimed pri-

marily at parasite elimination may lead to uncontrolled

inflammation, which can later be modulated by regula-

tory mechanisms to avoid tissue damage.1 On the other

hand, pathogens have evolved diverse mechanisms to sur-

vive for a prolonged period and produce persistent or

latent infection, mainly by interacting with these regula-

tory mechanisms of the host immune response.2 In this

way, parasites may directly induce the production of reg-

ulatory cytokines such as interleukin-10 (IL-10) and

transforming growth factor-b (TGF-b) or indirectly act

through the generation of regulatory T (Treg) cells in

experimental infections.3–5

In Chagas disease, caused by the protozoan Trypanoso-

ma cruzi, a strong inflammatory and preferentially

T helper type 1 (Th1) effector response is essential to

more efficient killing of the parasite.6 Along with the pro-

duction of Th1 cytokines, the Th17 responses have also

been linked to the pathogenesis of Chagas disease,

because IL-17 is produced during the acute phase of

T. cruzi infection and is thought to control cardiac

inflammation by modulating the Th1 response.7 Con-

versely, in T. cruzi infection the production of regulatory

cytokines may contribute to the persistence of the parasite

ª 2012 The Authors. Immunology ª 2012 Blackwell Publishing Ltd, Immunology, 138, 145–156 145

IMMUNOLOGY OR IG INAL ART ICLE



inside host cells, causing inhibition of the production of

nitric oxide (NO) and cytokines such as IL-12 and inter-

feron-c (IFN-c), which are essential to parasite elimina-

tion.8,9 Moreover, it is known that in mice infected with

T. cruzi, Treg cells migrate to the heart and treatment

with anti-CD25 or anti-GITR monoclonal antibodies

results in increased mortality of the animals.10 It is feasi-

ble that the extent of this regulatory process plays a key

role in the outcome of the disease, by inhibiting the prej-

udicial inflammatory response that could cause tissue

damage and by allowing parasite persistence. Therefore, it

is possible that the modulation of the immune response

against T. cruzi may determine the development of the

different symptomatic forms of the disease,11,12 such as

the acute myocarditis, which is characterized by a diffuse

inflammatory reaction with or without T. cruzi nests,

necrosis of cardiomyocytes and interstitial oedema.13

Another important feature that may be related to the

pathogenesis of Chagas disease during the acute phase and

its evolution to chronic forms is the number of trypom-

astigotes that naturally infect the host organism. Recent

studies reported that oral infections may occur as a result

of the ingestion of food or drinks contaminated with the

metacyclic form of the parasite.14 In these cases the amount

of inoculum and pathogenicity of the strain can determine

the severity of the disease.15 The parasite load during

T. cruzi infection may also influence the activation of the

immune response and disease pathology in the chronic

phase of Chagas disease.16 In addition, patients presenting

specific clinical forms of Chagas disease, such as the cardiac

form, may have parasite persistence that could maintain

the immunological activation, which would be responsible

for enhanced tissue damage in susceptible hosts.17

Even after several decades of research, the pathogenesis

of Chagas disease remains unclear. In this context, unrav-

elling the immune response that may follow infection and

its correlation to the progression of the disease and para-

site persistence is an important goal for the prognosis

and treatment of infected individuals, especially regarding

the low or high parasite loads to which patients may be

exposed during infection. Accordingly, as we believe that

the degree of the inflammatory response and the tissue

injury that follows infection may be dependent on the

amount of parasite in the first contact between the host

and T. cruzi, we evaluated the inflammatory response

outcome, tissue damage and immune regulation mecha-

nisms that occur after T. cruzi infection with low, inter-

mediate or high parasite loads.

Materials and methods

Animals

Male C57BL⁄6 mice (8–10 weeks old) were obtained and

housed in our animal facility at Disciplina de Biologia

Celular, UFTM, Uberaba, Brazil. Mice were given water

and food ad libitum during the experimental period and all

procedures were approved by the local ethical committee

for animal research (CEUA – protocol number 96).

Parasites and infection

The ‘Colombian’ strain of T. cruzi was maintained by

weekly passage in Swiss mice. Initially, for each experi-

ment, one Swiss mouse was heparinized intraperitoneally,

and then killed in a CO2 chamber for blood collection

from the ophthalmic venous plexus. Five microlitres of

blood was placed on slides covered with a coverslip size

22 9 22 mm to allow the microscopic parasites to be

counted at 40 9 magnification, in 50 microscope fields,

according to Brener.18 After determining the concentra-

tion of parasites/ml in blood, these parasites were used

for infection of the C57BL/6 mice. For the inoculum,

the blood was diluted in saline (NaCl 0�9%) and inocu-

lated subcutaneously at a volume of 100 ll per mouse.

Natural infection with T. cruzi seems usually to occur

with low parasite loads, so it was decided to first evalu-

ate the effects of an initial inoculum considered low

(300 parasites) to mimic a natural infection.19 The other

inocula (3000 and 30 000) were based on preliminary

studies developed by our research group to determine

the inoculum necessary for differentiating low, medium

and high infections in mice, besides the literature data

regarding accidental infections with elevated numbers of

parasites.14 Then, for experimental infection, C57BL/6

mice were divided into four groups according to the

inoculum used: five control animals inoculated with sal-

ine, five mice inoculated with 300 bloodstream forms of

T. cruzi, five mice inoculated with 3000 T. cruzi and five

animals inoculated with 30 000 blood-stage trypomastig-

otes, injected subcutaneously, per experiment. Parasita-

emia was evaluated in 5 ll blood drawn from the tail18

every 3 days, and mortality was monitored daily in

infected mice. Before necropsy, mice were killed in a

CO2 chamber.

Histology

Fragments of heart were fixed in Methacarn solution and

embedded in paraffin. Sections, 5 lm thick, were stained

with haematoxylin & eosin for standard histological pro-

cedures. The images for inflammatory infiltrate analysis

were captured using the 40 9 microscope objective

through a digital video camera (Evolution MP 5.0–colour–
Media Cybernetic, Silver Spring, MD) coupled to a light

microscope (Nikon – Eclipse 50i, Melville, NY) that sends

images to a computer. Analysis of the inflammatory infil-

trate was performed on heart tissues from infected mice.

The damaged areas were defined as the areas with

breakdown of muscle fibres and accumulation of
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inflammatory cells, according to ‘Dallas’ criteria.20 We

analysed 156 acquired images in left and right ventricles

of the heart and the septum, totalling an area of

0�58 mm2, that was considered a statistically reliable

quantified area, according to Hally.21 Then, we carried

out a morphometric analysis to obtain the relationship

between the delineated damaged area covered by inflam-

matory infiltrate and the total area of tissue visualized in

the acquired image. The result was expressed as a per-

centage, using the following formula: P = (Da/Ta)*100,
where P represents the percentage of inflammatory infil-

trate, Da is the damaged area covered by inflammatory

infiltrate and Ta is the total area of the acquired image.

Tissue extract preparation for cytokine measurements

The heart tissues were first weighed and then immersed

in equal volumes of PBS (500 ll per tissue) containing

Complete Protease Inhibitor Cocktail Tablets (Roche

Applied Sciences, Indianapolis, IN). The protease inhibi-

tor solution was prepared by adding one tablet to 50 ml

PBS, according to the manufacturer’s instructions.

Extracts were obtained by homogenizing tissues with an

electrical tissue homogenizer in the protease inhibitor

buffer followed by centrifugation at 300 g for 15 min,

after which the supernatants were collected and stored at

�70° until use. Cytokines [IFN-c, tumour necrosis fac-

tor-a (TNF-a), IL-4, IL-10, TGF-b, IL-6, IL-23 and

IL-17] were measured according to the manufacturer’s

instructions, using commercially available ELISA kits

(R&D Systems, Minneapolis, MN). The cytokine concen-

trations were normalized taking into account the weight

of each tissue and the results were expressed as pico-

grams per milligram of tissue.

Immunohistochemistry

The paraffin-embedded slides were processed and immu-

nostained for detection of T. cruzi nests with anti-Trypan-

osoma cruzi sera. This serum was produced in rabbits

inoculated with T. cruzi obtained from the blood of pre-

viously infected Swiss mice. After a period of 3 months,

rabbit blood was collected, centrifuged and plasma con-

taining polyclonal anti-T. cruzi antibodies was obtained.

The antibody was used at a concentration of 1 : 200

diluted in 1% BSA in PBS.

Quantification of T. cruzi nests stained by immunohis-

tochemistry was performed using IMAGEJ software (Wayne

Rasband National Institutes of Health, Bethesda, MD)

and the results were expressed in nests/cm2. The criteria

for determining the number of nests were defined by the

researchers, who considered nest regions to be those con-

taining at least three grouped amastigotes per stained

region. The software only reported the total number of

nests previously delineated by the researcher.

Flow cytometry

For immunophenotyping spleen cells, the whole organs

were minced with tweezers, the suspension was filtered

and washed in PBS, and cells were layered on a tube con-

taining Ficoll-Paque (GE Healthcare Bio-Sciences Corp,

Pittsburgh, PA). Then, cells were centrifuged for 30 min

at room temperature (400 g). Leucocytes were recovered

from the interface, washed with PBS and the viability was

evaluated by trypan blue exclusion in a Neubauer cham-

ber. Cells were then counted and used for immunolabel-

ling assays. Briefly, two-colour or three-colour cytometry

was performed by incubating leucocytes with FITC-conju-

gated anti-CD8a, phycoerythrin Cychrome 5-conjugated

anti-CD4 (anti-CD4-PE-Cy5) and anti-CD3e-PE; anti-

CD25-FITC, anti-CD4-PE-Cy5 and one of the Treg mark-

ers (anti-FoxP3-PE, anti-GITR-PE, anti-CD45RB-PE or

anti-PD-1-PE), besides monocytes staining with anti-

CD11c-PE with anti-CD11b-FITC. All antibodies and

their respective isotype controls were from BD Bioscienc-

es (San Jose, CA).

For flow cytometry analysis of the heart Treg cells, the

organs collected from 10 mice at day 22 post-infection

were pooled, washed, minced and incubated for 1 h at

37° with RPMI-1640 (Sigma-Aldrich®, St Louis, MO)

and 0�05 mg/ml of liberase TL (Roche, Indianapolis, IN).

After tissue digestion and maceration, we performed

Ficoll-Paque (GE Healthcare Bio-Sciences Corp) gradient

centrifugation for 30 min at room temperature (400 g) to

obtain mononuclear cells. Leucocytes were recovered

from the interface, washed with PBS and their viability

was evaluated by trypan blue exclusion. Cells were then

counted and used for an immunolabelling assay with

anti-CD4-PE-Cy5, anti-CD25-FITC and anti-FoxP3-PE

(BD Biosciences), as described above. Fluorocytometric

acquisition of spleen and heart leucocytes was performed

in a FACscalibur apparatus (Becton Dickson, San Jose,

CA) and analysis was performed using FLOWJO software

(Tree Star, Ashland, OR).

Statistical analysis

In all variables the normal distribution and homogeneous

variance were tested. When the distribution was normal

and there was homogeneous variance we used parametric

tests like the analysis of variance with Tukey’s multiple

comparison, when three or more groups were compared.

When the data did not reach a Gaussian distribution we

used the non-parametric tests Kruskal–Wallis, followed by

Dunn’s multiple comparison. For correlations, we used

the Spearman correlation test. The Kaplan–Meier method

was used to compare survival rates. Differences were con-

sidered statistically significant when P < 0�05. All analyses
were performed using the GRAPHPAD PRISM 5.0 software

(San Diego, CA).
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Results

The load of parasite inoculum influences infection
outcome

First, to verify whether parasite loads were related to the

infection outcome, C57BL/6 mice were infected with 300,

3000 or 30 000 bloodstream forms, the trypomastigotes,

of the ‘Colombian’ strain of T. cruzi.

Results demonstrated that the higher the number of par-

asites in the inoculum, the lower were the survival rates

observed during the experimental infection, pointing to

the elevated mortality of mice infected with 30 000 try-

pomastigotes (Fig. 1a). This group also presented a shorter

pre-patent period and augmented parasitaemia throughout

the periods evaluated (Fig. 1b). Notably, the group with

the lower inoculum showed a continuous increase in para-

sitaemia, compared with the other groups, which pre-

sented a decrease after day 24 post-infection. However,

despite this later decrease, the mice given the higher inocu-

lum maintained the most elevated levels of parasitaemia

until day 30, when we observed elevated mortality in this

group (Fig. 1a,b). In addition, mice exposed to the inter-

mediate (3000) or low (300) inocula showed intermediate

or lower parasitaemia levels and elevated survival com-

pared with the high-inoculum group (Fig. 1a,b).

Parasitism and inflammatory infiltrate in heart tissues
are associated with the parasite load during infection

Because of the elevated parasitaemia and increased mor-

tality rate observed in the higher inoculum groups, we

asked whether parasites spread to the heart causing tissue

damage and death. Histopathological analyses showed a

greater inflammatory infiltrate in the group that received

the highest inoculum (Fig. 2a), together with elevated

tissue parasitism, which could be generating the inflam-

matory process (Fig. 2b), because we observed a strong

association between tissue parasitism and inflammatory

infiltrate in heart tissue (Fig. 2c).

The parasite load during infection determines
cytokine interplay in the cardiac tissue

Trypanosoma cruzi is able to cause an intense immune

response and focal areas of inflammation in the cardiac

tissue,22 we next aimed to investigate if the inflammation

and parasite accumulation in the heart was also associated

with a local immune response that could influence the

differential infection outcome observed previously. At

22 days post-infection, concentrations of IFN-c and TNF-a
(Fig. 3a,b) were increased in the groups given 300 and

30 000 trypomastigotes compared with the uninfected

mice, whereas the mice infected with 30 000 trypomastig-

otes showed the highest levels of these cytokines in the

heart, especially when compared with the group given

3000 trypomastigotes (Fig. 3a,b).

Regarding counter-regulatory cytokines, levels of the

anti-inflammatory cytokines IL-4 and IL-10 were

increased in the groups of mice given 3000 and 30 000

trypomastigotes when compared with uninfected mice

(Fig. 3c,d). The higher levels of IL-4 and IL-10 were

found in the intermediate inoculum group (3000 forms),

which also presented the lower levels of IFN-c and

TNF-a in the heart tissues, considering the infected mice

(Fig. 3a–d).
In addition, we showed that TGF-b production, which

can inhibit the activation of macrophages and their ability

to produce pro-inflammatory cytokines,23 presented a

similar profile to the IFN-c and TNF-a levels, although

no significant differences were observed among the

groups (Fig. 3e). On the other hand, this cytokine may
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be involved in the commitment of Th17 cells and may

generate tissue inflammation in T. cruzi infection.7 Levels

of IL-6, also important in Th17 differentiation, were aug-

mented in the intermediate and high inoculum groups

(Fig. 3f), whereas the Th17-maitaining and signature

cytokines, IL-23 and IL-17, respectively, were observed to

have kinetics very similar to the other inflammatory cyto-

kines described above, with emphasis on the increase in

the groups given 300 and 30 000 trypomastigotes

(Fig. 3g,h, respectively). In addition, we correlated the

levels of parasitaemia or the tissue parasite burden with

the immune response developed by the host and demon-

strated that the production of IFN-c, TNF-a and IL-17 in

the hearts of infected mice was directly and strongly

related to the parasitaemia and tissue parasite load in

these animals (Fig. 4a–g). Then, as IL-17 may play an

important role in regulating the production of IFN-c, we
plotted the levels of IL-17 against IFN-c. The results

showed a positive correlation between them, suggesting

that in this case the production of IL-17 does not seem

to be sufficient to control IFN-c (Fig. 4d), probably

because of the high tissue parasite burden (Fig. 4g). Alto-

gether, these data suggested that cytokine interplay in the

heart of infected mice was also influenced by the parasite

load during T. cruzi infection and may be related to a

differential outcome of the disease.

Systemic immune response is also affected by
different parasite loads during T. cruzi infection

Local cardiac alterations were observed that could be

related to infection progression and later host survival,

so we next asked if elevated mortality and disease worsen-

ing could also influence or be influenced by systemic

responses induced by the different parasite loads. Infected

mice showed an increase in spleen weight and in the abso-

lute number of T cells compared with uninfected mice

(Fig. 5a–c), with an apparent augmentation of CD4 and

CD8 T cells in the highest inoculum group. Regarding the

profile of antigen-presenting cells (CD11b+ CD11c+ and
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CD11b+ cells) in the spleen, we found a significant

augmentation in the absolute number in groups of infected

mice compared with uninfected controls, especially regard-

ing CD11b+ CD11c+ dendritic cells (Fig. 5d) in the higher

(30 000) and lower (300) inocula, besides an elevated

number of CD11b+ cells (possibly macrophages) in the

intermediate group (3000), in comparison to controls

(Fig. 5e). These results suggested that antigen presentation

may also be influenced by the number of parasites faced by

the host during infection.

Higher T. cruzi inocula up-regulate the number of
splenic cells but not local Treg cells in the heart

As inflammation seemed to be up-regulated in the higher

inocula groups, as well as parasitaemia and mortality, we

next aimed to investigate if these mice failed to balance

the systemic and local immune responses by a failure in

number of Treg cells.

Our data showed a significant increase in the absolute

number of spleen CD4+ CD25+ cells in the 3000 and

30 000 trypomastigote-infected mice compared with the

control group and with the low inoculum mice (Fig. 6a).

Therefore, as natural Treg-cell characterization requires

the analysis of other phenotypic markers, we next aimed

to evaluate if the difference in the number of

CD4+ CD25+ cells was also accompanied by an augmen-

tation in Treg cell molecules that could be related to the

cell function (Fig. 6b). In fact, we observed a predomi-

nant increase of all markers in infected animals compared

with controls. Regarding the CD4+ CD25+ population, we

found an increase in the number of cells expressing the
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Treg markers analysed (CD45RBlow, GITR, PD-1 and

FoxP3) in the spleen of animals in the high inoculum

group (Fig. 6b). It is of note that, in general, the most

inflamed group (30 000) was the one which presented the

higher cell numbers in the spleen with regulatory markers

(Fig. 6b), although it was not enough to avoid mortality.
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two independent experiments. Spearman Correlation.
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Furthermore, by analysing the CD4+ CD25� T cells

expressing the same markers, we observed that the lowest

and highest inocula groups had the greater number of

cells labelled with GITR and CD45RBlow, although a sta-

tistically significant difference was found only when the

30 000 inoculum and control groups were compared. In

addition, mice inoculated with the low and intermediate

numbers of parasites showed higher counts of cells

expressing PD-1 (Fig. 6c) whereas the number of

CD4+ CD25� FoxP3+ cells was apparently elevated in the

high inoculum group.

In contrast to the spleen data, we found an increase in

the number of CD4+ CD25+ and CD4+ CD25� cells in

the hearts of the intermediate inoculum group, as well as

an apparent augmentation of FoxP3+ cells in the

CD4+ CD25+ population (Fig. 6d–e). Notably, the high

inoculum group had the lowest number of Treg and

CD4+ CD25� cells in the heart, accompanied by a ten-

dency to reduced amounts of FoxP3+ cells (Fig. 6d–e). It
is of note that, as expected, the control non-infected mice

had no inflammatory infiltrate in the heart and we did

not find CD4+ CD25� FoxP3+ cells in the hearts of most

infected mice (data not shown).

Discussion

In the present study we demonstrated modulations in the

immune response raised against different parasite loads in

experimental T. cruzi infection. Our data showed that the

increase in the inoculum used correlated with the higher

parasite persistence and pro-inflammatory immune

response in the heart. Conversely, the lower inocula led

to a more restrained immune response and absence of

extensive cardiac damage or mortality.

Immunopathogenesis of experimental infection with

T. cruzi involves many mechanisms related to disease out-

come during acute and chronic phases. In agreement with

our results, the Colombian strain, which was used in the

present study, is characterized by a tissue tropism for

skeletal muscle and myocardium, high pathogenicity, vir-

ulence and the capacity to generate large lesions with

necrosis and inflammation in the myocardium and skele-

tal muscle.24

Our results demonstrated that variations in the

inoculum influenced the outcome of experimental Chagas

disease, resulting in increased cardiac parasitism and

inflammatory infiltration, especially when higher parasite

loads were used during infection. In parallel, a study

using mice infected with different parasitic loads of

T. cruzi Y strain showed that the higher parasite load pre-

sented by mice infected with a high inoculum in the

acute phase of infection influenced the development of

the chronic phase, in which elevated tissue parasitism,

injury and activation of the immune response were

observed.16 Interestingly, in our study the group receiving

an intermediate inoculum (3000) presented mortality,

inflammatory infiltration and cardiac parasitism similar

to the lower inoculum group , suggesting that a mini-

mum number of parasites is required to induce a host

response to T. cruzi, which can later become uncontrolled

and cause tissue damage.

Initially, the immune response against infection with

T. cruzi is carried out by the innate immune system

through the action of antigen-presenting cells like

dendritic cells. They recognize pathogen molecules and

activate a sequence of signals with antigen presentation,

co-stimulation and cytokine secretion.25,26 In this way,

mouse dendritic cells increase IL-12 production after
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injection with a soluble tachyzoite extract of Toxoplasma

gondii.27 In addition, the acute phase of T. cruzi infection

induces an increase in dendritic cells, accompanied by a

rise in parasitaemia levels.28 Our results showed a high

absolute number of dendritic cells in infected groups,

suggesting that the augmentation in this population

occurs simultaneously with the immune response, which

should be raised to counteract the infection. In parallel,

macrophages seemed to play a relevant role in the inter-

mediate inoculum infected group, because elevated num-

bers of CD11b+ cells (possibly macrophages) were found

in the spleens of these mice. Macrophages also have an

important role in the innate immune response; they are

thought to be a major cell population involved in parasite

uptake. Moreover, these cells can be activated by IFN-c
and produce several intracellular killing mediators, such

as NO.29 Additionally, a huge increase in macrophage

precursors (monocytes) has been found in the peripheral

blood during acute T. cruzi infection.30 On the other

hand, our results seem to partially agree with those of

Souza et al.,31 who demonstrated that the regulatory cyto-

kine profile of monocytes from Chagas disease patients

correlated with the indeterminate form whereas those

patients who presented with elevated TNF-a production

by their monocytes had the cardiac clinical presentation

of the disease. Furthermore, the IL-10 production by

monocytes could be related to the development of M2

anti-inflammatory macrophages, because this group does

not seem to die as a result of excess inflammation.32

However, although our results pointed to a role for

CD11b+ cells along with elevated IL-10 in the control of

the exacerbated inflammation induced by the intermedi-

ate inoculum of T. cruzi, further experiments are still nec-

essary to test this hypothesis, which will be assessed in

our next studies.

In our study the highest T. cruzi inoculum during

experimental infection induced the strongest IFN-c pro-

duction. In the contrast, high levels of pro-inflammatory

cytokines (IFN-c and TNF-a) were also detected in the

lower inoculum group. These results demonstrated that a

small parasite load is sufficient to trigger an inflammatory

response able to control the infection but not enough to

cause extensive tissue damage. Indeed, it is largely known

that Chagas disease is characterized by a predominantly

Th1 response, which is necessary for the protection

against T. cruzi. Macrophages are stimulated by this para-

site to produce IL-12, and this cytokine is responsible for

inducing IFN-c production by natural killer and T cells,

necessary for the subsequent control of T. cruzi prolifera-

tion in vivo.33

Another mechanism used by the immune system to

control infections is by generating the differentiation of

inflammatory Th17 cells, which requires IL-1b, IL-6 and

TGF-b.34 Interleukin-17 can also be produced by CD8+ T
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cells, cd T cells, neutrophils, monocytes and natural killer

cells.35 Although usually related to inflammation rather

than regulation, in T. cruzi infection there is production

of IL-17, which controls IFN-c production as well as the

development of heart lesions during the course of infec-

tion.7 In contrast, our data demonstrated that increased

levels of IL-17 in the groups with lower and higher inoc-

ula did not lead to a reduction in the concentration of

IFN-c, because levels of both cytokines remained elevated

in these groups. Conversely, other studies showed that

Th1 and Th17 cells can coexist under pathological

conditions such as psoriasis,36 or infection with Mycobac-

terium37 or even T. cruzi, in which CD4 T cells from

T-bet-deficient mice stimulated in vitro with anti-CD3

monoclonal antiboies were able to secrete both IFN-c and

IL-17.38 In addition, the cytokine IL-23 is responsible for

stimulating the production of IL-17 by Th17 cells,39 but

can also act on CD8 and cd T cells, which also present

high IL-23 receptor expression, which is necessary for IL-

17 production.40,41 Our results showed the same profile

of production of both cytokines in the infected groups,

so corroborating previous data that demonstrated the

dependence on IL-23 for Th17 maintenance.

The immune response against T. cruzi can also develop

from CD8+ T cells through cytokine production and cyto-

toxic activity, being crucial for control of the infection.42,43

The CD8 T cells have little importance in the control of

parasitaemia in the initial period of infection regardless of

the inoculum used. However, after the peak of parasita-

emia, cytotoxic T cells are critical for parasite control in

the blood, directly influencing the mortality of animals.44

Tzelepis et al.44 also demonstrated that the intensity of

cytotoxic response by CD8 T cells was directly correlated

with the parasite inoculum, when different inocula were

evaluated. In our results, consistent with this study, we

observed an apparent increase in absolute number of

cytotoxic T cells in the higher inoculum group (30 000).

Hence we suggested that the amount of parasite inoculum

was correlated with the acceleration of parasitaemia and

the consequent increase in cytotoxic CD8 T cells in an

attempt to control excess parasite load. In addition, CD4

as well as CD8 T cells are of great importance to the

control of T. cruzi infection by the production of pro-

inflammatory cytokines such as IFN-c.45 Here we observed

that the inoculum used influenced the degree of inflamma-

tory response, as shown by the higher absolute numbers of

CD4 and CD8 T cells and consequently elevated IFN-c
production in the 30 000 inoculum group.

On the other hand, the inflammatory response may be

down-regulated by the anti-inflammatory cytokines IL-10

and TGF-b23,46 and by regulatory cells,10 in an attempt to

balance this effector response.47 These suppressive mecha-

nisms include a wide variety of cells with a unique capac-

ity to inhibit the effector T-cell response,48 like inducible

or natural Treg cells, that express a variety of phenotypic

markers.49–52 However, as most of these markers can also

be expressed by activated T cells, none of them are spe-

cific to natural Treg cells and the expression of the tran-

scription factor FoxP3 has become the most expressive

characteristic of natural Treg cells.53

Here we demonstrated that the variation of the inocu-

lum used in the different groups was an outstanding fac-

tor in setting the level of regulation presented by each

group. Trypanosoma cruzi induces non-specific immuno-

suppression during the acute phase of the infection,54as

occurs in infections by Bordetella pertussis and Schistoso-

ma mansoni, which induce IL-10 production by dendritic

cells.55,56 In addition, the immune system itself tends to

regulate the inflammatory response by producing regula-

tory cytokines,57,58 and apoptosis induction.59 Hence, we

propose that the group given the low inoculum (300)

showed a low absolute number of regulatory T cells

(CD4+ CD25+) because the parasite burden in this group

failed to induce a huge inflammatory response which, if

it exists, should be regulated to avoid cardiac injury.

Hence, T. cruzi induces the expression of PD-1 molecules

by CD8 and CD4 T cells, regulating the immune response

through decreasing inflammatory cytokine levels, inhibit-

ing the proliferation of T cells, and inducing apoptosis.59

In parallel, the GITR molecule exerts a potent co-stimula-

tory role in both effector and regulatory T cells and this

molecule may regulate diverse biological functions in

T xcells, such as proliferation, activation, differentiation

and cell survival.50 In addition, study using mice infected

with the Y strain of T. cruzi treated with anti-GITR

monoclonal antibody showed an exacerbated inflamma-

tory reaction, probably as the result of the inhibition of

the suppressor activity of Treg cells, and these cells are

effectively involved in the pathogenesis of T. cruzi infec-

tion.10 Conversely, other studies showed that Treg cells

have a limited role in the course of infection by T. cruzi

and that Treg cells do not seem to suppress the CD8 T-

cell cytolytic activity.47,60 The CD4+ CD45RBlow cells

stimulate the production of IL-10 and IL-4 cytokines,52

and furthermore, protect, through IL-10, against the

development of other immune-mediated diseases like

colitis.61 Our data demonstrated that the

CD4+ CD25+ CD45RBlow cells were present in higher

absolute numbers in the spleens of the 30 000 inoculum

group, suggesting that an attempt to regulate the immune

response may be inducing the production of IL-10 and

IL-4.

In addition, we demonstrated that the group receiving

the intermediate inoculum (3000) also showed elevated

numbers of CD4+ CD25+cells in the spleen, indicating

that the host immune system may be regulating the pro-

inflammatory response, or the parasite is inducing this

regulatory activity; however, in this case, mediated by

PD-1 and not by FoxP3, the most important and defini-

tive Treg cell marker.53 On the contrary, we found
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elevated numbers of CD4+ CD25+ FOXP3+ cells in the

heart of this intermediate inoculum group, indicating that

such Treg cells may be regulating cardiac inflammation

and controlling exacerbated damage, in accordance with

the regulatory cytokine profile observed in these mice.

Furthermore, we suggested that even with evident regula-

tory mechanisms, the T. cruzi multiplication and

increased tissue parasite burden did not significantly

occur in the intermediate inoculum group, because there

was still a remaining basal inflammatory response that

could have prevented this multiplication. On the other

hand, although the 30 000 inoculum group had showed

the highest number of regulatory cells in the spleen, it is

possible that this systemic regulation was not sufficient to

control the exaggerated inflammation caused by the high

number of parasite antigenic molecules in the host and

exacerbated the inflammatory cardiac response, as evi-

denced by a failure to induce local Treg cells in the heart.

Therefore, any attempt to control the inflammatory

response, either by the immune system or the induction

of regulation by the parasite was not successful.

In the present work, the cytokine profile observed in the

heart of infected mice corroborated with this effector/regu-

latory hypothesis, once our data showed that the low inoc-

ulum group developed a pro-inflammatory, Th1 and Th17

response that was able to control parasite growth while

avoiding extensive tissue damage, with a small adjustment

through the production of TGF-b. Moreover, the pro-

inflammatory response raised against infection in the inter-

mediate group was probably not avoided by the elevated

production of regulatory cytokines and so was sufficient to

provide satisfactory control of the parasite; however, this

effector response was also not strong enough to induce

host damage. On the other hand, the high inoculum group

had an exacerbated and uncontrolled pro-inflammatory

response, which was not adequate to successfully eliminate

the elevated number of parasites nor were they satisfactorily

controlled by regulatory mechanisms to avoid tissue injury.

Indeed, the production of anti-inflammatory cytokines, IL-

4, IL-10 and TGF-b and the elevated number of spleen, but

not cardiac, Treg cells were not able to reduce the inflam-

matory response, leading to a high inflammatory infiltrate

and mortality of these animals. However, it should still be

clarified whether the main cause of death was the high

number of parasites, the excess response triggered by them

or both. These data suggested that a strict control of the

immune response was necessary to eliminate parasite while

avoiding tissue damage in T. cruzi infection and this con-

trol may be dependent on the parasite load to which the

host is exposed during infection.

In summary, our results showed that the parasite load

during T. cruzi infection is a primary factor in determin-

ing the pattern of the host immune response that will

result in parasite/inflammation control or tissue damage.

Therefore, it may also be essential to define the patient’s

prognosis, especially where there is elevated presence of

parasites at the time of infection, such as in recent cases

of oral infections with T. cruzi. However, we emphasize

that Chagas disease pathogenesis remains unclear and fur-

ther studies are still needed to clarify the relation between

tissue damage by the host immune response versus dam-

age caused by the parasite in the context of the uncon-

trolled immune response.
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