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ABSTRACT

While it has been long recognized that genes are not
randomly positioned along the genome, the degree
to which its 3D structure influences the arrangement
of genes has remained elusive. In particular, several
lines of evidence suggest that actively transcribed
genes are spatially co-localized, forming transcrip-
tion factories; however, a generalized systematic
test has hitherto not been described. Here we
reveal transcription factories using a rigorous defin-
ition of genomic structure based on Saccharomyces
cerevisiae chromosome conformation capture data,
coupled with an experimental design controlling for
the primary gene order. We develop a data-driven
method for the interpolation and the embedding of
such datasets and introduce statistics that enable
the comparison of the spatial and genomic densities
of genes. Combining these, we report evidence that
co-regulated genes are clustered in space, beyond
their observed clustering in the context of gene
order along the genome and show this phenomenon
is significant for 64 out of 117 transcription factors.
Furthermore, we show that those transcription
factors with high spatially co-localized targets are
expressed higher than those whose targets are not
spatially clustered. Collectively, our results support
the notion that, at a given time, the physical density
of genes is intimately related to regulatory activity.

INTRODUCTION

The cell’s regulatory state is, to a large extent, reflected by
the particular conformation that the genome assumes at
any given particular instance (1–5). This has been
observed at the level of pairs of genes whose proximity
in the nucleus is dependent on the developmental stage

(6,7). Particular loci have also been shown to be associated
with many distantly located genomic loci (8,9),
demonstrating the plasticity of the genome. Recently
developed experimental methods (10) enable the system-
atic study of these phenomena. In particular, chromosome
conformation capture (3C) followed by high-throughput
sequencing greatly improves our ability to globally model
genomic structure. Using this approach and its deriva-
tives, the genomic structures of Saccharomyces cerevisiae,
Schizosaccharomyces pombe, Drosophila melanogaster and
human have been determined for particular conditions.
The initial analyses of these datasets have already led to
insights into the structure of the genome, including the
fractal nature of the human genome (11), the centromere
co-localization and Rabl conformation in brewer’s yeast
(12), the proximity of functionally related genes in fission
yeast (13) and the physical demarcation of chromosomal
domains in Drosophila (14). The ability to measure
genomic architecture in three dimensions provides an
opportunity to address long-standing questions involving
how genomic structure encodes the phenotype, and
addressing these will require new computational tools
with an appropriate framework for analysis.
Of particular interest is the notion of nuclear transcrip-

tion factories, and their role in establishing the regulatory
states that underlie physiological stages. Most gene targets
of S. cerevisiae transcription factors (TFs) have been
determined with high confidence, revealing an average of
70 gene targets per TF (15,16). Coupling this data with
genome structure enables the study of the co-localization
of TF targets. For example, are the targets of the same TF
co-localized to the same spatial arrangement as the tran-
scription factory model suggests? Under which conditions
does such co-localization occur? Previous analyses have
addressed this question leading to contradictory results.
Dai and Dai compared the number of interactions in dif-
ferent gene sets and observed statistical enrichment under
the hypergeometric null model for interactions among TF
targets (17). However, Witten and Noble argued that edges
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in the 3C interaction graph are not statistically independ-
ent, as was assumed by Dai and Dai, and as such
co-localization events would be over-counted (18). To
correct for this, Witten and Noble applied a re-sampling
methodology under which no signal for TF target
co-localization was detected.
Importantly, while the previous studies treated genomic

proximity differently than spatial proximity, this was done
by examining only inter-chromosomal distances. In add-
itional, the spatial organization of the genome was not
directly compared with the primary gene order in terms
of their respective functional enrichment. This latter point
is important because genomic analyses have revealed that
neighboring genes tend to have similar expression profiles
(19). Furthermore, genes with housekeeping functions in
particular tend to be co-positioned along chromosomes
(20). In particular, gene targets of the same TF are
enriched for proximity in their genomic order (21).
Thus, controlling for the genomic clustering is crucial
for unbiased evidence regarding the degree to which the
spatial clustering contributes to regulating functionally
related genes.
Here we introduce a statistical framework for modeling

chromatin structure relying on a minimum set of assump-
tions and assaying the spatial proximity of functionally
related genes while controlling for effects from linear
co-localization along the genome. Our analysis is more
subtle and flexible in refining gene sets for detecting the
optimally clustered subset and defines enrichment
environments more loosely based on this subset.
Additionally, we apply a direct approach for controlling
against results that may have emerged primarily from
genomic proximity, thereby focusing our results on the
phenomenon of spatial co-localization. Notably, our
approach uses the hypergeometric test for assessing
spatial co-localization at a particular locus, thereby
disentangling dependencies that arose in previous
analyses (17). We applied this approach on a parsimoni-
ously interpolated 3C contact matrix. Our results indicate
that for most TFs, the targets are significantly more
co-localized in space than they are co-localized in
genomic loci. We further found that TFs with spatially
co-localized targets are also expressed higher under the
same measurement condition, suggesting that regulatory
activity is correlated with the presence of transcription
factories. As more genomic structures are produced, our
method promises to be of importance to the study of
transcription factories.

MATERIALS AND METHODS

Natural neighbor interpolation of 3C data

The raw frequency measurements provided by the yeast
3C experiment of Duan et al. (12)—using the HindIII
libraries filtered at P< 10�3 False discovery rate
(FDR)-corrected—was represented as a scattered sparse
block matrix, where each block corresponds to a pair of
chromosomes. Each read of a mapped paired-end insert
was assigned to the mid-base of a restriction enzyme
fragment in its corresponding unique location along the

genome. Each block of the raw data matrix was subjected
to interpolation using a continuously differentiable C1

interpolant. The natural neighbor interpolation method
(22) was implemented at 1-kb resolution using the
TriScatteredInterp function in Matlab with the following
modifications. First, the frequency of each position with
itself was set to the highest observed frequency in the
dataset. These measurements are not captured by the 3C
method for technical reasons (12), but are required for the
multi-dimensional scaling (MDS) to preserve positive def-
initeness. The results are robust to a wide range of differ-
ent set diagonal frequencies (Supplementary Figure S3).
For each diagonal block matrix, ‘ghost points’ (23) were
added at a distance equivalent to 10% the distance of the
chromosome size and set to a frequency of zero. This
enabled extrapolation near telomeres where there are
little to no data. Finally, due to rounding errors in the
interpolation the resulting matrix was non-symmetric,
which is resolved by averaging it with its transpose. The
Voronoi tessellation, on which natural neighbor interpol-
ation relies, is shown in Figure 1A, where the colored
domains are Voronoi cells. Each cell is generated by the
intersect of all half-spaces imposed by the orthogonal
separating planes between the point inside the cell and
every other point separately. The EcoRI library used in
the original experiment (12) was used for comparison and
validation of the resulting interpolation.

Modeling genome structure

The interpolated contact frequency matrix was used as
input for modeling the structure. The matrix was
embedded to coordinates in an arbitrary 3D Euclidean
space using non-linear metric MDS (also referred to as
principal coordinate analysis) (24). The three principal
dimensions from the linear embedding were used as a
starting reference for the genomic coordinates. Next, the
isotonic least-squares optimization was used to minimize
the deviation of distances between coordinates to that of
the input matrix while preserving the order of pairwise
distances. The target function was the Kruskal stress-1
criterion (24), which measures relative deviations from
the input matrix:

stress� 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
ðxij � dijÞ

2PP
ðdijÞ

2

s

where dij is the distance between coordinates i, j in the
original input data, and xij is the distance between coord-
inates i, j in the resulting model. For the whole-genome
embedding, we re-sampled the genome using 5-kb reso-
lution per coordinate. This lower resolution allowed the
embedding process to converge at the whole-genome scale.
To visualize this model at 1-kb resolution, we use
piecewise cubic Hermite interpolation, a C1 interpolant
for univariate data (25).

Functional enrichment of 3D and 1D loci

For each gene g, we compute the functional enrichment in
3D and 1D environments according to the following
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method. All other genes are ordered separately according
to the following:

(1) Their interpolated contact frequency with respect
to g (3D proximity to g),

(2) Their genomic distance (1D) from g.

For any given TF, we compute the minimum
hypergeometric statistic (mHG) (26,27) for the enrichment
of its target in both the 1D and 3D neighborhoods of g.
Annotation data for TF targets were taken from a

previous analysis [orfs_by_factor_p0.005_cons1 from
(15)]. Briefly, for a given ranked list of genes (for an
example see Figure 2A), mHG finds a prefix of the list
that maximizes the statistical enrichment of genes pertain-
ing to an annotation set. The mHG P-value represents the
likelihood of observing such an enrichment, at some
prefix, under a null model [see (26,27)]. We obtain a
bound on the mHG P-value, per annotation term, and
per centered gene g by multiplying the calculated mHG
statistic by the number of genes in the annotation term.

Chromosome I (Kb)

C
hr

om
os

om
e 

I (
K

b)

 

 

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Chromosome I (Kb)

C
hr

om
os

om
e 

I (
K

b)

 

 

C
ro

ss
−

lin
ki

ng
 fr

eq
ue

nc
y 

(lo
g1

0)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

A B

C D

Figure 1. Studying genome structure using 3C at 1-kb interpolated resolution. (A) 3C data for the S. cerevisiae chromosome I superimposed on the
estimated chromosomal relationships (tessellation cells) they represent. Black dots represent pairs of restriction fragment mid-points with evidence of
cross-linking. Cell color indicates the observed frequency (effectively identical to a nearest neighbor interpolant). The diagonal areas are artificially
inserted to overcome inherent lack of self-contacts in the method (see also Supplementary Figure S3). (B) Natural neighbor interpolation of the 3C data
at 1-kb resolution. The colors indicate the likelihood of proximity of the genomic loci. (C) A 3D model of chromosome I generated using non-linear
dimensionally reduction on the interpolated dataset shown in B. Color indicates proximity to the mid-point of the chromosome—marked with a red
arrow. Note that the distance is not equivalent to the distance on the primary sequence (indicated by the left color bar) as the shape projects inwards. (D)
A model of the yeast genome by non-linear dimensionally reduction as in C but extended to all chromosomes by sampling (see ‘Materials and Methods’
section). Note that the chromosomes lie at the periphery in a spherical fashion with the ends extended and centromeres joined.
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To correct for multiple testing, these are later
Bonferroni-corrected across the different annotation
terms. Because the process is applied on both the
genomic and spatial orderings of genes, we limit the
threshold search to the size of g’s chromosome, which
results in comparable P-values for the most enriched
spatial and genomic environments centered on g. Hence,
this implementation of mHG is partition limited as previ-
ously described (26,27). Peaks of enrichment (Figure 3A)
were detected using Matlab’s findpeaks function. We
limited the peak calling to a minimum distance of
10 loci from one another and a height of �log10(0.05).
As a supplement to the present work, we are providing
the software package INSP3CT (Interpolation and
Statistical Proximity of 3C Tables) as an implementation
for similar datasets to identify and compare spatial and
genomic co-localization of genomic annotated markers.
To compare the observed enrichment results, for a fixed

given TF, to a background model, the genes were first
sorted according to the log odds ratio of the 3D and 1D
enrichments. Next, the same quantities were computed for
each of 100 shuffled genomes (with gene identities
randomly permuted), thus yielding Z-scores for each
rank in the list of genes sorted by the actually observed
log-odds. This comparison is exemplified in Figure 4A.

RESULTS

An unconstrained 1-kb resolution model of the
yeast genome using natural neighbor interpolation
and embedding

The systematic analysis of genome structure and of 3D
features of genome organization requires a coherent and
comprehensive representation of the contacts between
genomic loci. However, actual data resulting from 3C
measurement assays are scattered across irregular
genomic intervals. Thus, our first goal was to use the pre-
viously determined dataset (12) to study the characteristics
of the yeast genomic structure as it relates to function. To
accomplish this, we first set out to regularize and provide a
uniformly spaced contact matrix. For this purpose, we
used a natural neighbor interpolation to arrive at a 1-kb
resolution frequency matrix.

Because the median size of the intervals in the primary
data is 1800 bp (median restriction fragment length) (12),
we chose to interpolate at a 1-kb interval. This choice
stemmed from the notion that the interpolated resolution
must not greatly exceed that inherent in the primary data.
We thus effectively binned the linear yeast genome to
12 071 regularly spaced 1-kb coordinates. Figure 1A
shows a representation of the raw data from the 3C

Figure 2. Comparing functional enrichment between the genomic and spatial regions of the genome. (A) Two genomic distances. The schematic
shows the gene neighborhood surrounding a particular gene (red). The neighboring genes may be ranked by their genomic proximity (left) or their
spatial proximity (right). (B) Detecting areas of enrichment for TF-cohorts. In ranked gene lists, generated by either genomic or spatial proximity, the
genes annotated as targets of a particular TF are indicated as black lines. The P-value of the enrichment of the targets for each threshold is indicated
on the right. The threshold with the best P-value is indicated by the dashed line (see ‘Materials and Methods’ section). This analysis is shown for two
genomic loci surrounding both YHL050C and YHL050W-A (top) and YCL012C (bottom) genes respectively, and querying for targets of GLN3.
(C) Local structures of the two loci examined in B. Colors indicate distinct yeast chromosomes. The red circles indicate the center gene around which
co-localization was tested. The content shown in each sphere is the environment that corresponds to the mHG threshold, dictated by the most
enriched spatial environment for GLN3 targets. Bars on the right mark the loci along the linear genome, which participate in the most enriched
environment by both the genomic and spatial rankings. Black dots, both in the bars and the visualized structure, indicate gene targets of GLN3. Scale
bars were calculated according to an average size estimate for 1 kb of chromatin ffi0.33mm. Chromosomes are colored as indicated in the legend.
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A

B C

Figure 3. Gene targets of the same TF generally spatially cluster in the yeast genome. (A) For each position in genome (x-axis, chromosomes are
separated by vertical dashed lines), the P-value of the enrichment for GLN3 gene targets is shown (y-axis, �log10 of the mHG corrected P-value, see
‘Materials and Methods’ section). The enrichment values are shown for both the 3D (red) and 1D (blue) distances. Dotted boxes correspond to the
environments shown in Figure 2B. Points in the grayed out region are below the significance threshold (P> 0.05, mHG, corrected). Peaks over the
significance threshold are indicated by arrows. Top left inset shows the effect of running the same analysis on one random permutation of the target
genes of GLN3 (B and C) Analysis on the gene targets of 107 TFs. GLN3 is marked in red. (B) A comparison between the maximal �log10 P-value
for 3D and 1D enrichments for each examined TF. (C) A comparison of the number of significant spatial (3D) and genomic (1D) regions (peaks;
marked with arrows in A, see ‘Materials and Methods’ section) for each examined TF. The line indicates a unity relationship.
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measurement assay (12) such that each measured data
point (pair of observed restriction fragments, represented
by a black dot in Figure 1A) is mapped to the respective
genomic loci in chromosome I. We note the sparseness of
the data at some loci, as reflected by the large and irregu-
lar domains for many of the data points (see ‘Methods’
section), indicating the limited resolution of the data for
the interaction between the respective loci. Related to this
sparse sampling are the sharp discontinuities present in the
data (Figure 1A). Figure 1B shows our implementation of
a natural neighbor interpolation (see ‘Materials and
Methods’ section) on the same data for chromosome I,
which addresses this sparseness and sharpness by setting
the local contact behavior to what would be expected of a
continuously differentiable (smooth) curve. From the per-
spective of its differential geometry, a chromosome is
expected to behave continuously owing to its polymer
structure and be differentiable owing to the mechanical
angular limitations imposed by its chemistry. The result-
ing interpolated contact frequency map was compared
with that corresponding to a library generated using
a second restriction enzyme (EcoRI) in the original
dataset (12). The high correlation (R=0.98, P< 10�300,
Supplementary Figure S9) provided validation of the
quality of the interpolation.
To model the structure of the genome using the

interpolated frequency matrix, we invoked a non-linear
MDS (24). This method is grounded in the well-established
algebraic method of non-classical dimensionality reduction
and yields a deterministic 3D view of the yeast genome
using an unconstrained and unsupervised methodology
(see ‘Materials and Methods’ section). The linear embedd-
ing reduced the dimensionality of the dataset to orders-of-
magnitude-more dimensions than is expected of a shape
measured in 3D space, reflecting the biological and
measurement noise inherent in the 3C method
(Supplementary Figure S2). Applying this method on the

intra-chromosomal interaction data of chromosome I
resulted in a crescent-like curve, crumpled near the centro-
mere (Figure 1C). Figure 1D shows the application of the
method to the entire genome, resulting in a ‘water-lily’ con-
formation of the chromosomes, consistent with other
models proposed in the literature (12), with centromeres
somewhat interwoven in one end, and chromosome arms
extending outward. The quality of this embedding was
quantified using the Kruskal stress-1 criterion (28). The re-
sulting stress value of our model is 0.28, which we propose
as a measure of the noisiness of the 3C data. This model is
stable under small perturbations, as we show in
Supplementary Figure S3. In summary, our natural
neighbor interpolation coupled with non-linear MDS
provides a natural 3D model of the genome at 1-kb
resolution.

Statistical assessment of spatial functional enrichment
controlled by genomic order

Using the structural model of the genome, we asked
whether genes regulated by the same TF cluster together
spatially along the genome. For this we developed a
method for assessing the functional enrichment in a 3D
environment. We designed the method based on three
principles: (i) Direct comparison of any spatial enrichment
with that observed for the linear genomic ordering;
(ii) Detection of enrichment of a subset rather than of
correlation for the entire set (26,27); and (iii) Detecting
enrichment for variable-size environments, as the exact
size of enriched regions was not known. The first was
done to correct for the known functional co-localization
of genes along the chromosomes (21). In the comparison,
enrichment was favored over correlation, as it is more
sensitive at detecting signals at individual genomic loca-
tions, whereas genome-wide correlation methods will be
dominated by noise and by effects outside of the scope of a
possible transcription factory. As a statistical method, we
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invoked the robust, sensitive and threshold-free mHG
method that has been successfully applied in other
contexts (26,27,29–31). For each gene in the yeast
genome, our method proceeds by ranking all other genes
by either their genomic (linear) or their spatial (3D)
distance to the gene (Figure 2A). Given a specific TF of
interest, the mHG test is then applied to both of these two
rankings to test whether the targets of that TF are
enriched in the genomic and spatial neighborhoods of
that gene (see ‘Methods’ section). Of particular interest
are the most enriched environments, both in the genomic
and in the spatial perspective, centered around a gene, as
they can be compared on an equal setting. For any given
locus, we quantify whether the spatial enrichment of
targets is more significant than the genomic enrichment;
for example, by examining the log odds ratio of the 3D
and 1D enrichment P-values.

We demonstrate the method in Figure 2B with two
specific loci in the yeast genome. In the first example
(Figure 2B, top), we compare the enrichment of the
targets of the TF GLN3 in the linear genomic and
spatial neighborhoods centered at YHL050C and
YHL050W-A, whose transcription start sites map to the
same 1-kb region. For the first 140 genes added according
to either genomic or spatial distance, the enrichment is
similar. However, as the spatial distance is allowed to
increase, the enrichment sharply increases in contrast to
the respective genomic enrichment (Figure 2B, bottom).
The analysis is terminated at 200 genes, as the end of
the chromosome is reached (chromosome III) and so the
comparison with the linear genomic ordering is no longer
possible for large neighborhoods.

A similar pattern is observed in the other example of
GLN3 targets when considering neighborhoods centered
around YCL012C on chromosome VIII. The spatial en-
richment, measured by the hypergeometric P-value, of the
targets of GLN3 increases (Figure 2B, blue line) as the
radius of the ball examined (centered at YCL012C) is
expanded (i.e. more genes at greater distances are
included). In the close neighborhood of YCL012C, the
enrichment is the same for both spatial and genomic prox-
imity, suggesting that the genes most spatially proximate
to YCL012C are identical to those proximate to it in the
linear genomic order. Interestingly, as the number of genes
included exceeds the first 100, the spatial enrichment
becomes even more significant, surpassing the linear
genomic enrichment. This enrichment then peaks for an
environment containing �125 genes (hypergeometric
P< 10�12), after which the addition of more distant
genes diminishes the statistical significance. In compari-
son, the most significant enrichment based on the
genomic order alone is P< 10�5 obtained at a neighbor-
hood that includes the nearest 80 genes. Thus, we conclude
that for the environment centered on YCL012C, GLN3
targets are significantly more highly enriched in space
than along the linear genome. We note that when
randomly shuffling the genomic positions of the genes
we did not find any significant enrichment of co-
localization, spatial or genomic, such as those shown in
Figure 2B.

Examining the structural environments of the two
genomic loci described above (Figure 2B) provided
insight into the detected enrichments. Figure 2C shows
the environments along with the corresponding genomic
regions that are mapped to them. In both cases, regions
from different chromosomes contribute to the significant
spatial enrichment. The thin part of the chromosome on
which the center gene (marked in red) is located indicates
the interval with the most significant linear genomic
enrichment around the center gene.

Widespread spatial regions enriched for TF targets

Our method allowed us to systematically test the spatial
and genomic enrichments of TF targets surrounding each
gene in the genome, as shown for GLN3 targets in
YCL012C (Figure 2B). The genomic landscape depicted
in Figure 3A highlights the most significant spatial enrich-
ment results surrounding each locus (marked in red) as
well as the most significant linear genomic enrichment
(marked in blue). The two specific regions shown in
Figure 2C are noted with dashed boxes. Strikingly,
in many loci we observe significant spatial enrichment
that is higher than that obtained for genomic order enrich-
ment. To evaluate this result, we used two controls. First,
we tested whether a shuffled genomic ordering—maintain-
ing the locations of the genes but randomizing their
identities—would still lead to enrichment results, and
found that, as expected, it does not (Figure 3A, inset).
We also tested cyclic permutations of gene locations
along each chromosome by cyclically shifting gene loca-
tions by selecting the shift size to be 10–90% of the
chromosome size. Such shifted data maintain all 1D
gene density properties of the genome. We observed that
the linear genomic enrichment is conserved (as clearly
expected), while the spatial enrichment is eliminated
(Supplementary Figure S1). Finally, we compared the
hypergeometric P-values with those resulting from a
shuffled null model and found significant differences
(Supplementary Figure S11) indicating that our use of
the hypergeometric test does not produce spurious results.
To further quantify the observed higher spatial enrich-

ment, compared with that obtained in linear genomic
order, we first examined for each TF, the region with
maximum enrichment at the 3D level and compared it
with the 1D region that is most enriched. For GLN3, the
most significant 3D region has an associated P-value of
10�9, while the most significant 1D region has a P-value of
10�8 (Figure 3A). Examining all 116 TFs, we found that
32 TFs have a more significant 3D region, while six have a
more significant 1D region (Figure 3B). This indicates that
when examining neighborhoods of genes, the 3D region
captures more significant enrichment than an examination
of solely the 1D order.
Next, we deployed a peak-detection algorithm on the

genomic landscape to identify distinct regions of locally
maximal enrichment. We assigned each peak to either the
3D or 1D enrichment depending on which is more signifi-
cant, delineated to both in the case of a tie. Using GLN3
again as an example, we detected 70 and 5 for the 3D- and
1D-enriched peaks, respectively (Figure 3A, black
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arrows). A paired t-test on the 3D and 1D enrichment
peaks indicated the significance of spatial enrichment
(P< 10�6). Thus, for this TF, more enrichment is
detected at the spatial level than in the genomic level,
providing evidence for the tendency of the genome to
co-localize its targets in transcription factories.
Expanding these analyses to the rest of the TFs, we
found an overall preponderance of 3D clusters relative
to 1D clusters (P< 10�30 Kolmogorov–Smirnov test
between the distributions of the number of peaks in 3D
versus those in 1D). For some TFs, this effect is particu-
larly strong (Figure 3C), while for three TFs—ROX1,
YRR1 and ARG81—the signal is reversed, a more signifi-
cant 1D clustering than 3D. SIP4 shows the most extreme
spatial co-localization relative to genomic order (84–5,
respectively, Supplementary Figure S4). Of 117 TFs, 64
show a significant (P< 0.05, FDR-corrected, one-tailed
two-sample t-test) enrichment of spatial (and 10 of 117,
a significant enrichment of genomic) co-localization of
their targets. We found that this result is also observed
in a second replicate of the dataset (Supplementary
Figure S7) as well on the dataset following correction
for potential biases using a recently proposed method
(32) (Supplementary Figure S8).
The peak analysis may be biased because we filter out

genomically consecutive signals (1D) but not potentially
overlapping 3D signals. To address this, we compared our
observed enrichments to a suite of 100 genomes whose
gene order has been shuffled using a ranking-based
approach (see ‘Materials and Methods’ section).
Comparing with the randomly annotated genomes has
the additional feature of direct P-value estimations
without recourse to multiple testing corrections and para-
metric distribution assumptions. For GLN3, filtering for
genes with two orders of magnitude more significant 3D to
1D and vice versa (non-grey region), the Z-scores indicate
strong significance relative to the shuffled genomes (Figure
4A). Repeating this analysis for all of the available TFs,
we found that for most TFs the Z-scores are positive,
indicating that 3D enrichment is significantly greater
than 1D enrichment when comparing with the random
background model. Interestingly, some TFs show a wide
bimodal distribution, indicating that the TF has both sig-
nificant 1D and 3D regions of significant enrichment. We
conclude that for most TFs we detect significant spatial
co-localization of the targets.

TFs whose gene targets are spatially enriched are more
highly expressed

If the targets of a particular TF show significant
co-localization in the genome, one would expect that TF
to be functional under the conditions sampled for the
genomic structure. A proxy for the function of a TF is
its expression level, and thus we asked whether those
TFs showing the strongest signals of co-localized targets
are also more highly expressed (33).
We sorted TFs according to the ratio of spatial to

genomic co-localization of their targets, an indication of
their 3D co-localization. The expression of the top 50 TFs
was then compared with that of the bottom 50. We

detected a significant difference in expression levels
(P< 10�2, Kolmogorov-Smirnov test, Figure 5A).
Overall, the correlation between the degree of co-
localization (target co-localization P-value) and the
average gene expression level was r=0.25 (P< 10�2

Supplementary Figure S6). We further validate that this
result is not confounded by the number of targets of the
particular TFs and the choice of threshold
(Supplementary Figure S10). While not highly significant,
this correlation between expression levels and large-scale
target co-localization supports the possible role of
genomic configuration in accommodating different tran-
scription factories.

Finally, we queried for the spatial location of the
apparent transcriptional factories. For each gene, we
computed the number of instances in which a spatial
region including that gene is enriched for TF gene
targets more than for the genomic order, across the set
of 107 TFs. Figure 5B shows these locations superimposed
on the genomic structure. We found that regions that are
enriched for such ‘transcriptional factories’ indeed form
distinct clusters. In particular, we observe a high degree
of association of genes with transcription factories in the
periphery, mainly located on chromosome II, and also on
chromosome XV and chromosome XVI (Figure 5B).
Comparing the expression of the set of genes highly
associated with factories (>25 TF sets) relative to the
genes only weakly associated with factories (<25 TF
sets), we find that the former genes are more highly ex-
pressed (P< 0.05, Kolmogorov–Smirnov, Supplementary
Figure S5). This provides further evidence that transcrip-
tional factories generally correspond to transcriptionally
active regions.

DISCUSSION

Any advancement of biological methods to identify the
precise structure of the genetic material throughout the
life of an organism must be matched in rigor by the com-
putational and statistical platforms that are used to inter-
pret their measurement results. 3C has emerged as the
most generalized method for establishing the structure of
the genome in a systematic fashion (10). However, the
statistical methods to make the most of the resulting
data are only starting to be developed (11,12,32,34).
Here, we report a novel approach to several aspects of
the analysis of spatial conformation data. We model the
structure of the S. cerevisiae genome without the previ-
ously imposed assumptions (see below), thus capturing
an unbiased representation of the data in 3D. Our
method is based on standard approaches in computational
geometry, statistics and linear algebra (24), invoked here
for the first time to the problem of genomic structure. We
use the resulting contact matrix to ask whether function-
ally related genes are co-localized in the 3D structure.
Using a rigorous and controlled statistical approach, we
provide evidence for this notion. In this section, we
consider the advantages and limitations of all aspects of
our methodology including the choice of interpolation and
embedding procedures, internal reference to the 1D gene
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order as a control. Finally we discuss the notion of wide-
spread transcriptional control by spatially defined
factories.

Existing literature that addresses directly the problem of
contact map completion in the context of 3C data relies
either on a convolution with a fixed environment size
(12,13,35) or a statistical background model to estimate
either enrichment or depletion of observed contacts
(14,34). Convolution-based approaches lead to locally
smoothed regions, while disproportionately distorting
structures in data-sparse or outlier-rich regions. Both of
these previously used approaches are dependent on a sub-
jective choice of parameters such as the environment size
and latent variables for statistical model. Because our
method is fully reliant on a complete contact map, we
established a robust approach to generate a full contact
map by interpolating missing data. We propose that the
most appropriate interpolation method for completing 3C
data is a modification of natural neighbor interpolation
(C1 family of interpolants). Natural neighbor interpol-
ation is immune to the disadvantages inherent in nearest
neighbor interpolation, where different genomic loci may
optimally occupy the same position in space and
tie-breaking scenarios are typically addressed in an arbi-
trary fashion. Further, natural neighbor is not as simplis-
tic as bilinear interpolation, where only the two flanking
data points in each dimension contribute to the
interpolated value. Additionally, natural neighbor inter-
polation has been previously applied successfully for
problems of smooth surface reconstruction (36), which
relate to our problem in nature. Based on a tessellated
view of the data (see ‘Methods’ section), natural
neighbor interpolation computes the weighted average of

all the neighboring data points that can contribute to the
information of the contact between the locations under
interpolation. We note that our interpolation
approach—and likewise all interpolations—does not ne-
cessarily yield inter-point contacts that mathematically
qualify as a metric, and as such, the resulting contact
map does not necessarily describe a structure residing in
a Euclidean space precisely. To visualize the resulting
interpolated contact map, we attempted to generate a
structural model that best captures the data. Our
analysis was performed at a 1-kb binning of the resulting
interpolation; however, as the resolution improves in
future studies, we expect our method to have greater stat-
istical potential, as less genes will be co-binned.
Previous studies attempting to generate a structural

model for chromatin used supervised rule sets, a random
starting conformation, and optimization algorithms to fix
each coordinate pair in its expected distance (if available)
from one another (12,13,35). We propose that because
such methods rely on an underdetermined process, they
cannot be rigorously applied to explore the most likely
conformation. Our approach uses metric dimensionality
reduction as a starting point, which sets as a starting con-
formation the principle 3D outline of the shape. This
outline is expected to capture the essence of the underlying
geometry of the data. The optimization process preserves
the order among contacts, maintaining the coherence of
contacts in the resulting structure. MDS is a classical
algebraic and statistical approach that is well established
in the literature (24). MDS relies on a practical assump-
tion and attempts to minimize the square error of
inter-point distances while maintaining their order when
comparing the input data with the resulting model.
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Figure 5. Gene expression is higher for genes in regions of functional co-localization. (A) Violin plots of expression levels of TFs with and without
spatially co-localized gene targets. The expression values are compared for the 50 TFs with the highest and lowest spatial localization score (-log of
the ratio of t-test P-value comparing genomic and spatial enrichment co-localization). TFs with spatial co-localized targets have a significantly higher
expression (P< 0.01, Kolmogorov–Smirnov test). (B) Spatial locations of transcriptional factories. Superimposed on the genome structure, for each
gene the color indicates the number of instances that the 3D structure is more significantly enriched in gene targets with respect to the linear order.

Nucleic Acids Research, 2013, Vol. 41, No. 4 2199



Our approach thus minimally intervenes with the
underlying measurements applying a parsimonious
genome modeling preferences.
We provide a solid statistical framework to determine

enrichment in the spatial co-localization of genomic
elements and apply it to detect a significant co-localization
of TF targets. We also show a correlation between
co-localization and higher expression of the targeting
TF. Our results are thus consistent with previous
studies, attempting to link gene organization with
control and regulation of transcription (6,7,9,37–41), and
further extends previous systematic approaches to provide
the imperative comparison to the genomic proximity of
co-regulated genes. Collectively, these results indicate
that genome remains poised for the expression of
co-regulated genes by adjusting their conformation to
enrich for their co-localization. This conformation may
likely have benefits in terms of the operations of an
activated TF, which if shuttled to a region with enriched
targets, it will have a reduced number of possible gene
targets to interact with by diffusion. This scenario would
suggest that the mechanism for co-localization (whether
active, or passively selected for), along with higher expres-
sion for the active TF, work in concert to regulate gene
circuits, and the interplay between them is crucial to
understanding expression regulation.
Future directions will no doubt include a comprehen-

sive analysis of co-localization of genomic elements to
detect functional partitioning and to better characterize
transcription factories. Additionally, it will be interesting
to examine the extent to which these findings will be
conserved across organisms and tissues. Single-cell–based
3C methods—currently unavailable but sorely needed—
will be able to produce a more accurate picture of
genome structure, rather than a population-mean
approach. Using sophisticated statistics for the detection
of co-enrichment of ordinal measurements, similar meth-
odology will surely be applied directly to non-binary or
thresholded experimental results, such as the ones from
chromatin immunoprecipitation (ChIP) experiments to
provide more unbiased views on annotated features.

AVAILABILITY

A Matlab software package called INSP3CT is provided
to analyse contact frequency datasets and genomic anno-
tations by performing spatial and genomic enrichment on
selected loci. INSP3CT takes as input files describing
restriction sites, inter- and intra-chromosomal contact
frequencies, the genomic sequence, loci of interest along
the genome (for example genes) in bin coordinates and
vectors of annotation with the number of co-binned loci
of interest per bin. INSP3CT outputs a figure for each
vector of annotation comparing 3D with 1D enrichment
across loci. INSP3CT also provides access to the
interpolated contact frequency matrix, the corrected
enrichment scores per loci and the size of enrichment
environment. INSP3CT is available at http://shayben.
github.com/INSP3CT.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–11.
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