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Abstract: Recent mutagenesis studies using the hydrophobic segment of Ab suggest that aromatic
p-stacking interactions may not be critical for fibril formation. We have tested this conjecture by
probing the effect of Leu, Ile, and Ala mutation of the aromatic Phe residues at positions 19 and
20, on the double-layer hexametric chains of Ab fragment Ab16–22 using explicit solvent all-atom
molecular dynamics. As these simulations rely on the accuracy of the utilized force fields, we first
evaluated the dynamic and stability dependence on various force fields of small amyloid
aggregates. These initial investigations led us to choose AMBER99SB-ILDN as force field in
multiple long molecular dynamics simulations of 100 ns that probe the stability of the wild-type
and mutants oligomers. Single-point and double-point mutants confirm that size and
hydrophobicity are key for the aggregation and stability of the hydrophobic core region (Ab16–22).
This suggests as a venue for designing Ab aggregation inhibitors the substitution of residues
(especially, Phe 19 and 20) in the hydrophobic region (Ab16–22) with natural and non-natural amino
acids of similar size and hydrophobicity.
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Introduction

Various degenerative diseases are associated with

intercellular or extracellular presence of amyloid

fibrils. For instance, Ab peptide aggregates play a

role in the pathogenesis of Alzheimer’s disease

(AD),1 with small soluble oligomers being the most

likely cytotoxic entities.2 An understanding at

atomic resolution of the formation of the amyloid

oligomers, protofibrils and the factors that modulate

aggregation, is crucial for the rational design of new

therapeutic strategies to prevent Ab aggregation

into toxic structures.3 In order to design such tar-

geted inhibitors, it is important to understand which

features of the primary sequence lead peptides to

aggregate in amyloid disorders.

A suitable test system to probe these questions

is the segment Ab16–22, which is among the shortest

sequences that form amyloid fibrils in aqueous solu-

tions at neutral pH.4 Proline scanning mutagenesis

indicates that the aromatic residues at positions 19

and 20 in the central hydrophobic cluster (Leu17–

Val18–Phe19–Phe20–Ala21) are particularly sensi-

tive to replacement5 making this region is a prime

target in the design of inhibitors.6,7 A variety of

studies indicate that aromatic residues are impor-

tant in accelerating amyloidogenic process and for

their stabilization. Although aromatic interactions

are not crucial for the process of amyloid formation,

they can substantially accelerate it, modulating the

morphology of the assemblies and reducing the mini-

mal association concentrations.8 It has been previ-

ously shown that very short aromatic peptide frag-

ments, even penta- and tetrapeptides, can form

amyloid fibrils sharing the same biophysical and

structural properties of the assemblies formed by

much larger polypeptides. Furthermore, diphenyla-

lanine peptides are known to form well-ordered

nanotubular assemblies with amyloid-like structural

signatures.8 Adler-Abramovich et al.9 have also dem-

onstrated that oligomers of single amino-acid phe-

nylalanine can form well-ordered fibrillar assemblies
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at the nano scale. Although the prominent role of

the two Phe of Ab seems to indicate that aromatic

p-stacking interactions are critical for fibril forma-

tion, this has been put recently to doubt by muta-

genesis experiments. Armstrong et al.10 probed the

relative contributions of p-stacking interactions ver-

sus hydrophobic packing in the aggregation of Ab1-42

by examining variants in which the Phe at positions

19 and 20 are replaced by Ile and Leu residues,

which are similar in sizes and hydrophobicities to

Phe but are not capable of p-stacking. Interestingly,

both the F19L/F20L and F19I/F20I mutants form

amyloid fibrils and do so at higher levels than the

wild-type peptide. Hence, not aromatic interactions

but rather the hydrophobicity and b-sheet propen-

sity of these residues at position 19 and 20 might be

the requirement for the aggregation of Ab. A similar

result was also obtained by Senguen et al.11 on nine

variant of Ab16–22.

Increasingly, molecular dynamic simulations

complement experiments as a tool to research the

assembly of oligomer and protofibrils, effects of

mutation, mechanism of toxicity and inhibition of

amyloid aggregate.12–16 In principle, amyloid aggre-

gates and fibril structure can be studied by atomistic

molecular dynamics simulations of the aggregation

and fibril formation process, including conforma-

tional changes, seed formation, and protofilament

packing. However, such simulations are often not

practical due to the long-time scales involved in seed

formation and in the fibrillation process.17 Computa-

tionally more feasible are molecular dynamics simu-

lations that start from fibril structural models and

test their stability. This approach bypasses the slow

fibril formation process and focuses on the chemical

interactions that stabilize the fibril. The underlying

assumption is that if the model aggregates do not

disintegrate during a molecular dynamics run of suf-

ficient length then the aggregates and protofibrils

can be considered stable.18

Molecular dynamics simulations rely on empiri-

cally parameterized force fields that include explicit

solvent.19,20 Examples are AMBER,21 CHARMM,22

GROMOS,23 and OPLS.24 Discrepancies in simula-

tion result, as the choice of force fields have been

documented for a number of systems25–28, and

Nguyen et al.29 recently compared the differences in

structures and energetic of the monomer, dimer, and

trimers of Ab16–22 resulting from various all-atom

force fields. However, although previous explicit sol-

vent all-atom molecular dynamics studies of pre-

formed aggregates used a large range of force fields,

to our best knowledge, there are no numerical stud-

ies that have investigated the effect of the various

force fields on the stability of amyloid aggregates.

Hence, in order to put our investigations on a firm

ground, we start with comparing between various

force fields the stability and structural properties of

the aggregates taken from fibril structures. We use

fully atomic molecular dynamics simulations to

investigate the effect of widely used force fields

(AMBER 03, AMBER99SB, AMBER99SB-ILDN,

CHARMM27, GROMOS96-53a6, and OPLS-AA/L)

on structural properties of the Ab16–22 aggregates

from fibril model.

The distribution of Ab monomers, the early

stages of oligomerization, and their dependence on

sequence (i.e., mutations) and environment,30–34 the

mechanism of Ab fibril disassembly,35–38 and the

early steps of Ab monomer deposition on fibril frag-

ments39–42 have been studied extensively in silico. A

wide range of models including protein coarse-

grained lattice,43 off-lattice models,44 and all-atom

force fields45 have been used to explore the different

stages of oligomerization. It was found that the dif-

ference in the oligomerization propensity for differ-

ent mutants can be related to the change in the

stability of Ab peptides upon mutation.46–48 A key

factor is the exposure to solvent.49 Fernandez and

Scheraga50 have noted that proteins that aggregate

tend to have a significant number of backbone H-

bond donors/acceptors exposed to the solvent, avail-

able for protein–protein interaction. Computational

studies have been essential for understanding this

complex interplay of molecular interactions. This is

because early self-assembly stages involve transient

prefibrillar species (e.g., oligomers) that are difficult

to investigate in vivo or in vitro.45,51 For instance,

Rohrig et al.52 have simulated preformed KLVFFAE

(Ab16–22) oligomers, from the dimer to the 32-mer.

They found that octamers and larger aggregates are

stable on the simulation timescale (20–60 ns) which

suggests a critical nucleus size.

Mutational studies of amyloidogenic peptides

that utilize conservative aromatic-Leu/Ile mutations

(relative to aromatic-Ala) indicate that Leu/Ile con-

taining variants do self-assemble, although at

attenuated rates relative to the parent aromatic

sequences. The slower rate of aggregation in these

types of variants is more consistent with differences

in hydrophobicity and b-sheet propensity than with

a loss of attractive p–p interactions.11

In this article, we examine the relative impor-

tance of attractive p–p interactions vs. hydropho-

bicity and b-sheet propensity through all-atom

molecular dynamics simulations in explicit solvent.

This is possible as classical force fields have been

shown to be effective in modeling and exploring the

dynamics of aromatic interactions in aggregation

studies.53–55 Three mutations of Ab16–22 implicated

in the stability of the wild type are studied. Our

results confirm that size and hydrophobicity are

key for the aggregation and stability of the

hydrophobic core region (Ab16–22). This suggests

the substitution of residues (especially, Phe 19 and

20) in the hydrophobic region (Ab16–22) with such
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of similar size and hydrophobicity as a venue for

designing Ab aggregation inhibitors.

Results and Discussions

Comparison of the effect of various force fields

on the stability of Ab16–22 aggregates
We run two independent molecular dynamics simu-

lations of the aggregate for each of the six different

force fields in order to gain a better understanding

of the influence of force fields on structural stability

and dynamics of the aggregate models. The individ-

ual aggregates are examined using several struc-

tural metrics such as root mean square deviation,

root mean square fluctuation, radius of gyration,

and solvent accessible surface area (shown in Tables

I and II and Fig. 1). The root mean square deviation

is calculated for backbone heavy atoms against the

initial energy-minimized coordinates, its value is

listed in Table I for each force field and trajectory.

We find that trajectories of simulations that rely

on a version of AMBER force fields have smaller

root mean square deviation from the initial configu-

ration than such relying on one of the other force

fields. Hence, in the simulations that rely on

AMBER force fields, the peptide stays close to the

initial conformation indicating that the Ab16–22

aggregates are more stable. The largest root mean

square deviation is found in the simulation per-

formed using GROMOS96-53a6; the large instability

of the aggregate is probably due to the united-atom

approximation. The difference among the force fields

becomes smaller as the size of the double-sheet

aggregates increases suggesting that differences in

stability decrease with increasing size of the system

(Table I).

The radius of gyration of a system measures its

compactness. Increasing values indicate an expand-

ing conformation and decreasing values indicate

shrinking conformation. We find that the average

radius of gyration in simulations with AMBER force

fields is larger than in such that rely on the GRO-

MOS96-53a6 and OPLS-AA/L (Table I). As the root

mean square deviation differences between the force

fields decrease as the size of the aggregate model

(i.e. SH2-ST6) grows (Table I).

We use the root mean square fluctuation to

describe movement of individual atomic positions

relative to the first frame, which is a measure for

the flexibility of structures. The root mean square

fluctuations for Ca atoms of the Ab16–22 aggregates

of our SH2-ST6 model in the six different force fields

are shown in Figure 1, where higher value of RMSF

indicates higher flexibility. Values for most of the

residues, ignoring the terminal residues, are around

1 Å for the simulation with AMBER03,

AMBER99SB, and AMBER99SB-ILDN, but the

CHARMM27 force field, and even more pronounced

the OPLS-AA/L GROMOS96 force fields, have larger

fluctuations.

The solvent accessible surface area is defined by

the surface area of the atoms in the peptide that is

accessible by a water probe with a radius of 1.4 Å.56

Its value depends on the interactions of hydrophobic

and hydrophilic amino acids with water, and the

surface tension near the protein–solvent interface.

Measured solvent accessible surface area values for

each force field are listed in Table II, separated into

contribution from polar and non-polar residues. The

only noticeable difference is that in CHARMM simu-

lations, the value for hydrophobic residues is lower

than the ones observed in simulation relying on the

Table I. Average Root-Mean-Square-Deviation (in Å) and Radius of Gyration (in Å) During 50 ns MD Simulations
of Single Sheet and Double Sheet Models

Force fields Run
Ca RMSD
(SH1-ST4)

Rg (Å)
(SH1-ST4)

Ca RMSD
(SH1-ST6)

Rg (Å)
(SH1-ST6)

Ca RMSD
(SH2-ST4)

Rg (Å)
(SH2-ST4)

Ca RMSD
(SH2-ST6)

Rg (Å)
(SH2-ST6)

AMBER03 1 1.38(0.57) 11.26(0.11) 1.42(0.28) 11.26(0.11) 2.10(0.26) 11.10(0.08) 1.65(0.25) 12.85(0.75)
2 1.17(0.57) 11.30(0.10) 1.40(0.28) 11.30(0.10) 2.53(0.38) 11.10(0.07) 2.06(0.37) 12.85(0.90)

Average 1.28 11.28 1.41 11.28 2.31 11.28 1.86 12.85
AMBER99SB 1 1.00(0.20) 11.30(0.09) 1.18(0.27) 11.30(0.09) 2.36(0.59) 11.04(0.10) 1.54(0.26) 12.76(0.46)

2 1.00(0.25) 11.34(0.09) 1.15(0.26) 11.34(0.09) 1.52(0.18) 11.10(0.59) 1.65(0.19) 12.68(0.69)
Average 1.00 11.32 1.17 11.32 1.94 11.32 1.60 12.72
AMBER99SB-

ILDN
1 3.23(1.94) 11.34(0.10) 1.17(0.28) 11.34(0.10) 3.40(0.93) 11.22(0.10) 1.66(0.23) 12.76(0.05)
2 1.05(0.28) 11.29(0.09) 1.16(0.28) 11.29(0.09) 1.60(0.28) 11.10(0.06) 1.59(0.22) 12.73(0.06)

Average 2.14 11.32 1.17 11.31 2.5 11.31 1.62 12.74
CHARMM27 1 3.51(1.08) 11.15(0.14) 3.31(1.74) 11.15(0.14) 3.71(0.83) 11.26(0.23) 1.87(0.44) 12.56(0.08)

2 4.87(1.14) 11.10(0.18) 3.91(1.11) 11.10(0.18) 4.01(0.54) 11.11(0.10) 1.80(0.17) 12.51(0.08)
Average 4.19 11.25 3.61 11.12 3.86 11.12 1.83 12.53
GROMOS96–

53a6
1 2.30(0.61) 10.97(0.12) 2.54(0.95) 10.97(0.12) 3.65(0.70) 10.98(0.12) 2.50(0.87) 12.61(0.08)
2 2.23(0.53) 10.90(0.12) 2.98(0.82) 10.90(0.12) 4.08(0.62) 10.99(0.09) 2.39(0.79) 12.60(0.08)

Average 2.27 10.93 2.76 10.93 3.87 10.93 2.44 12.61
OPLS-AA/L 1 3.36(0.62) 10.81(0.23) 5.09(1.59) 10.81(0.23) 3.25(0.48) 10.93(0.07) 2.09(0.28) 12.67(0.06)

2 3.39(0.68) 10.74(0.20) 5.30(1.43) 10.74(0.20) 3.29(0.32) 10.90(0.06) 2.24(0.22) 12.60(0.08)
Average 3.38 10.77 5.19 10.77 3.27 10.77 2.17 12.63

Mean values are calculated by using the two average values obtained for each model.
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other force fields, while the exposed surface area of

the hydrophilic residues is higher in CHARMM

simulations.

In the analysis tools in GROMACS packages for

calculating SASA, the g_sas module, the polar and

non-polar surface areas are often defined through

atomic partial charges taken from the utilized

molecular potential. These atomic partial charges

differ significantly between force fields. In order to

avoid this force field dependence, we have recalcu-

lated the mean polar and non-polar solvent accessi-

ble surface areas, summing up contributions not

according to partial charges of atoms but according

to whether these atoms belong to hydrophobic or

hydrophilic residues. This can be done by using the

per residues option in the g_sas tool. The

Table II. Solvent Accessible Surface Area (nm2) of the Double Sheets and Six Strands Per Sheet of Ab16–22 Model
Under Various Force Fields

Force fields Run

SASA
hydrophobic

(g_sas calculation)
SASA hydrophilic
(g_sas calculation)

SASA hydrophobic
(sum over per residue)

SASA hydrophilic
(sum over per residue)

AMBER03 1 43.77(1.24) 20.71(0.78) 27.49 47.27
2 44.02(1.56) 20.97(0.99) 27.93 48.77

Average 48.89 20.84 27.71 48.02
AMBER99SB 1 31.74(0.82) 31.48(0.86) 25.14 48.98

2 29.71(1.22) 31.37(0.86) 24.89 46.08
Average 30.75 31.42 25.01 47.53

AMBER99SB-ILDN 1 31.11(0.88) 31.60(0.83) 24.99 50.64
2 31.23(1.12) 31.32(0.99) 25.50 49.54

Average 31.17 31.46 25.24 50.09
CHARMM27 1 19.45(0.96) 40.41(1.17) 29.28 47.99

2 18.93(1.15) 40.18(0.95) 27.36 48.14
Average 19.19 40.30 28.32 48.09

GROMOS96–53a6 1 39.30(1.27) 20.34(0.78) 24.69 50.51
2 39.12(1.44) 20.41(0.94) 26.49 51.28

Average 39.21 30.37 25.59 50.89
OPLS-AA/L 1 43.14(1.17) 18.29(0.86) 24.40 49.30

2 43.56(1.09) 17.78(1.06) 24.20 44.25
Average 43.35 18.04 24.30 46.78

Figure 1. Average RMSF as a function of residue (left panels) and SASA per residue (right panels) of single layer and double

Ab16-22 models (6 stranded single and double layers). The results are calculated by using the two trajectories for each model

using the force fields. Red, A03; pink, A99SB; blue, A99SB-ILDN; green, Charmm27; cyano, G95-53a6, black; OPLS-AA/L.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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recalculated values are reported again in Table II.

Now, note that the solvent accessible surface values

differ little between the various force fields. Hence,

calculation of mean polar and non-polar solvent ac-

cessible surface area according to atomic partial

charges is misleading and could lead to wrong con-

clusions. For instance, Todorova et al.25 reported a

strong deviation in the hydrophobic/hydrophilic sol-

vent accessible surface areas of insulin, measured

with g_sas tool of GROMACS package, between vari-

ous force fields. The solvent accessible surface area

of hydrophobic residues was smaller in CHARMM

simulations when compared with corresponding

structures produced by the other force fields, while

the exposed area of the hydrophilic residues was

higher. The deviation can be explained again by dif-

ferences in point charges between various force

fields, that is, an artifact of incorrect use of the

g_sas tool of GROMACS.

The solvent accessible surfaces of the terminal

amino acids are much larger and do not depend on

the force fields, indicating that they are largely

exposed to the solvent (Fig. 1). The central residues

that have the lowest root mean square fluctuation

are also the residues that have the lowest solvent

exposed area (Fig. 1) as they are buried in and thus

protected from solvent. Comparing the average per

residue solvent accessible surface area of the single

sheet with six strands model with the double sheet

with six strands model indicates that the double

layer is favored by the partial desolvation of the pep-

tides. This is predicted by all the tested force fields

(Fig. 1).

In summary, a comparison of the various force

fields indicates that one should test systematically

force fields for their suitability for the system under

investigation before using them for modeling amy-

loid aggregates derived from experimental structure.

In our case, all monitored quantities indicate that

the latest AMBER force field, AMBER99SB-ILDN,

preserves best the integrity of the aggregate; and

therefore, it is chosen by us in the following

investigations.

Stability and aggregation tendency of wild type

and mutants
The stability and dynamics of the wild type and

mutants systems are assessed by changes in root

mean square deviation, the radius of gyration, root

mean square fluctuation, solvent accessible surface

area, end-to-end distance, inter-sheet distances, and

number of native contacts. Our analysis relies on

100 ns of the molecular dynamics trajectory. The

final configurations from the four independent

Figure 2. The initial and final configurations of the fibrils at the end of the (100 ns) MD simulations performed of Ab16-22
double-sheet wild-type and mutant models. (A) Wild-type model with sequence KLVFFAE16-22, (B) variant with F19

substituted with alanine, (C) double substitution F19I/F20I, (D) double substitution F19L/F20L. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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simulation for the wild type and mutants (Fig. 2) dif-

fer from each other by either slight changes (for the

double mutants 19I20I and 19L20L) or broad reduc-

tions in the degree of order in the aggregates (in the

case of the mutant 19A) relative to the wild-type

model.

Root mean square deviation measures the fluc-

tuations of protein atoms with respect to the refer-

ence structure, here, the first conformation from the

production simulations obtained at 0 ns. It remains

below 1.5 Å for the wild type. For the two mutants

models (19I20I and 19L20L), the root mean square

deviation to the reference structure stayed below 4.0

Å within the first 40 ns, indicating relative stability

of the structures when compared with the 19A mu-

tant that exhibited large fluctuations up to 7.0 Å

[Fig. 3(A)]. Hence, replacement of Phe at position 19

by Ala destabilizes the aggregate while the double

Leu and Ile mutants remain stable.

The time evolution of the radius of gyration for

the wild type and mutants is displayed in Figure

3(B). Values of the wild type and double mutants

(19I20I and 19L20L) remain around 12.7 to 12.7 Å,

indicating that these models are stable [Fig. 3(B)].

In the simulations of 19A mutant, we find that the

aggregate radius of gyration is decreasing by more

than 3 Å. The result is consistent with the measure-

ments of root mean square deviation.

In order to investigate peptide fluctuations, we

have measured the standard deviation of Ca carbons

in a residue from averaged position during the 100

ns simulation time. These root mean square fluctua-

tions are calculated as an average of four independ-

ent simulations [Fig. 4(A)]. Its value is largest for

the single alanine mutant 19A and about twice as

large as the wild type. In general, hydrophobic resi-

dues have smaller values as they are more buried in

the core where their motions are more restricted.

The edge N-terminal, C-terminal hydrophilic resi-

dues have much larger values than central residues

because they tend to be more exposed on the surface

where they can have greater mobility.

An exposed hydrophobic surface area is thought

to be crucial to the peptide’s ability to recognize and

adhere to the fibril end.57,58 Amino acids that are

buried inside (shielded from the solvent) have lower

solvent accessible surface area than amino acids

exposed to the solvent. The exposure of polar resi-

dues is energetically favorable, whereas for hydro-

phobic residues, it typically increases the free energy

of the system. Therefore, the solvent accessible sur-

face area is a useful quantity to evaluate the stabil-

ity of protein conformations. We plot the solvent ac-

cessible surface area per amino acid for the wild

type and mutants in Figure 4(B). It is defined again

as the surface area of the atoms in the peptide that

is accessible by water probe with a radius of 1.4 Å.

The solvation properties of the wild type and the

two mutants 19I20I and 19L20L are similar. Resi-

dues V18, F20 (I20 and L20 in mutants 19I20I and

19L20L) have low solvent-accessible area, whereas

K16, L17, and 19F (I20 and L20 in mutants 19I20I

and 19L20L) are largely exposed. On the other

hand, the hydrophobic region (Val18, Ala19, Phe20,

Figure 3. Root mean square deviation (RMSD) and Radius of gyration (Rg) of the wild type KLVFFAE16-22 and its mutants. (A)

Time evolution of the backbone RMSD of the wild-type KLVFFAE16-22 segments of Ab peptide and its phenylalanine to

alanine, isoleucine, and leucine mutants of double-layer sheet six strands per sheet models during the 100 ns MD

simulations. (B) Variation of the Rg with time in the wild-type and mutant models. The results are calculated by using the four

trajectories for each model. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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and 21Ala) of the A19F mutant has little solvent ex-

posure, especially when compared with the 19I20I

and 19L20L mutated peptides, which in turn have

similar values to the wild-type Ab16–22. Hence, our

simulations indicate that in the wild-type and both

19I20I and 19L20L mutants, the hydrophobic resi-

dues Val18–21Ala are more exposed to water than

those of the 19A mutant [Fig. 4(B)]. We conjecture

that the low solvent exposure of the hydrophobic

core region (Val18–21Ala) in the 19A mutant reduces

the interactions with ‘‘like’’ peptides and contributes

to the slower fibril formation.10,11 In contrast, in the

wild-type and the other two mutant systems, the

hydrophobic region is more exposed to solvent. This

increases the probability of these residues to interact

with other hydrophobic residues facilitating aggrega-

tion and possibly leading to faster formation of

fibrils as observed in previous experiments.10,11

Ab16–22 has positively charged Lys at the

N-terminus and negatively charged Glu at the

C-terminus. The anti-parallel orientation is favored

by electrostatic interactions between the C- and N-

termini of neighboring molecules in b-sheet salt-

bridges between positively charged Lys and nega-

tively charged Glu side chains. These electrostatic

interactions are most important for the stability of

Ab16–22 organization.59 The salt bridge distance is

calculated as the averaged distance of N atom of the

NH3
þ in Lys 16 to the C¼O bonds carboxyl group of

Glu22. Direct salt bridges are assumed to be around

4.3 Å, whereas indirect or water-mediated salt

bridges have a distance between 4.3 and 7.0 Å. In

our case, the distance between Lys 16 and Glu 22

remained relatively stable and below the salt bridge

distance threshold for the wild type (�6 Å) 19I20I

and 19L20L (7Å) mutants, leading to the association

of the adjacent b-strands. On the other hand, no salt

bridge between Lys 16 and Glu 22 is observed in

the 19A mutant where the distance increased

from about 6 to 10 Å during the course of simulation

[Fig. 5(A)].

The end-to-end distance is calculated using

g_dist tool in Gromacs.56 The average end-to-end

distance of the peptides is taken as the distance

between the centers of mass of the N-terminal amino

acid Lys16 and the C-terminal residues of Glu22.

The end-to-end distance varies considerably in the

19A from the initial 22 to 20 Å (with a reduction of

about 2 Å) with shrinkage of the strand due to the

folding of the strands upon itself [Figs. 2 and 5(B)].

The end-to-end distance of the strands in the wild

type and 19I20I and 19L20L remain within the

range of 22 to 21.5 Å, which can be compared with

22 Å for the initial energy minimized structure con-

forming that the three models are relatively stable

than the 19A mutant [Fig. 5(B)].

In order to explore further the interaction

responsible for the stability of the wild type and

mutants, we have calculated also the percentage of

native contacts defined as those present in the 0-ps

time frame with the distance between the center

mass of two side chains less than 6.0 Å. The

Figure 4. Comparison of all-atom root mean square deviation and solvent accessible surface areas of the wild-type

KLVFFAE16-22 and its mutants. (A) The RMSF for the two-layer/six-strand models of the wild type and its mutants are average

values for hexamers averaged for four trajectories. (B) The average SASA per amino acid of six b-strands double-sheet model

of wild-type and its mutants computed on backbone atoms as an average of four trajectory 100 ns each. The results are

calculated by using the four trajectories for each model. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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reference structure for calculating the percentage of

native contacts at 330 K is calculated based on the

corresponding energy-minimized structures. The

percentage of native contacts for wild type and

mutants are shown in Figure 6(A). The result shows

that the relatively stable systems (wild type, 19I20I,

and 19L20L) maintain 80% to 60% of their native

contacts, whereas the unstable system of mutant

19A loses 70% of the native contacts after 40 ns.

Note that the native contacts for double mutants

Figure 5. Comparison of the average intra-chain salt bridge distance and end-to-end distance. (A) The average intra-chain

salt bridge distance (Lysn
16/Glun-1

22) along the 100 ns simulation of the wild-type KLVFFAE16-22 and its mutants. The results

are the average of four independent salutation of each system. (B) The average end-to-end distance along the 100 ns

simulation of the wild-type KLVFFAE16-22 and its mutants. The results are the average of four independent simulations of each

system. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. Variation of the percentage native contacts and distance between sheets. (A) The time evolution of sheet-to-sheet

distances of wild-type KLVFFAE16-21 segments of Ab peptide and its phenylalanine to alanine, isoleucine, and leucine mutants

of double-layer sheet six strands per sheet models during the 100-ns MD simulations. (B) Percentage of native contacts, with

respect to the energy minimized structure as a function of time. The results were calculated by using the four trajectories for

each model. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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(19I20I and 19 L 20 L) are slightly lower than that

of the wild type but larger than the single mutant

19A. This confirms that replacement of F19 and F20

with Ile and Leu (with similar size and hydrophobic-

ity as Phe) keeps the aggregates stable.

We assess the stability of the sheet-to-sheet

associations’ of the double-layered forms of the wild

type and mutants by monitoring the inter-sheet dis-

tance across the interface. Figure 6(B) shows the

averaged distances between the mass centers of two

facing b-sheets. The wild type has an inter-sheet dis-

tance of about 10.5 Å. Its value for the two mutants

19I20I and 19L20L (between 10 and 11.5 Å) is

smaller than one for the 19A mutant (ranging

between 9.55 and 14 Å). This is due to the reduced

hydrophobic interactions at interface. Hence, the

stabilization of the sheet to sheet association is due

to good geometrical fit between side chains at the

interface leading to a favorable interaction that

favors tight packing between b-sheets. The inter-

sheet distance for the single residue mutation, 19A,

grows in the first 50 ns from an initial of 9.5Å to

13.5 Å suggesting that the F19A mutation leads to

disaggregation. The correlation between the stability

of the aggregates, number of native contacts, and

inter-sheet distance indicates that the inter-sheet

interactions play an important role in stabilizing the

aggregates.

Conclusion

We have tested for several molecular mechanical

potentials their relative accuracy in simulations of a

preformed b-sheet aggregate derived from an experi-

mental model of Ab16–22. The differences between

the various force fields decrease with size of the sys-

tems; however, for small-sized aggregates, the struc-

tural differences are significant. Our results suggest

that the AMBER99SB-ILDN is most suitable for our

study of the effect of hydrophobicity of amino acid in

the hydrophobic core. Using this force field in our

Table III. Summary of Simulated System and Condition of the Molecular Dynamics Simulation of Ab16–22 and Its
Mutants

System
No. of
atoms

No. of water
molecules

Simulation
box size (A�)

Simulated
time, ns T (K) Strand/Sheet organization

Wild type (one sheet and two sheet models)
2 Sheet, 6 strands 1608 8726 65.45 � 65.45 � 65.45 50 ns (2) 310 Anti-parallel/Anti-parallel
2 Sheet, 4 strands 1072 6738 59.87 � 59.87 � 59.87 50 ns (2) 310 Anti-parallel/Anti-parallel
1 Sheet, 6 strands 804 7111 60.47 � 60.47 � 60.47 50 ns (2) 310 Anti-parallel
1 Sheet, 4 strands 536 5104 54.38 � 54.38 � 54.38 50 ns (2) 310 Anti-parallel
Wild type and mutants (two sheet, six strands models)
WT 1608 8726 65.45 � 65.45 � 65.45 100 ns (4) 350 Anti-parallel/Anti-parallel
19A 1488 8808 65.45 � 65.45 � 65.45 100 ns (4) 350 Anti-parallel/Anti-parallel
19I20I 1584 8793 65.45 � 65.45 � 65.45 100 ns (4) 350 Anti-parallel/Anti-parallel
19L20L 1584 8800 65.45 � 65.45 � 65.45 100 ns (4) 350 Anti-parallel/Anti-parallel

Figure 7. The atomic representation of the initial energy minimized structure of the Ab16-22 single-sheet and double-sheet

models: (A) single sheet, 4 strand; (B) single sheet, 6 strand; (C) double sheet, 4 strand; and (D) double sheet, 6 strand. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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simulations, we have researched a series of amyloid

fibril models built from wild-type and three mutant

sequences, F19A, F19L/F20L, and F19I/F20I.

Although all three mutants disable attractive p–p
interactions, they differ in hydrophobicity and b-

sheet propensity. In the mutant F19A, these two

quantities are reduced while enlarged in F19L/F20L

and F19I/F20I. In our simulation, these differences

lead to a reduced aggregation propensity for the mu-

tant F19A. On the other hand, in the mutants F19L/

F20L and F19I/F20I, the increase in peptide hydro-

phobicity [Phe (1.79), Ile (1,8), Leu(1.70)]60 and b-

sheet propensity of [Phe (1.43), Ile (1,8), Leu

(1.70)]61 enhances exposure of the hydrophobic

region, and their probability to interact with other

hydrophobic residues. The resulting larger number

of nucleation events leads to a greater number of

fibrils in solution. However, note that the relation

between hydrophobicity and stability of aggregates

is complex. Takeda and Klimov40 have shown that

moderate reduction in hydrophobicity can in some

circumstance lead to increased stability, while strong

reduction destabilizes them. However, even with this

caveat, the results from our molecular dynamics

simulations explain the pervious experimental obser-

vation that size and hydrophobicity rather than aro-

matic p-stacking interactions are the key element in

determining the aggregation tendency of mutants.

Our results suggest considering size similarity and

hydrophobicity as key factors in molecular modeling-

guided design of Ab aggregation inhibitors.

Methods and Models

The KLVFFAE16–22 aggregates are derived from

the fibril model of Ab reported by Eisenberg group62

and are based on microcrystal structures of

KLVFFAE16–21 (pdb code, 3OW9) and the NMR

structure of the fibril.63 For force field comparison,

we use both single and double sheets aggregates of

the wild type (the details are shown in Table III).

Starting configurations of the mutants are built

from the wild type62 by replacing the side chains of

the targeted residues with alanine, isoleucine, and

leucine.

In order to compare the AMBER 03/TIP3P,

AMBER99SB/TIP3P, AMBER99SB-ILDN/TIP3P,

CHARMM27/TIP3P, GROMOS96-53a6/SPC, and

OPLS-AAL/TIP3P energy functions, we run two in-

dependent molecular dynamics simulations for each

of the four models of the Ab16–22 peptide (Fig. 7)

using the GROMACS program version 4.5.323 and a

time step of 2 fs. Note that the water models depend

on the tested force field; we have chosen the recom-

mended water models for each force field. Hydrogen

atoms are added using the pdb2gmx module of the

GROMACS suite. The starting configurations of all

four proteins are set in the center of a cubical box

where the distance between the solute and the edge

of the box is at least 12 Å. Periodic boundary condi-

tions are employed, and electrostatic interactions

are calculated with the PME algorithm.64,65 Hydro-

gen atoms are constrained using the LINCS66 algo-

rithm, and for water, the Settle algorithm is used.67

The temperature of 310 K is kept constant by the

V-rescale algorithm68 (s ¼ 0.1 fs) and pressure with

the Parrinello–Rahman algorithm69 (s ¼ 1 fs) is 1

bar.

The solvated start configuration is first energy

minimized using the steepest descent method, fol-

lowed by conjugate gradient. Afterward, the system

is equilibrated in two steps of 500 ps, the first step

in an NVT ensemble and the second phase in an

NPT ensemble at 1 bar. After equilibration, 50 ns of

trajectories are analyzed for each system to examine

the structural changes of the oligomers aggregates.

Data are saved at 4.0 ps intervals for further analy-

sis. Two independent simulations with different ini-

tial velocity distributions are performed for each sys-

tem to test for thermalization and guarantee at least

two independent sets of measurements.

For each mutant and the wild type (two sheets

with six strands per sheets, see Table III), we run

four independent molecular dynamics simulations of

100 ns using the molecular dynamics protocol

described above. These simulations rely on the

AMBER ff99SB-ILDN70 force field. The temperature

of 330 K is chosen as a compromise between experi-

mental stability of the amyloid fibrils71 and ther-

mally enhanced sampling.12,13

The molecular dynamics trajectories are ana-

lyzed using the tool set of the GROMACS package.

Especially, we monitor conformational changes and

stability of the aggregates through the time evolu-

tion of the root mean square deviations of the Ca
atoms, radius of gyration, distance between the two

sheets, persistence of salt bridge, end-to-end dis-

tance, and native contacts. Structural changes are

visualized with the help of Visual Molecular

Dynamic (VMD) software version 1.9.72
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