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Abstract: Energy transfer (ET) in phycobilisomes, a macrocomplex of phycobiliproteins and linker
proteins, is a process that is difficult to understand completely. A model for a rod composed of
two hexamers of Phycocyanin and two hexamers of Phycoerythrin was built using an in silico
approach and the three-dimensional structures of both phycobiliproteins from Gracilaria chilensis.
The model was characterized and showed 125 Å wide and 230 Å high, which agree with the
dimensions of a piling of four hexamers as observed in the images of subcomplexes of
phycobilisomes obtained by transmission electron microscopy. ET rates between every pair of
chromophores in the model were calculated using the F€orster approach, and the fastest rates
were selected to draw preferential ET pathways along the rod. Every path indicates that the ET is
funneled toward the chromophores located at Cysteines 82 in Phycoerythrin and 84 in
Phycocyanin. The chromophores that face the exterior of the rod are phycoerythrobilins, and they
also show a preferential ET toward the chromophores located at the center of the rod. The values
calculated, in general, agree with the experimental data reported previously, which validates the
use of this experimental approach.
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Introduction

Phycobilisomes (PBS) are light harvesting accessory

protein complexes, present in red algae and cyanobac-

teria. The architecture of these protein complexes pro-

vides the framework in which the distribution of chro-

mophores is in such geometry that allows the transfer

of energy with the highest efficiency known in biologi-

cal systems.1 Basically, the process of converting the

energy from the sun in other forms of energy in plants

and also in algae implies three steps, energy harvest-

ing, energy transfer (ET), and energy dissipation. Phy-

cobilisomes are involved in the first and second steps,

because they are macromolecular systems organized

to maximize energy harvesting and transfer, minimiz-

ing the dissipation of energy. The understanding of

this process at molecular level is crucial to design arti-

ficial systems or biomimetics.2
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PBS in red algae or cyanobacteria are composed

of phycobiliproteins and linker proteins. In Graci-

laria chilensis, PBS are organized in a core of

allophycocyanin (APC) from which four to six rods

radiate as shown in Figure 1(A). These rods are

formed by R-Phycoerythrin (PE) and R-Phycocyanin

(PC).3 Phycobiliproteins present a general organiza-

tion of hexamers of (ab) heterodimers. The hexamers

present a ring-like shape that allows them to pile up

to form the rod. The three-dimensional structures of

PE (PDB code: 1eyx)4 and PC (PDB code: 2vb8)5

from this algae have been determined previously in

our group, and the structure of both proteins is

shown in Figure 1(B,C), respectively. Table I3,6

shows their chromophore composition and the main

spectroscopic absorption and emission wavelengths.

The general chemical structure of the phycobilins is

shown in Figure 1(D).

The conformation of each chromophore as well as

their relative position in every hexamer and in a pil-

ing of hexamers is crucially important to propose the

main ET pathways in a rod and explain the high

efficiency. As discussed in the literature,7,8 the trans-

ferred energy can be modeled by fluorescence reso-

nance ET mechanism, where the transfer of the elec-

tronic excitation is produced by coulombic

interactions represented by the weak donor–acceptor

dipole–dipole coupling and strong dipole–dipole inter-

action9 involving the transfer of one electron from the

lowest unoccupied molecular orbital (LUMO) of the

donor chromophore to the LUMO of the acceptor

chromophore and with the concomitant transfer of

one electron from the highest occupied molecular

orbital (HOMO) of the acceptor chromophore to the

HOMO of the donor chromophore. It is noteworthy

that at donor–acceptor distances lower than 20 Å, the

interaction between the electronic systems is too

strong to behave as localized systems, and they

behave as a super chromophore (i.e., exciton coupling

model).10 A good approach used to calculate ET con-

stants for this system has been the F€orster approach,

which has been used since the first structural studies

performed on Phycocyanin.11–14 Theoretical calcula-

tions have been performed for Phycocyanin using

their three-dimensional structures,15–17 and Ref. 13

reported a comparison between theoretical and

Figure 1. A: Schematic view of a phycobilisome. B: Three-dimensional structure of Phycoerythrin and C: Phycocyanin.

Phycoerithrobilins are shown in red, phycocyanobilins in blue, and phycourobilins in violet. D: Structure of phycobilins.

Table I. Characteristics of the Chromophores Present
in R-Phycocyanin and R-Phycoerythrin from Gracilaria
chilensis3,6

Composition Chromophore Cysteina
kA

max
kE

max

Phycoerythrin 566 nm 574 nm
a Subunit Phycoerythrobilin 82

Phycoerythrobilin 139
b Subunit Phycoerythrobilin 82

Phycoerythrobilin 158
Phycourobilin 50–61b

Phycocyanin 621 nm 634 nm
a Subunit Phycocyanobilin 82
b Subunit Phycocyanobilin 84

Phycoerythrobilin 153 540 nm

a The chromophores are covalently bound to cysteines at
the position in the sequences shown in the table.
b Phycourobilin is bound to Cysteines 50 and 61. Notice the
erythrobilin bound to Cysteine 139 in the b subunit of
Phycocyanin.
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experimental results for the ET in monomers and

trimers of Phycocyanin from Synechococcus sp.

The results were very similar to the theoretical

values supporting the use of this approach to this

biological system.

Full modeling of PBS is a very hard task due

the complexity of that kind of systems. So, in order

to study the ET pathways in PBS, we have chosen a

reduced model: an antenna (rod) formed by two mol-

ecules of Phycoerythrin and two molecules of Phyco-

cyanin. As the number of molecules and composition

of any rod are concerned, these depend on the light

intensity and wavelength of the light.18 According to

the architecture shown by the electron micrographs,

we chose a 1:1 composition, which also has been

observed in some phycobilisomes from red algae

depending on the season, and we chose four mole-

cules in the antenna, because in Gracilaria

chilensis, most of the rods observed by electron

microscopy have 4 or 5 U.19 Docking models were

built and evaluated to simulate the rod by rotating

and sliding one hexamer relative to the other, and

the co-ordinates of each chromophore were extracted

from the final model. Using that information, the ET

constants were calculated in order to compare the

theoretical transfer with the experimental data

reported in the literature.

Results

Characterization of rods

The rods obtained as described in Materials and Meth-

ods section were characterized by electron microscopy.

The micrograph [Fig. 2(B)] shows isolated hexamers

and rods formed by three and four hexamers, showing

the arrangement of the hexamers along the rod simi-

lar to those represented by the scheme included in the

insert. The absorption and emission spectra [Fig. 2(A)]

shows the presence of organized rods. The rod-

enriched fraction contained some free PE as revealed

by the fluorescence maximum at 574 nm, and rods

composed of PE and PC as revealed by the emission at

634 nm upon irradiation at 566 nm. From our results,

the rods present in the phycobilisomes of Gracilaria

chilensis contain three to four hexamers, and they are

highly enriched in PC and PE.1 The dimensions of the

rod formed by four hexamers are 230 Å high and 125

Å wide, values that agree with the dimensions of the

structural model for an antenna with similar compo-

nents as shown in Figure 3.

Molecular building of the antenna

The final model for the rod is shown in Figure 3 as

a result of the molecular docking and dynamics.

The molecular dynamic procedure performed on

the rigid model of the rod optimized the interaction

area among phycobiliproteins and relaxed the struc-

tures coming from the rigid-docking process. Two hun-

dred picoseconds of simulation showed to be enough to

reach a structural convergence of the model, as the

root mean square deviation (rmsd) of the backbone

shows (Fig. 4). This procedure increased the number

Figure 2. Characterization of rod-enriched fractions. A:

Fluorescence spectrum upon excitation at 566 and 621 nm

as indicated. B: Electron micrograph of the rod-enriched

fraction. An enhancement of the image is shown in the

insert, and the schematic representation on that region of

the image.

Figure 3. Ribbon representation of the model of the rod.
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of salt bridges and hydrogen bonds that are summar-

ized in Table II. The data show that after the MD, the

PC–PC interaction surface shows an important hydro-

phobic component in comparison with the PE–PE or

PC–PE interfaces in which besides the hydrophobic

component, interfaces show higher number of salt

bridges and hydrogen bonds.

ET between chromophores in the antenna

The relaxed model of the rod shown in Figure 3

provided the co-ordinates for each of the 96 chromo-

phores. The energy transfer (ET) constants were cal-

culated for each pair of chromophores, some of the

steps involved very low-transfer rates (>250 ps), so

they were not considered while analyzing the trans-

fer pathways. A summary of the fastest calculated

transfer rates is shown in Table III and Figure 5.

ET in PE

From the analysis of the transfer rates, it comes

out that PEBb82 from the upper trimer in one

Figure 4. Root mean square deviation (rmsd) of the

backbone along the molecular dynamic simulation. The

structural convergence of the model was monitored

following the rmsd of backbone, comparing the structure

present at each frame with the starting coordinates. After

120 ps of simulation, there are no more changes, and the

model was considered stable.

Table II. Analysis of the Final Model of the
Antenna20*a

Characteristic/
interface PCII–PCI PCII–PEI PEI–PEII

Interaction
surface (A2)

2655 2447 2281

aa residues (No.) 287 252 254
% Hydrophobic

residues
33 33 37

% Hydrophobic area 28.6 36.8 43.6
Salt bridges (No.)b 7 (3) 9 (2) 6 (1)
Hydrogen

bonds (No.)b
36 (31) 30 (16) 27 (8)

a http://www.bioinformatics.sussex.ac.uk/protorp.
b Values in parentheses correspond to those observed before
molecular dynamic simulation.

Table III. Main Transfer Rates in Pico Seconds (ps) Between Pairs of Chromophores in an Antenna of Two Hex-
americ Phycoerythrins and Two Hexameric Phycocyanins of a Phycobilisomea, Shown for One-Third of the Antennab

1 Chromophore
PE (ps)

intratrimer
PE (ps)

intertrimer
PE/PE

(ps) interface
PE/PC (ps)
interface

PC (ps)
intratrimer

PC (ps)
intertrimer

PC/PC (ps)
interface

K ! P(a) a82/b82 7
K / K(b) a82/a139 35
P ! P(c) b50/b82 104
P ! P(d) b50/b158 43
P ! A(e) b50/a 82 69
P ! B(f) b82/b 82 85
A ! P(g) a139/b158 66
A ! P(h) a82/b50 89
B ! N(i) b82/b50 65
B ! N(j) b82/b82 142
D ! C(k) b82/a82 27
E ! F(l) a82/b84 63
E ! A(m) a82/a82 47
D ! A(n) b82/a82 97
C ! B(o) b82/b84 24
A /! F(p) a84/b84 2
F /! F(q) b153/b84 240
C ! K(r) a82/a82 32
B ! K(s) b153/a82 135
L ! P(t) a82/b84 177
P ! L(u) b84/b84 5
K ! L(v) a82/b84 65
M ! K(w) a82/a82 230

a On the left, the names of the subunits are indicated as well as a letter in parenthesis that identify each path in Figure 4.
The chromophores involved in the transition are also indicated in the table.
b The complete molecule can be rebuilt by symmetry and also a complete picture of the energy transfer possibilities.Abbre-
viations: APC, allophycocyanin; PBS, phycobilisome; PC, phycocyanin; PE, phycoerythrin; PEB, phycoerythrobilin; PCB,
phycocyanobilin; PUB, phycourobilin.
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R-Phycoerythrin (PE) hexamer transfers to PEBb82

in the lower trimer (path f), also PUBb50 transfers to

PEBa82 in the lower trimer (path e) and PEBa139 to

PEBb158 from the lower to the upper trimer (path g);

the ET interhexamers can be observed from PEBa82

in PEII to PUBb50 in PEI (path h) and from PEBb82 in

PEII to PEBb82 and PUBb50 in PEI (path j and path i,

respectively). In Figure 5, the paths are represented

only once on behalf of the clarity of the scheme.

ET rates from PE to PC
From PEBb82 from R-Phycoerythrin (PE)I, the energy

is transferred to PCBa82 (path k) and PCBb84 in

R-Phycocyanin (PC)II (path n) and from PEBa82 and

PEI, the energy is transferred to PCBa82 (path m)

and PCBb84 in PCII (path l).

ET rates in PC

Once arrived to phycocyanin, the energy is transferred

to the second trimer from PEBb153 to PCBa82 (path s)

and from PCBa82 to PCBa82 (path r) or PCBb84 (path t).

Between R-Phycocyanin (PC) hexamers, the energy is

transferred from PEBa82 in PCII to PCBb84 in PCI (path

v) and to PCBa82 in PCI (path u), also from PCBb84 in

PCII to PCBb84 in PCI (path w).

Also, some slower transfer rates are indicated in

Figure 5 according to the values given in Table III, in

order to show the possible flow of the energy along

the rod. These ET paths always point to the transfer

from the erythrobilins more exposed to the solvent to

the chromophores facing the center of the rod, which

are able to funnel the energy along the rod.

Discussion
In the present manuscript, we have built a minimum

model of antenna of a phycobilisome. To achieve this,

we used the combination of experimental and

bioinformatic techniques. First, the isolation and

spectroscopic characterization of the antennas from

phycobilisomes showed a composition of three to four

phycobiliproteins, highly enriched in PC and PE,

without the presence of APC, the phycobiliprotein

found only in the core of the phycobilisome.1,21 The

size of the subcomplexes is in the range of those

reported for Porphyridium cruentum. A review pub-

lished by Adir22 reported that, in general, the rods

present a diameter of 110 Å and the high for each

hexamer is 55 Å. Second, using a molecular-docking

approach, we could ensemble in silico an antenna

composed by 2 PEs and 2 PCs, model in agreement

with electron microscopy results and with the spec-

troscopic characterization. The molecular-docking

approach considers the protein as a rigid body

because of the computational cost; however, it was

necessary to perform a posterior relaxation of the sys-

tem to achieve a more realistic model. In this way,

the molecular dynamic simulation showed to be an

excellent complementary approach for the rigid mo-

lecular docking, because interatomic distances in the

rigid model shorter than the standard values were

Figure 5. Representation of one-third of the antenna. Each subunit is represented as a triangle. The names of the subunits

are indicated with letters: A, C, E, K, M, and O for a subunits and B, D, F, L, N, and P for b subunits. The solid arrows

represent intratrimer paths. The intertrimer paths are represented by discontinuous arrows. An identification letter was added

to the paths that are drawn in the figure and correlate them with the transfer rates indicated on Table III.
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corrected by the procedure.23,24 The final model

shows an improvement at interaction surfaces level,

specially an increase in the number of hydrogen bond

and salt bridges.

The final model of the antenna allowed us to

obtain the 3D co-ordinates of each chromophore.

This information, in combination with the experi-

mental parameters from the literature for Phycocya-

nin and the parameters recently determined in our

laboratory for Phycoerythrin,25 was used to deter-

mine the transfer rate constants among the chromo-

phores in the antenna, applying the F€orster

approach. The F€orster approach used for the ET

rates calculated (shown in Table III) is supported by

experimental results for different subcomplexes of

PBS as reported earlier, but also by the theoretical

studies performed by Womick et al.,26,27 who com-

pared simulations for PE and C-Phycocyanin using a

delocalized approach modified radiated transfer

(MRT) and a localized approach (F€orster). In both

cases, the results were very similar, and the transfer

rates were in the range of 100 fs–10 ps, toward the

chromophores located at the center of the ring. The

same group27 also reported an ET process in PE

from PUB to PEB of 2.5–3 ps. Our results shown in

Table III agree with the experimental results

informed by Chen et al.28 for Phycoerythrin with ET

rates from PEBa84 to PEBb84 of 1–2 ps, and a84 to

b84 from the next heterodimer of 30–40 ps, they are

also consistent with the experimental values

obtained for Phycocyanin from Anabaena variabilis,

measured by time-resolved fluorescence and anisot-

ropy spectra.29 These values are consistent with our

results, which gave a ET rate of 2 ps, and in the

trimer, our calculations also agree in time transfer

rates in the vicinity of 50–100 ps.

ET rates in Phycocyanin and Phycocyanin com-

plexes have been reported in literature previously.

For example, a preliminary study of the ET pathways

was reported,5 detecting differences, mainly due to

the application of the F€orster extended approach and

because Gracilaria chilensis Phycocyanin contains

erythrobilin at position 153 in the b subunit. In

Ref. 6, we proposed two fast pathways in a complex

formed by two hexamers of phycocyanin, one internal

path involving chromophores in a82 and b84 and one

external path involving chromophores at b153. The

same pathways were also observed in reference for

C-phycocyanin from Fremyella diplosyphon.30 The

main differences specifically for PC from Gracilaria

chilensis are in the external pathways proposed

earlier, because the chromophore involved is now

erythrobilin, which was not evidenced in the three-

dimensional structure, and it was considered as cya-

nobilin. In this model, it is not possible to detect two

clear pathways but a participation of most of the

chromophores in the ET along the antenna toward

PCBb82. Experimental and theoretical studies12,26,31

on C-PC always point to the energy being funneled

toward PCBb82 from where the energy should be

transferred to APC. Also, in PE, the energy is chan-

neled toward PEBb82; in both cases, these chromo-

phores are facing the center of the hexamer. The fact

that the c subunits (one or two depending on the spe-

cie), associated to Phycoerythrin, are also chromo-

phorylated and that its location is also proposed to be

at the center of R-PE20 make us think the possibility

that its presence may contribute to the transfer pro-

cess. This idea is interesting, because, in R-PE, our

results using the F€orster approach show slow trans-

fer rates interhexamers, and the presence of a chro-

mophorylated molecule in the center of the ring could

be the natural solution to preserve the efficiency of

the system. Our results on the ET rates calculated for

phycoerythrin were not comparable with other theo-

retical results, because only here the extended

F€orster approach was used, using the spectroscopic

parameters reported by us.25 Nevertheless, our calcu-

lations are also in the order of magnitude of those

reported by Chen et al.28

The analysis presented here combines theoreti-

cal and experimental tools and provides valuable in-

formation about the possible preferential pathways

considering only the phycobiliprotein components of

the phycobilisome.

Materials and Methods

Purification and characterization of

rod-enriched fractions obtained from
phycobilisomes from Gracilaria chilensis
Rods were obtained from purified phycobilisomes3,19

obtained in 0.9M phosphate buffer pH 7. Phycobili-

somes were dissociated by lowering the buffer con-

centration to 0.3M in the same buffer, while their

fluorescence spectra were recorded. Emission at 634

nm (Phycocyanin) was observed after excitation at

566 nm, maximum absorption k for phycoerythrin.

The fractions were purified by fast protein liquid

chromatography (FPLC) using gel filtration chroma-

tography, using a Pharmacia Superdex 200 26/60

column; the fractions were characterized spectro-

scopically by analyzing the emission at 634 nm, cor-

responding to phycocyanin, after excitation at 566

nm, maximum absorption k for phycoerythrin. The

general characterization of the fractions was per-

formed using a Shimadzu spectrofluorophotometer

RF-5301PC. The rod-enriched fractions

were selected by their spectroscopic characteristics

(Fig. 2) and pooled to be used for observation by

transmission electron microscopy.

Transmission electron microscopy

The carbon-coated Cu/Rh grids were irradiated by

UV light for 5 min. Then a drop with the sample

was deposited on the grid, fixed with glutaraldehyde

0.5% during 5 min, and washed with nanopure

1926 PROTEINSCIENCE.ORG Theoretical Model of an Antenna of a Phycobilisome



water; the staining was performed with 2% uranyl

acetate for 2 min and observed in a JEOL/JEM1200

ExII electron microscope.

A model for a rod
The construction of the model was made in two

steps: rigid molecular docking and molecular

dynamic simulation to relax the system.

Rigid molecular docking. The co-ordinates of the

three-dimensional structures of PE (PDB code: 1eyx)

and PC (PDB code: 2bv8) were used to build a model

for a rod formed by two hexamers of phycoerythrin

and two hexamers of phycocyanin (PEII–PEI–PCII–

PCI). The model was built as pairs; three different

docking models were built: Phycoerythrin–Phycoery-

thrin (PEII–PEI); Phycoerythrin–Phycocyanin (PEI–

PCII); and Phycocyanin–Phycocyanin (PCII–PCI),

using a docking procedure performed with the soft-

ware ZDOCK23,24 with angular steps of 6�. The dock-

ing models were scored by the program, considering

desolvation, and the electrostatic and hydrophobic

contributions.32–34 For each pair, the first 500 models

were evaluated. To evaluate the models, a visual

inspection was accomplished to select those in agree-

ment with the electron micrographs [Fig. 2(B)]; 15

complexes were selected from the PC–PC docking, 5

complexes from the PC–PE docking, and 8 complexes

from the PE–PE docking with similar disposition.

The selected complexes were evaluated analyzing its

interaction surfaces, using the protein–protein inter-

action server ProtorP35 and by the number of H-

bonds in the interface, using HBPLUS.36 The best

complexes of each docking pair PE–PE, PE–PC, and

PC–PC were selected and then assembled by fitting

the redundant protein, using the software Swiss PDB

Viewer37 to obtain a rigid rod model formed by two

hexamers of PE and two hexamers of PC.

Molecular dynamics. A molecular dynamic proto-

col for the rigid rod model was performed in order to

optimize the interaction area among phycobiliproteins

by increasing the number of salt bridges and hydrogen

bonds. This procedure was performed using the soft-

ware GROMACS38,39 and the OPLS/AA force field,40,41

in which the topologies for the chromophores were

added. The rigid rod was situated at the center of a

box filled with water molecules (SPC model) and Naþ

ions to equilibrate the system charge. An energy mini-

mization through a steepest descent protocol imple-

mented in GROMACS was performed as starting

relaxation step, followed by a short molecular dynamic

simulation of 20 ps with position restraint for the pro-

tein atoms in order to equilibrate the solvent. After

the solvent equilibration, a full molecular dynamic

simulation was performed. The total simulation time

was 200 ps heating from 288 to 303 K in 10 ps, keep-

ing this temperature for 140 ps, then cooling until 288

K in 40 ps, and maintaining at 288 K for 10 ps to pro-

duce the convergence of the system. To determine the

structural convergence, the rmsd was monitored for

the backbone of the proteins. After MD simulation,

the system was subjected to a new energy minimiza-

tion by steepest descent. The final model was consid-

ered as the rod model.

ET calculations
The co-ordinates of each of the 96 chromophores

were obtained from the docking model, and using the

protocol previously developed,29 applying the F€orster

theory for the resonance energy transfer (ET), it was

possible to calculate the ET constants between every

pair of chromophores and to propose preferential

pathways through the antenna. In summary, the

method consists in the calculation of transfer con-

stants kDA ¼ CGSI for every pair of chromophores,

where C is a collection of constants, S are the spec-

troscopic properties of the interacting chromophores,

I is the overlap integral between the emission and

absorption spectra, and G is a geometric factor

defined as j2
DA/R6

DA. RDA is the distance between

the donor–acceptor center of masses of the conjugate

system of the chromophores, and jDA is the dipole

orientation coefficient. The experimental values for

phycocyanobilins were obtained from Ref. 42, and for

phycourobilin and phycoerythrobilin, the experimen-

tal values were obtained from Ref. 24. ET steps with

constants higher than 20 and 10 ns�1 (transfer times

shorter than 50 and 100 ps) were used to propose

molecular preferential ET pathways. The calculation

was performed for every pair of chromophores.
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Phycocyanin from Gracilaria chilensis and the energy
transfer network in a PC-PC complex. Biophys Chem
125:388–396.

Figueroa et al. PROTEIN SCIENCE VOL 21:1921—1928 1927

http://firstglance.jmol.org/fg.htm?mol=1eyx
http://firstglance.jmol.org/fg.htm?mol=2bv8


6. Morales M (2012) In vitro and in silico studies of the
stability of Phycocyanin from Gracilaria chilensis, Dis-
sertation for a Biochemistry degree, Universidad de
Concepci�on, Chile.

7. Forster T. Mechanism of energy transfer. In: Florkin
M, Stolz EH, editors (1967) Comprehensive Biochemis-
try, Vol 22. Amsterdam: Elsevier, pp 61–80.

8. F€orster T (1948) Zwischenmolekulare energiewander-
ung und fluoreszenz. Ann Phys 437:55–75.

9. Dexter DL (1953) A theory of sensitized luminescence
in solids. J Chem Phys 21:836–850.

10. Forster T, Sinanoglu O (1965) Delocalized excitation and
excitation transfer. In: Modern Quantum Chemistry,
Istanbul Lectures, Part 3: action of light and organic
crystals, Vol 3. New York: Academic Press, pp 93.

11. Beljonne D, Curutchet C, Scholes GD, Silbey RJ (2009)
Beyond Forster resonance energy transfer in biological
and nanoscale systems. J Phys Chem B 113:6583–6599.

12. Debreczeny MP, Sauer K, Zhou J, Bryant DA (1995)
Comparison of calculated and experimentally resolved
rate constants for excitation energy transfer in C-Phy-
cocyanin. I. Monomers. J Phys Chem 99:8412–8519.

13. Debreczeny MP, Sauer K, Zhou J, Bryant DA (1995)
Comparison of calculated and experimentally resolved
rate constants for excitation energy transfer in C-Phy-
cocyanin. II. Trimers. J Phys Chem 99:8420–8431.

14. Demidov AA, Borisov AY (1993) Computer simulation
of energy migration in the C-phycocyanin of the blue-
green algae Agmenellum quadruplicatum. Biophys J
64:1375–1384.

15. Kobayashi T, Degenkolb EO, Bersohn R, Rentzepis PM,
MacColl R, Berns DS (1979) Energy transfer among
the chromophores in phycocyanins measured by pico-
second kinetics. Biochemistry 18:5073–5078.

16. Nield J, Rizkallah PJ, Barber J, Chayen NE (2003)
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