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The term ‘antioxidant paradox’ is often used to refer to the observation that oxygen radicals and other reactive oxygen species are
involved in several human diseases, but giving large doses of dietary antioxidant supplements to human subjects has, in most studies,
demonstrated little or no preventative or therapeutic effect. Why should this be? First, the role of reactive oxygen species in the origin
and/or progression of most human diseases is unclear, although they are probably important in cancer, neurodegenerative diseases
and perhaps some others. Second, the endogenous antioxidant defences in the human body are complex, interlocking and carefully
regulated. The body’s ‘total antioxidant capacity’ seems unresponsive to high doses of dietary antioxidants, so that the amount of
oxidative damage to key biomolecules is rarely changed. Indeed, manipulation of endogenous antioxidant levels (e.g. by supplying
weak pro-oxidants) may be a more useful approach to treatment and prevention of diseases in which reactive oxygen species are
important than is consumption of large doses of dietary antioxidants.

Introduction

Antioxidants are widely used in the food industry as pre-
servatives for food and beverages and for food packaging,
and increasingly they are being added to foods and bev-
erages to increase sales because of their perceived health
benefits [1, 2]; the concept that ‘antioxidant is good, more
antioxidant is better’ seems to be embedded in the minds
of many members of the public (discussed in [1, 3, 4]).
Antioxidant supplementation, in foods or in tablets, is
based on the belief that oxygen radicals and other ‘reactive
oxygen species (ROS)’ play a role in many human diseases
by causing ‘oxidative damage’, and that decreasing oxida-
tive damage will delay or prevent disease development.
There are many discussions of how to define such terms as
‘antioxidant’, ‘reactive species’ and ‘oxidative damage’ (for
recent reviews discussing this in detail, please see [4–9]),
but I will not dwell on this here. One point worth empha-
sizing is that the term ‘ROS’ does not refer to some mono-
lithic damaging entity; each species of ROS has its special
chemical properties and reaction rates. For example,
hydroxyl radical (OH•) is indiscriminately reactive with
almost all biomolecules, whereas superoxide (O2

•-) and
nitric oxide (NO•) radicals are much more selective in what

they react with [5, 9–11]. Thus, frequently seen phrases in
the literature, such as ‘mediated by ROS’ or ‘ROS are
involved’, actually convey little useful mechanistic informa-
tion. It follows that there is no single universal antioxidant;
each reacts in a different way with various ROS to generate
end-products of variable reactivity [5, 12]. The chemical
reactivity of such end-products must be considered when
predicting how antioxidants might behave in vivo or in
food systems.

For example, many polyphenols, such as the flavonoids,
have considerable antioxidant activity in vitro, as measured
by a range of assays [e.g. ferric reducing antioxidant power,
oxygen radical absorbance capacity, 1,1-diphenyl-2-
picrylhydrazyl and 2,2′-azinobis (3-ethylbenzothiazoline-
6-sulphonate)] that claim to measure ‘total antioxidant
activity’. In fact, the chemistry behind each assay is differ-
ent and so the results of each assay on the same mol-
ecule(s) are different [5, 13, 14]. Despite their impressive in
vitro antioxidant power, there are few, if any, compelling
data that polyphenols exert antioxidant effects in vivo (dis-
cussed in [4, 5, 15, 16]). Polyphenols are also unstable, easily
undergoing oxidation to generate H2O2, quinones and
semiquinones, among other products. For example,
polyphenols readily oxidize in several commonly used cell
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culture media. Ironically, as a result many published studies
of the‘antioxidant effects’of polyphenols on cells in culture
are often studies of effects of the pro-oxidants generated
during their oxidation in the cell culture media [17–20].
However, pro-oxidants can be good, exerting a mild stress-
ful challenge that triggers a rapid response, leading to
increased levels of endogenous antioxidant defence
systems,such as reduced glutathione [4,5,20–22].Polyphe-
nols and other ‘antioxidants’ have been tested in the labo-
ratory on many small animals (nematodes, rotifers etc.),
plants or yeasts to see whether they influence lifespan.
Sometimes they do,because ROS are intimately involved in
the ageing process; some ROS appear to be good when
you age but too many are bad, although the story is
complex [5, 23–28]. It is not unlikely that many of the anti-
oxidants tested were oxidizing in the growth media and
generating some degree of mild pro-oxidant stress;
perhaps that is why they led to lifespan extension in
several studies (discussed in [4, 23]).The oxidation of ascor-
bate and polyphenols in foods and beverages is also a
significant problem in the food industry [29–31].

The antioxidant paradox

The term ‘antioxidant paradox’ is often used to refer to the
observation that oxygen radicals and other ROS are impli-
cated in several human diseases, but giving large doses of
dietary antioxidants to human subjects has,in most studies,
had little or no preventative or therapeutic effect [32].

What accounts for the antioxidant paradox? Let us
begin by listing the key beliefs that led to the view that
antioxidants would be beneficial.

1 Reactive oxygen species are formed in vivo and cause
oxidative damage.

2 Oxidative damage contributes to human disease.
3 Diminishing oxidative damage by administering antioxi-

dants will therefore decrease disease incidence.

Let us now examine these concepts one by one.

Reactive oxygen species are formed in vivo
and cause oxidative damage (true)
Many types of ROS (including the highly reactive hydroxyl
radical, OH•) are formed in vivo and cause damage to bio-
molecules (‘oxidative damage’; reviewed in [5]). Such
damage occurs constantly in vivo, and cells must repair it
(DNA, proteins and RNA to a limited extent) or replace the
damaged molecules (lipids, proteins to a large extent and
RNA to some extent) [3, 33–35]. Indeed, defects in repair
processes that allow oxidative damage to accumulate can
contribute to disease development and the ageing
process [5, 33–35]. In recent years, there have been major
advances in the methodology to measure accurately the
end-products of oxidative damage to proteins, lipids and

DNA, especially the use of measurements of isoprostanes
as a robust biomarker of lipid peroxidation [5, 36–44]. Mea-
surements of isoprostanes and certain other biomarkers
are now giving insights into how oxidative damage can be
modulated in vivo in humans (as summarized in Table 1). In
several (but not all) clinical studies, high levels of certain
oxidative damage biomarkers seem to correlate with
higher risk of disease (discussed in [4, 5, 36–46]). It should
be noted that accurate measurements of biomarkers of
oxidative damage require suitable and rigorously vali-
dated methodology, usually based on mass spectrometry
[37, 39, 40, 42, 43]. Please be wary of ‘kit-based’ methods,
where the reliability and validity are often uncertain (e.g.
discussed in [5, 47–51]).

Why does oxidative damage occur? Why have aerobes
not simply evolved better antioxidant defences to prevent
it? Perhaps they cannot. For example, OH• reacts so fast
with biomolecules that any putative scavenger of it would
have to be present at unfeasibly high concentrations to
compete with endogenous biomolecules for any OH• gen-
erated [4, 5]. A better strategy to minimize damage by OH•

is to remove H2O2 when it is not needed, or to sequester
safely the transition metal catalysts needed for OH• forma-
tion by the Fenton reaction [5, 52]:

Fe H O Fe III OH OH2
2 2

+ −+ → ( ) + +i

so as to decrease OH• formation as far as possible. A second
reason for ongoing oxidative damage relates to the
increasing evidence that ROS, especially H2O2, play impor-
tant metabolic and signalling roles in vivo (reviewed in [4,

Table 1
What can alter levels of oxidative damage levels in humans or other
animals?

Obesity (humans, rodents)
Hyperglycaemia (humans, rodents)

High plasma low-density lipoprotein cholesterol (humans, rodents)
High-cholesterol diet (rabbits and rats; probably not humans)

Zinc intake (rabbits, some other animals; human data inconclusive)
Body iron levels (rabbits, rats, mice, maybe humans)

Certain foods (humans, e.g. dark soy sauce, tomato; rodents)*
Diabetes (in some human studies, not others)†, but probably not the

metabolic syndrome

Intake of polyunsaturated fatty acids‡ (docosahexaenoic acid, possibly
eicosapentaenoic acid, humans)

*It is essential to carry out appropriate controls in testing effects of foods, because
the consumption of any food (antioxidant or not) can sometimes alter levels of
certain biomarkers. †May depend on how well glucose and lipids have been
normalized in the diabetic cohorts studied, or on the degree of obesity, because
hyperglycaemia, hyperlipidaemia and obesity can all increase F2-isoprostane levels,
i.e. it may not be diabetes per se but its sequelae or predisposing factors that cause
the oxidative stress (at least as revealed by studies of F2-isoprostanes). ‡Despite the
propensity of polyunsaturated fatty acids to oxidize in vitro, growing evidence
suggests that they minimize oxidative damage in vivo. This table is adapted from
references [4] and [44] with permission. For full details and references, please see
[4, 44].
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5, 53–57]. Hence, humans and other animals appear to
have evolved an integrated network of ROS-generating
systems and antioxidant defences that allows some ROS to
do useful work while minimizing (but not eliminating)
their potential to cause oxidative damage to biomolecules.
To quote [4], ‘in order to allow extra H2O2 to be quickly
generated,perform its signalling function and be removed,
the subcellular location and activities of NADPH oxidases,
dual oxidases and other sources of H2O2 such as mitochon-
dria must be carefully aligned on a second by second basis
with the location and activities of antioxidant defence
systems’.

Oxidative damage contributes to human
disease (partly true)
The criteria for deciding whether oxidative damage plays
any role in human disease have been set out in several
publications [5, 36, 44, 58] and need not be repeated here.
Disease-related tissue injury (indeed, tissue injury by any
mechanism) leads to increased ROS production that may
(or may not) contribute significantly to the disease pathol-
ogy [4, 5, 58]. My current view (for reasons explored in
detail in the references cited below) is that ROS are signifi-
cant contributors to the origin and progression of cancer
[4, 5, 59–61] and of neurodegenerative diseases, especially
Alzheimer’s disease [5, 43, 62–64]. In atherosclerosis, the
role of ROS is less clear. There is certainly increased oxida-
tive damage, but ROS may do harm in some ways and
good in others; hence, their overall contribution to the
origin and progression of atherosclerosis remains uncer-
tain (reviewed in [5, 65, 66]). In chronic inflammatory dis-
eases, ROS cause tissue damage [4, 5] but can also act as
modulators of inflammation, helping to resolve it [67–70],
so their overall contribution is even less clear.

Let us therefore modify the statement at the beginning
of this section to read, ‘ROS are significant contributors to
certain human diseases’, cancer and dementia being front-
line candidates. Neurodegenerative diseases have the
problem, of course, that any active antioxidant agents to
be tested for treatment or prevention need to cross the
blood–brain barrier; several diet-derived antioxidants are
thought not to do so (e.g. carotenoids) or to do so only to
a very limited extent (e.g. polyphenols; discussed in [5, 63,
71].

Diminishing oxidative damage by
administering antioxidants will therefore
decrease disease incidence (yes, it would in
certain diseases if the antioxidants did
diminish oxidative damage)
There is an extensive literature on the effects of adminis-
tering high doses (pharmacological rather than nutri-
tional) of dietary antioxidants (usually carotenoids,
ascorbate or vitamin E) on cancer development. It may be
broadly summarized as ‘no evidence of effectiveness
unless there is pre-existing dietary deficiency (e.g. in some

studies in China or Africa) and a suggestion of harm in
some cases’ [5, 72–75]. For dementia, the conclusion is not
quite so bleak; there is some evidence consistent with
limited effectiveness of vitamin E in slowing progression of
dementia, but it is very mixed and inconclusive [76, 77]. Of
course, vitamin E supplementation has great difficulty in
raising its levels in the brain. Perhaps, if more of it could get
in then it would have greater effectiveness [78, 79]. Or
perhaps not!

What explains this lack of effectiveness of dietary anti-
oxidants? One hypothesis would be that ROS do not
matter in cancer and dementia, but the bulk of evidence
seems inconsistent with that view [5, 59–64]. One assump-
tion behind all these intervention studies is that adminis-
tration of high doses of ascorbate, carotenoids, vitamin E
etc. to humans will indeed decrease levels of oxidative
damage. Sadly, it generally does not; a convincing explana-
tion for their lack of effectiveness [4, 5, 80]. It has recently
been argued that the alleged anticancer actions of ascor-
bate may be due not to antioxidant but to pro-oxidant
activity, an interesting reversal of concepts by some of the
proponents of mega-C supplementation [81]. Certainly,
ascorbate oxidizes readily in vitro to generate H2O2, e.g. in
cell culture media [5,82,83].However,such claims are moot
until a convincing therapeutic effect of ascorbate in cancer
is actually demonstrated, which it has not been to date. To
quote [4],‘we are perhaps fortunate that diet-derived“anti-
oxidants” do not markedly decrease oxidative damage in
humans – because otherwise they might sometimes have
caused harm rather than good’, given the important bio-
logical roles of certain ROS.

Three further points are worth emphasizing. One is that
the levels of oxidative damage measured in laboratory
animals seem more responsive to being decreased by
dietary antioxidants than they are in humans [4, 5, 44].
Thus, it is necessary to be cautious when attempting to
extrapolate positive effects of antioxidants in rats, mice etc.
(e.g. in models of atherosclerosis, stroke or neurodegenera-
tion) to humans; they are unlikely to work as well, if indeed
they work at all [4, 5, 44, 66]. Indeed, the antioxidant
content of animal feed can significantly affect experimen-
tal results [84].

A second point is that many studies of antioxidants
have been carried out on large groups of human subjects
without much attention being paid to their baseline nutri-
tional status (e.g. if they are already well nourished, with
optimal levels of vitamins C, E etc., so that extra will not
give any benefit) and no attention at all being paid to their
‘oxidative damage status’ (discussed in [80]). Many studies
have revealed a wide variation in levels of antioxidants and
of biomarkers of oxidative damage (e.g. F2-isoprostanes
and urinary 8-hydroxydeoxyguanosine levels) between
individuals [40, 41, 85–89]. Perhaps, as mentioned in [4, 32],
we should only test the effects of antioxidants on the most
‘rancid’ people, who may be those at greatest risk of
disease [40–43, 90–96].
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Point three is that whereas nutritional antioxidants do
not seem to decrease systemic oxidative damage, they
have the potential to exert effects in the gastrointestinal
tract, for instance because polyphenols, carotenoids and
tocopherols can reach high concentrations there if the diet
is rich in them [15, 97, 98]. Equally, however, some ‘antioxi-
dants’ (e.g. polyphenols and ascorbate) could exert pro-
oxidant effects, because transition metals, such as iron and
copper, that can catalyse oxidation reactions are present in
stomach and intestinal contents (reviewed in [97]). Never-
theless, it is possible to argue that mild pro-oxidant effects
could even be beneficial, perhaps by increasing the levels
of antioxidant defences, such as reduced glutathione, in
the cells lining the gastrointestinal tract [4, 5, 22].

Conclusion

There is no good evidence in human populations ‘overall’
that in the absence of deficiency, consuming high levels of
nutritional antioxidants will protect against disease devel-
opment. Whether they would benefit the ‘rancid’ subset of
the population is uncertain, and the topic needs further
study. More-established ways to decrease one’s oxidative
damage level seem to be by consuming diets rich in
certain polyunsaturated fatty acids (an ironic observation,
given the ready tendency of polyunsaturated fatty acids to
oxidize in vitro [5]; or is that why they work, perhaps?).
Avoiding obesity, hyperglycaemia and hypercholestero-
laemia and perhaps keeping body iron stores low seem to
minimize levels of oxidative damage (Table 1). Of course,
these interventions are likely to work by multiple mecha-
nisms, but the fact that they do work is consistent with the
view that lowering oxidative damage would decrease risk
of development of certain diseases; it is simply that supple-
ments of diet-derived antioxidants do not generally
decrease oxidative damage. There is also limited evidence
from certain trials that mixtures of low doses of antioxi-
dants [99] or antioxidants plus other nutrients [100] may
be more beneficial, but again the data are mixed and con-
fusing (e.g. references [101–103]).

One fairly well-established (despite recent challenges)
‘fact’ is that diets rich in plant products (grains, fruits and
vegetables) help to maintain human health. Multiple
reasons have been advanced to account for this (reviewed
in [5, 104], including the presence of mild ‘toxins’ that acti-
vate the nuclear factor erythroid 2 p4-5-related factor 2
system [21, 22, 104]. Indeed, Mattson and Cheng [22] have
used the term ‘neurohormetic phytochemicals’. Do anti-
oxidants contribute to the health-promoting effects of
plant-rich diets? The currently available data do not give a
clear-cut answer. Some foods rich in antioxidants, such as
tomato and dark soy sauce, do seem to exert a degree of
antioxidant effect in the human body, but many others do
not, or give confusing and contradictory results [105–112].
One possible reason for the variability is that many studies

did not use controls with antioxidant-free food equiva-
lents. This is not always easy to do, but it is essential to at
least attempt it, because the simple act of eating can itself
alter levels of some biomarkers of oxidative damage [105,
108, 113, 114].

So, eat well, including plenty of fruits, grains and veg-
etables, avoid obesity, don’t smoke, exercise regularly (also
a mild pro-oxidant challenge that triggers beneficial adap-
tation [115]) and your oxidative damage should be
minimized!
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