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Abstract
Introduction—The world-wide occurrence of burn injuries remains high despite efforts to
reduce injury incidence through public awareness campaigns and improvements in living
conditions. In 2004, almost 11 million people experienced burns severe enough to warrant medical
treatment. Advances over the past several decades in aggressive resuscitation, nutrition, excision,
and grafting have reduced morbidity and mortality. Incorporation of pharmacotherapeutics into
treatment regimens may further reduce complications of severe burn injuries.

Areas covered—Severe burn injuries, as well as other forms of stress and trauma, trigger a
hypermetabolic response that, if left untreated, impedes recovery. In the past two decades, use of
anabolic agents, beta adrenergic receptor antagonists, and anti-hyperglycemic agents has
successfully counteracted post-burn morbidities including catabolism, the catecholamine-mediated
response, and insulin resistance. Here we review the most up-to-date information on currently
used pharmacotherapies in the treatment of these sequelae of severe burns and the insights that
have expanded our understanding of the pathophysiology of severe burns.

Expert opinion—Existing drugs offer promising advances in the care of burn injuries.
Continued gains in our understanding of the molecular mechanisms driving the hypermetabolic
response will enable the application of additional existing drugs to be broadened to further
attenuate the hypermetabolic response.
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1. Introduction
1.1 Burns: A global public health problem

Injuries caused by severe burn injuries result in significant disability and death [1]. In 2004,
11 million severely burned people sought medical attention globally. Burn injury ranks
fourth among all injuries, following vehicle accidents, falls, and violence. A significant
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number of people sustain burn injuries, with incidence rates higher than those for HIV
infections and tuberculosis combined. The post-burn sequelae account for a large portion of
disabilities in low-to-middle income countries [1].

Recent advances in clinical care have reduced morbidity and mortality. From 1981 to 1998,
the age-adjusted death rate associated with burns decreased by over 50% in the U.S [2].
Although a decline in mortality has occurred due to advances in clinical care, low-to
medium-income countries bear the main burden of burn injuries. This is probably
attributable to socioeconomic factors, outdoor fires for cooking, poorly grounded electrical
lines, crowding, and inconsistent access to quality acute care. The majority (90%) of burn
deaths occur in lower-middle or low income countries, 7% in high-middle, and 3% in high
income countries [2]. In all countries, disparities exist in the treatment of burns in children,
the elderly, and racial and ethnic minorities.

1.2 The pathophysiology of severe burns
Severe burn injuries, which cover more than 30% of the total body surface area (TBSA),
cause an inflammatory and subsequent hypermetabolic response that starts immediately post
burn and persists for at least 3 years [3–5]. This response has two aspects— the “ebb” and
“flow” phases. The “ebb” phase, occurring within the first 48 hours after injury, is
associated with decreased cardiac output and metabolism. The chronic “flow” phase then
ensues with development of a hyperdynamic circulation and increased metabolic rate [6].
Hyperglycemia occurs due to increased glucose synthesis, increased glucose flow to
inflamed tissues, and development of peripheral insulin resistance. The hypermetabolic
response is thought to be due to post-burn elevation of endogenous catecholamines and
cortisol. In a large single-center study evaluating the extent and magnitude of the
catecholamine surge following severe burn in pediatric patients, Kulp et al. showed that
catecholamine levels are consistently and significantly elevated in burn patients and that
levels increase with burn size [7, 8]. Epinephrine returns to normal levels within 2 months of
burn injury, while norepinephrine remains elevated for 18 months [3]. Cortisol, however,
remains persistently elevated for 3 years post burn. Supraphysiologic levels of stress
hormones contribute to the long-lasting tachycardia, catabolism, and immune suppression
that characterize the hypermetabolic response.

Hypermetabolism can be quantitated by analyzing resting energy expenditure (REE),
consumption of oxygen and glucose, and CO2 production. REE remains elevated at 130–
140% of the predicted value for 3 years after burn injury [3]. This hypermetabolic response
is associated with a hyperdynamic circulation, hyperthermia, and skeletal muscle and fat
breakdown [9–12]. During this time, the metabolic and energy requirements are vast,
necessitating recruitment of proteins and amino acids to sustain healing and recovery. This,
in turn, increases protein turnover and produces a negative nitrogen balance. The
accompanying reductions in lean body mass (LBM) and bone density produce weakness and
impair wound healing. The loss of LBM can further drive detrimental responses in burned
patients. Chang et al. demonstrated that impaired immunity occurs when 10% of LBM is
lost. Thirty percent mortality occurs as a result of decreased wound healing with 20% loss of
LBM. Thirty percent loss of LBM leads to bed sores, pneumonia, and 50% mortality. Death
uniformly occurs when 40% of LBM is lost [13]. Although the hypermetabolic response
undoubtedly evolved to aid survival from burns, this physiologic response also has
maladaptive consequences that can negatively affect survival and hinder recovery [14]. As a
consequence, the rehabilitation and reintegration of severely burned victims into society are
hampered.

Over the past several decades, increasing knowledge of burn pathophysiology has led to
advances in burn care, both in inpatient and outpatient settings. This has led to an overall
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reduction in morbidity and mortality in patients admitted to tertiary referral care centers
[15]. In addition to improvements in resuscitation, early enteral nutrition, early excision and
coverage of burn wounds, and the development of new topical and systemic agents, the
implementation of existing drugs to reduce aspects of the pathophysiologic response to burn
has contributed to this overall improvement in burn care.

Here we review therapeutic interventions with beta blockade to prevent the detrimental
effects of the post-burn catecholamine surge, anti-hyperglycemia therapies to reduce blood
glucose and improve insulin sensitivity, ketoconazole to block cortisol, and anabolic agents
(testosterone, oxandrolone, recombinant human growth hormone, and insulin-like growth
factor-1 and its binding protein 3) to improve muscle mass. Insights gained from these
studies have improved the care of severely burned patients. Continued pursuit of
pharmacotherapies for use in burn patients will yield the next major advancements in burn
care.

2. Current therapies administered to counteract specific aspects of the
post-burn pathophysiologic response
2.1 Propranolol

The burn-induced stress response stimulates secretion of endogenous catecholamines, which
are thought to be the primary mediators of hypermetabolism after severe burns [12]. This
elevation of catecholamines induces a hyperdynamic circulation, augments energy
expenditure, and promotes protein catabolism in skeletal muscle. Drugs that block this
catecholamine surge have been shown to be effective at countering catecholamine-induced
sequelae after severe burns [16]. Propranolol, a non-specific beta 1, beta 2 adrenergic
receptor antagonist that has been studied extensively, holds promise for reduction of the
post-burn hypermetabolic response.

Initial studies of beta adrenergic blockade with infusion of 2 mg/kg/day propranolol for 5
days showed that this short duration of therapy diminishes tachycardia and reduces cardiac
work without affecting the REE [17, 18]. Catecholamines induce myocardial oxygen
consumption. Accordingly, administering low doses of propranolol (0.5–1.0 mg/kg) to
severely burned patients reduces myocardial oxygen requirements without adversely
affecting oxygen delivery. When titrated at a dose to reduce heart rate by 10–20% of
baseline for more than 10 days, propranolol continues to safely reduce cardiac work load in
severely burned children [19]. Randomized-controlled trials suggest that propranolol works
in a dose-dependent manner in severely burned patients. Patients initially treated with 1 mg/
kg/day propranolol to reduce the heart rate to 15% of the admission heart rate required a
dose escalation to ~4 mg/kg/day within 10 days to sustain the goal heart rate and treatment
benefits of decreased cardiac work [20]. Interim analysis of a large randomized-control trial
at our institution to assess the efficacy and safety of long-term propranolol use in severely
burned pediatric patients has revealed that a decrease in heart rate of 15% below admission
heart rate and a subsequent decrease in cardiac work is maintained with an average dose of 4
mg/kg/day, when given every 6 h or once daily as an extended-release formulation for 12
months [21]. Increased episodes of hypotension were not seen in the propranolol group at
this dose when compared to the placebo, confirming the long-term safety of this drug.
Furthermore, this study found that despite treatment, tachycardia and cardiac work were still
significantly elevated from normal [21]. Given the safety of propranolol at 4 mg/kg/day,
increasing the dose to further decrease cardiac work could be considered in severely burned
patients.

In burn patients, peripheral lipolysis is increased through the activation of beta 2 adrenergic
receptors by catecholamines [17, 18, 22]. This results in substantial fatty infiltration of the
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liver. By way of beta 2 adrenergic blockade, propranolol inhibits liberation of free fatty
acids from adipose tissue, increases the efficiency of the liver in excreting fatty acids, and in
turn decreases burn-induced hepatic steatosis [22–24]. The majority of patients administered
propranolol to decrease the heart rate 12–15% experience decreased liver size. Plasma
triglycerides are also significantly lower in these patients. Long-term administration of
propranolol at 4 mg/kg/day is associated with maintenance of peripheral fat mass (and
consequently no change occurs in central fat mass), while non-treated patients have a 23%
increase in central fat mass with concurrent reduction in peripheral fat mass 12 months post
burn despite similar nutritional intake [21].

In addition to decreasing tachycardia, cardiac work, REE, and hepatic steatosis in severely
burned patients, beta blockade with propranolol reduces breakdown of peripheral muscle
and increases protein synthesis. In a randomized controlled trial, children with burns over
40% of the TBSA receiving an average daily dose of propranolol of 2–6 mg/kg/day had a
net muscle protein balance increase of 82% above baseline compared to a decrease of 27%
in the non-treatment group [24]. Recently, Olah et al. demonstrated that Poly (ADP-ribose)
polymerase (PARP) activation, which promotes cellular necrosis during critical illness,
occurs in skeletal muscle following severe burn injury. Peak activation occurred at 13–18
days post injury and persisted into the later disease phase. PARP activation was lower in
patients who received propranolol at 4 mg/kg/day than in control patients [25]. This study
suggests that propranolol may increase net protein balance and decrease overall lean mass
catabolism by preventing skeletal muscle necrosis after severe burn injury.

Studies evaluating reduction of cardiac work with administration of propranolol have also
revealed that smaller amounts of insulin are needed to reduce elevated glucose levels after
burn in propranolol-treated patients [19]. Recent studies using rat models of burn injury
have provided insights into the mechanism underlying the effects of propranolol on insulin
resistance. The hepatic endoplasmic reticulum (ER) stress response is induced with severe
burn injury, resulting in activation of c-Jun N-terminal kinase, which negatively regulates
insulin signaling as well as suppression of insulin receptor signaling leading to insulin
resistance [26]. Administration of propranolol at 5 mg/kg/day orally immediately post burn
attenuates the ER stress response and increases insulin sensitivity [27]. Further studies are
needed to evaluate this promising approach to overcoming post-burn insulin resistance.

Murine studies suggest that non-selective beta blockade with propranolol during episodes of
septicemia are detrimental and increase mortality [28]. However, this was not evident in
large prospective, intent-to-treat clinical studies. In 2007, Jeschke et al. found that
propranolol attenuated the hypermetabolic response, as indicated by a significant decrease in
REE during acute hospitalization, without increasing the incidence of infection and sepsis
[29].

The role of propranolol in the treatment of burn injuries goes beyond modulating
metabolism. Both local and systemic administration of propranolol have been shown to
enhance wound healing and decrease the surface area requiring skin grafting [30, 31]. With
reduced mortality from the acute injury, the emphasis of burn care has shifted to improving
morbidity and optimizing rehabilitation. Given that approximately one-third of burn victims
suffer from acute and posttraumatic stress disorder, the use of psychotropic agents in the
burn population is common. The use of propranolol as a potential pyschotropic agent is
being explored [32, 33].

2.2 Insulin
Hyperglycemia is a prominent component of the post-burn hypermetabolic response [34].
Stress-induced hyperglycemia is also noted after other major trauma and results from
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increased hepatic gluconeogenesis and insulin resistance in skeletal muscle [34]. Elevated
plasma glucose levels have been shown to suppress immune function by altering
macrophage cytokine production. This, in turn, decreases lymphocyte proliferation and
suppresses bactericidal activity in leukocytes [32–34], possibly contributing to post-burn
immune depression. Immune function is further affected by elevated glucose levels, which
lead to immunoglobulin glycosylation when glucose levels are >220 mg/dL, reducing
opsonic activity [35]. Van den Berghe and colleagues showed that, in the critically ill,
survival and morbidity improve when blood glucose levels are maintained at ≤110g/dL [36–
38]. Glucose control is also associated with improved wound healing [39].

Given that infection is a leading cause of mortality in severely burned patients and that
wound healing is vital for recovery, burn victims are especially vulnerable to the
consequences of hyperglycemia. In 58 severely burned pediatric patients, Gore et al. found
that patients with hyperglycemia had worse skin graft take and were more likely to be
bacteremic [40]. Complementary to this finding, intensive insulin treatment has been shown
to increase donor site wound protein synthesis in burned patients, further supporting the
notion that improved serum glucose has a positive effect on wound healing [41]. Gore et al.
also found that persistent hyperglycemia is associated with increased mortality [40]. In burn
patients, glycemic control is associated with lower death rates. By post-burn day 3, patients
who have not achieved a mean glucose concentration of ≤150 mg/dl for a minimum of two
consecutive days had an increased risk of mortality. This finding was independent of age,
burn size, and number of infections [42].

In addition to providing the benefits of normoglycemia and wound healing, continuous
infusions of this anabolic peptide in severe burn patients prevent breakdown of muscle
protein and maintain lean mass [43, 44]. Low infusion doses of 9–10 U/h improve muscle
anabolism in the absence of large carbohydrate loads [43]. Burn patients receiving insulin
infusions (1.5 U/kg/min to maintain 100–140 mg/dL blood glucose) and a high
carbohydrate/protein diet (1,500 kcal/m2 + 1,500 kcal/m2 burned every 14 hours) exhibit
improvements in LBM, bone mineral density, and length of hospitalization [45]. The exact
mechanism underlying the ability of insulin to induce this anabolic state is unclear; however,
administration of insulin to severely burned children does reduce pro-inflammatory
cytokines and proteins and elevates constitutive hepatic proteins. This suggests that insulin
attenuates the inflammatory response independent of its effect on serum glucose levels [46].
Furthermore, studies in rat cardiomyocytes have shown that insulin decreases inflammatory
cytokine expression and apoptosis by inhibiting p38 mitogen-activated protein kinase, which
is upregulated after thermal injury [47]. This blockade of a stress-signaling pathway known
to be activated by cytokines may also mediate the beneficial effects of insulin in other
tissues. Intensive insulin treatment to maintain blood glucose between 80 and 110 mg/dL
during the acute hospitalization period results in further benefits to severely burned children
[48], including significantly decreased infectious episodes, sepsis, organ dysfunction, and
insulin resistance, and it improves mitochondrial oxidative capacity [49]. The recent use of
computerized insulin infusion programs in surgical intensive care units has been found to be
both an effective and safe method of administering insulin [50]. However, because of the
risk of hypoglycemia, infusions of insulin do require close monitoring and are of no use in
the outpatient setting [16].

2.3 Anti-hyperglycemic therapeutics: Fenofibrate, metformin, GLP-1 agonists, and SS31
Metformin (glucophage), a biguanide, has been widely used to correct hyperglycemia in
diabetic patients and is currently an alternative drug for treatment of injury-induced
hyperglycemia. Metformin targets the metabolic process underlying hyperglycemia in
critical illness, inhibiting gluconeogenesis and augmenting insulin sensitivity in the
periphery [51]. In addition to reducing hyperglycemia, metformin speeds muscle protein
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formation and increases the net protein balance in muscle [52]. Metformin appears to have
effects analogous to insulin in critically injured patients and is a promising alternative given
its safety record in the outpatient setting. Although lactic acidosis has been reported with
administration of metformin and other biguanides, this side effect has not been reported in
preliminary trials of this drug in severely burned patients. However, patients should be
monitored for this development as recommended. Thus, the biguanide drugs should be used
with caution as a replacement therapy for insulin.

Mitochondrial oxidative function in skeletal muscle appears to be impaired in patients with
insulin resistance, such as type 2 diabetics [53]. Furthermore, severe burn injury also causes
mitochondrial dysfunction, which may contribute to insulin resistance after burns [54]. In a
randomized control trial of fenofibrate, a peroxisome proliferator-activated receptor alpha
agonist, significant reduction of plasma glucose was achieved without inducing
hypoglycemia. Administration of this drug to burned children for 2 weeks reduces insulin
resistance [55]. Fenofibrate not only ameliorates hyperglycemia and insulin resistance, but
also improves wound healing in severely burned patients. Clinical trials evaluating the
effects of long-term use in burn patients are now underway [56].

Other approaches to targeting mitochondrial dysfunction targets include the use of SS31, an
antioxidant peptide. Studies in thermally injured mice have shown promising improvements
in insulin resistance with the use of SS31 [57]. These studies suggest that SS31 may be of
benefit in the treatment of post-burn insulin resistance.

Other ongoing approaches to reduce hyperglycemia after burn injury include the use of
glucagon-like-peptide (GLP)-1 agonists. GLP-1 suppresses glucagon, stimulates insulin
secretion, and therefore, decreases serum blood glucose. A recent study by Deane and
coworkers revealed that, in the critically ill, administration of GLP-1 infusions markedly
attenuates the glycemic response seen with enteral nutrition [58]. A study of 24 severely
burned children showed that, in the acute setting, hyperglycemia could be controlled with a
smaller amount of insulin when patients were given a GLP-1 analog [59].

2.4 Ketoconazole
In a prospective randomized trial, the administration of ketoconazole successfully blocked
cortisol production but did not affect whole-body catabolism in severely burned patients.
Additionally, no alterations were reported in the post-burn inflammatory response, REE,
hormones, acute-phase proteins, or sex steroids. These results suggest that hypercortisolemia
may not play an important role in the post-burn hypermetabolic catabolic response as once
believed [60].

2.5 Testosterone and oxandrolone
Testosterone production is greatly decreased after severe burn injury. In a large prospective
trial, serum testosterone levels were reported to be elevated 8–10 days post burn and
gradually fall below baseline levels on day 60 [3]. Levels remain below normal for up to 3
years post injury [3]. Testosterone administration makes the use of intracellular amino acids
that are derived from protein catabolism more efficient and leads to an overall increase in
protein synthesis [61]. Restoring serum testosterone in severely burned males significantly
decreases breakdown of muscle and improves protein synthesis [62].

Oxandrolone, an analogue of testosterone that has lower androgenicity and is well absorbed
when administered orally, is a more favorable option, particularly for women and
prepubescent boys. In skeletal muscle, oxandrolone binds to intracellular androgen
receptors. The androgen receptor-oxandrolone complex then moves to the cell nucleus and
binds to DNA, stimulating protein synthesis and anabolism [63]. During amino acid
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infusions, the use of oxandrolone significantly speeds protein catabolism without affecting
the rate of protein break down when compared to a no-oxandrolone group, thereby leading
to a higher net protein balance [64]. Oxandrolone has been used in acute and rehabilitating
adult burn patients with promising results with regard to weight gain, net protein synthesis in
the muscle, and LBM [65, 66]. When treated orally with 0.1 mg/kg oxandrolone twice daily,
acute pediatric burn patients exhibit enhanced protein anabolism and upregulation of
anabolic genes in the muscle [67, 68]. Oxandrolone affects LBM and bone mineral density
not only in the acute setting, but also up to 12 months post burn [68]. More recently, in a
single-centered randomized clinical trial, Porro et al. demonstrated that oxandrolone, when
given at 0.1 mg/kg twice a day for one year post burn, provides benefits that persist for up to
5 years post burn with few deleterious side effects [69]. Increases in LBM and bone mineral
content persist for 3–5 years post therapy.

2.6 Recombinant human growth hormone, insulin-like growth factor-1 (IGF-1), and IGF-1
binding protein 3

The GH-IGF-1 axis is a key endocrine axis affected by severe injury and critical illness [70].
Both GH and IGF-1 are significantly reduced following severe burn injury and remain at
subnormal levels even 3 years post injury [3]. Studies of the administration of recombinant
human growth hormone (rhGH) to improve growth and build muscle following burn injury
have demonstrated that rhGH ameliorates immune function, wound healing, the
hypermetabolic response to major stress, and protein synthesis after burn [71–75]. The
benefits of rhGH administration continue for up to 1 year after discontinuation of the drug
[72, 76]. Patients treated with long-term rhGH experienced greater weight and height gains,
improved LBM, and higher bone mineral content. Several doses (0.05, 0.1, and 0.2 mg/kg/
day) have been tested in the pediatric burn population, with improvements associated with
each dose. The combination of a 12-week resistive and aerobic exercise program with the
administration of rhGH (0.05 mg/kg/day) provided an increase in muscle strength and
aerobic capacity that was greater than that seen in the non-exercise group, but the gains were
comparable to the exercise alone group. However, a prospective, randomized study revealed
that rhGH increases mortality in critically ill adults [77]. Furthermore, rhGH has been noted
to cause hyperglycemia in severely burned patients when administered at 0.2 mg/kg/day;
lower doses of 0.05mg/kg/day did not lead to hyperglycemia.

The effects of growth hormone (GH) are partly mediated by insulin-like growth factor
(IGF-1). Infusions with IGF-1 alone have also been shown to improve protein metabolism.
However, hypoglycemic episodes have been reported with IGF-1 alone [78, 79]. IGF-1
appears to inhibit stress-induced muscle proteolysis, explaining the improved protein
metabolism seen clinically [80]. Concomitant use of IGF-1 and insulin-like growth factor
binding protein 3 (IGFBP-3) attenuates the inflammatory response in severely burned
patients. It also appears to elevate constitutive hepatic proteins and reduce IL-1b, TNF-
alpha, and acute-phase proteins [81]. When combined with equal doses of IGFBP-3, IGF-1
infusions result in less hyperglycemia than IGF-1 in combination with rhGH and less
hypoglycemia than with IGF-1 alone. Improved protein synthesis in severely burned patients
continues to be observed [82].

In a randomized prospective trial comparing the effects of human growth hormone (hGH)
and oxandrolone on metabolism and wound healing after severe burn injury, these drugs
were found to have a comparable ability to speed wound healing and diminish weight and
nitrogen loss. However, hGH resulted in higher rates of hyperglycemia and REE than
oxandrolone [83].
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More recent studies have shown that concomitant use of rhGH and propranolol attenuates
hypermetabolism, reduces peripheral lipolysis, and decreases inflammation, and it does not
produce the problematic effects of using rhGH alone [78, 84].

3. Conclusion
In spite of the improvements seen in burn care over the last several years, burn injury is still
a clinical challenge and continues to be a global public health problem. Mortality has
specifically decreased in specialized burn care units practicing aggressive resuscitation,
early enteral nutrition, early excision and coverage of wounds, and use of potent antibiotics.
With improved survival, the focus of care has shifted to optimizing recovery and
rehabilitation. If left untreated, the hypermetabolic response that occurs in severe burns can
have detrimental effects on recovery and rehabilitation. Alternative uses and combinations
of existing agents that counteract specific aspects of the post-burn pathophysiologic
response are promising (Table 1).

4. Expert opinion
Improved clinical care has led to reductions in mortality; 32% of patients with >60% TBSA
burns died in 1980–1986, with this mortality rate being reduced to 18% in 1987–2011. With
recent elucidation of the pathophysiology of severe burn injury, the ability to conduct both
clinical and translational research to attenuate specific aspects of burn complications has
been greatly enhanced.

Particular aspects of the hypermetabolic response—the catecholamine surge, hyper-
inflammation, insulin resistance, catabolism, and hyperglycemia—may be attenuated using
drugs developed to treat these conditions in other populations. The drugs discussed here
have mainly been used for investigational purposes in severely burned patients and are not
yet standard-of-care therapies despite clear potential clinical benefit. Oxandrolone is the
closest of these therapies to becoming a standard-of-care therapy in severely burned patients.
It is easy to administer, has few side effects, and when coupled with an aerobic exercise
regimen, can improve LBM with long-lasting benefits [69]. The widespread use of
oxandrolone in burned patients has been brought about by the positive results from clinical
trials discussed in this article. However, further multi-center investigations are needed to
understand the molecular mechanisms underlying the possible efficacious effects of this
drug. Future studies should include long-term follow-up (>5 years) studies to determine
whether the benefit related to LBM persists. As an aerobic exercise program clearly
augments the beneficial effects of this drug, clinicians may want to incorporate an exercise
program into patients’ management plans.

The use of propranolol to reduce complications related to the catecholamine surge and the
subsequent increase in cardiac work holds the potential to vastly improve burn patient
outcomes. At the very least, a reduction in heart rate and anxiety improves how the patient
feels. We recommend propranolol, as opposed to other beta blockers or newer generation
anti-hypertension drugs, because of beta 2 adrenoreceptor-mediated effects on fat
metabolism. Concerns still exist regarding the safety of this drug in critically ill patients.
That is, blunting the post-burn stress response may interrupt a necessary adaptive
mechanism for survival. Despite several studies showing that propranolol reduces mortality
in other patient populations, the results of the Perioperative Ischemic Evaluation Study
(POISE) trial necessitate that the safety and efficacy of this therapy be thoroughly
investigated in severely burned patients [85]. In a randomized controlled trial of metoprolol
administered to cardiac patients undergoing non-cardiac surgery, a significant increase in
mortality was found in the treatment group. Increased mortality has not been found in our
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single-center studies of propranolol. Current single- and multi-center trials will reveal
whether the use of propranolol is safe and efficacious in severely burned patients.

Attenuation of hyperglycemia to reduce blood glucose to <110mg/dL improves outcomes in
critically ill patients and in burn patients. Although administration of an intensive insulin
protocol has anti-catabolic and anti-inflammatory results, the difficulty in maintaining
continuous monitoring and feeding to avoid hypoglycemic episodes in the critical care
setting reduces the enthusiasm of most clinical teams for using this agent in the acute unit or
even after discharge. Other drugs proven to be effective for maintaining normoglycemia are
still in the early stages of use in this patient population; however, preliminary studies are
promising.

Growth hormone has fallen out of favor due to expense and due to concerns regarding safety
that surfaced following a European trial showing increased mortality in critically ill patients
[86]. In severely burned children, only beneficial effects were noted [75]. Recent studies in
non-burned patients have ignited a controversy regarding whether an association exists
between GH use and later development of cancers [87, 88]. To date, follow-up studies in
patients administered growth hormone to improve muscle synthesis and growth have not
found adverse events associated with the use of rhGH.

Combination therapies that take advantage of drugs with complementary modes of action
have largely been unexplored. However, we briefly reviewed several of the studies that have
been beneficial, and this area shows promise. Future multi-centered studies focusing on
counteracting multiple aspects of the post-burn hypermetabolic response may yield further
advances in patient care.

The use of anabolic and anti-catabolic agents has allowed attenuation of the hypermetabolic
response to burn injury and improved patient outcomes. With an ever increasing
understanding of molecular mechanisms underlying this response, additional drug targets
may be identified to improve patient care even further. Further research in the field of burn
care is warranted, as many unanswered questions remain.
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Article Highlights

• The hypermetabolic response to severe burn injury has deleterious consequences
including catabolism, inflammation, insulin resistance, supraphysiologic levels
of catecholamines, and associated sequelae.

• Modulators of the hypermetabolic response that improve acute outcomes now
appear to have long-term benefits in burn patients.

• Beta blockade with propranolol has been used to attenuate catecholamine-
mediated responses to burn.

• Burn-induced insulin resistance can be reduced with insulin, fenofibrate,
metformin, or GLP-1.

• Anti-catabolic agents such as testosterone, oxandrolone, rhGH, IGF-1, and
IGF-1/BP3 can be used to improve muscle mass.

• Large multi-center studies are needed to bring these therapies into standard-of-
care treatment regimens

• Further research is needed to broaden the application of existing drugs to burn
care.
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