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Identification of a Candidate Gene for Astigmatism
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PURPOSE. Astigmatism is a common refractive error that reduces

vision, where the curvature and refractive power of the cornea

in one meridian are less than those of the perpendicular axis. It

is a complex trait likely to be influenced by both genetic and

environmental factors. Twin studies of astigmatism have found

approximately 60% of phenotypic variance is explained by

genetic factors. This study aimed to identify susceptibility loci

for astigmatism.

METHODS. We performed a meta-analysis of seven genome-wide

association studies that included 22,100 individuals of Europe-

an descent, where astigmatism was defined as the number of

diopters of cylinder prescription, using fixed effect inverse

variance-weighted methods.

RESULTS. A susceptibility locus was identified with lead single

nucleotide polymorphism rs3771395 on chromosome 2p13.3

(meta-analysis, P¼ 1.97 3 10�7) in the VAX2 gene. VAX2 plays

an important role in the development of the dorsoventral axis

of the eye. Animal studies have shown a gradient in

astigmatism along the vertical plane, with corresponding
changes in refraction, particularly in the ventral field.

CONCLUSIONS. This finding advances the understanding of
refractive error, and provides new potential pathways to be
evaluated with regard to the development of astigmatism.
(Invest Ophthalmol Vis Sci. 2013;54:1260–1267) DOI:
10.1167/iovs.12-10463

Astigmatism is a common refractive error that reduces
vision, where the curvature and refractive power of the

cornea in one meridian are less than those of the perpendicular
axis. There are two components of astigmatism that can be
independently measured, refractive astigmatism (also called
noncorneal astigmatism) and corneal astigmatism; this study
deals with refractive astigmatism. Astigmatism is an important
clinical problem because it is common; prevalence ranges
between 20% and 29.3% among adults in Europe and 36.2%
among subjects 20 years old and older in the United States,1–3
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with a significant social and economic impact, and is a risk
factor for amblyopia and anisometropia.4,5 Astigmatism is
commonly associated with other refractive errors.6 Under-
standing causes of astigmatism might also provide some
insights into keratoconus, the most common reason for corneal
transplantation in Europe.

The cause of astigmatism is complex and not fully
understood. Few environmental risk factors have been
reported, although a Singapore study found the number of
hours playing video games was associated with more severe
astigmatism in school children between 7 and 9 years old.7

Previous studies have reported that the risk of developing
astigmatism doubles in first-degree relatives of individuals with
astigmatism.8–10 Family and twin studies have determined a
broad sense heritability of approximately 60%,2,11,12 which
suggests a significant genetic contribution to astigmatism.

There are, however, no genes known that influence
astigmatism risk, and given the poor understanding of the
pathways involved in its development, we felt that the
hypothesis-free approach of genome-wide association studies
(GWAS), which has been shown to be very successful in
identifying common variants associated with common diseases
and traits,13 seemed appropriate. To date, GWAS have
identified susceptibility variants in corneal astigmatism in an
Asian meta-analysis14 and myopia/hyperopia.15–17

In order to explore the putative susceptibility loci that
underlie astigmatism, we conducted a meta-analysis of seven
GWAS (TwinsUK, Rotterdam Eye Study, 1958 British birth
cohort, and Australian cohorts) with a total of 22,100
individuals.

MATERIALS AND METHODS

Study Populations

UK Twin Cohort. The UK twin (TwinsUK) cohort consists of 5654

genotyped subjects (5158 females and 496 males) belonging to 3601

families, ranging between 16 and 84 years old (SD 612.2 years). Twins

were recruited through the TwinsUK Adult Twin Registry held at St.

Thomas’ Hospital, London, where they were invited to undergo an eye

examination. Details of the registry have been described elsewhere.18

Informed consent was obtained, and the research adhered to tenets of

the Declaration of Helsinki. Twins were examined between January

1998 and September 2009.

All twin pairs underwent nondilated refraction using a Humphrey-

670 (Humphrey Instruments, San Leandro, CA) automatic refractor

(1998–2002) and subsequently an ARM-10 autorefractor (Takagi Seiko,

Japan).12 An automatic refractor measures refractive error by detection

of infrared light aligned through the pupil and reflected back by the

retina. The astigmatism was calculated as the absolute value of cylinder

(Ast ¼ jcylinderj), and a posteriori, it was normalized by applying the

inverse normal transformation. Here we decided to use absolute

cylinder value rather than polar value as the former is an untrans-

formed value and, thus, a direct measure of cylinder power and

includes all types of astigmatism, not only with-the-rule (WTR) and

against-the-rule (ATR) astigmatism but also oblique astigmatism, in

contrast to the polar value, which is a transformed value19 and

excludes oblique astigmatism (transforms oblique astigmatism to

values of zero). Mean astigmatism was 0.76 diopters (D) (60.69) with

a range of 0 to 6.625. Astigmatism presented a leptokurtic distribution

with a right skew of 2.48 (Supplementary Table S1 [see Supplementary

Material and Supplementary Table S1, http://www.iovs.org/lookup/

suppl/doi:10.1167/iovs.12-10463/-/DCSupplemental]).

Dutch Cohorts: Rotterdam Studies I-III and Erasmus

Rucphen Family Study. Dutch cohorts comprised four different

populations: three were population-based Rotterdam Study (RS-I, RS-II,

and RS-III),20 and one was the family based Erasmus Rucphen Family

(ERF) study. RS-I included 5513 subjects ranging from 55 to 99 years

old. Baseline ophthalmologic examinations took place between 1991

and 1993 and included 6775 subjects. Individuals were excluded if

they had undergone bilateral cataract surgery, laser refractive

procedures, or other intraocular procedures which might alter

refraction. The RS-II cohort consisted of 2000 new subjects between

the ages of 55 and 95 years old. Baseline examinations were carried out

from 2000 to 2002 and follow-up examinations were from 2004 to

2005. RS-III cohort consisted of 3434 new individuals, 45 to 97 years

old. Baseline examinations took place between 2006 and 2009. The last

Dutch cohort, ERF, consisted of 2032 living descendents, ranging

between 18 and 86 years old from 22 families.

All measurements of astigmatism were taken through nondilated

pupils, using an automated measurement of refractive error (model

RM-A2000 autorefractor; Topcon, Tokyo, Japan), with the approval of

the Medical Ethics Committee of Erasmus University, and all

participants gave written informed consent in accordance with the

Declaration of Helsinki. Astigmatism was calculated by the same

formula: inverse normal transformation of the absolute of the mean

cylinder. RS-I, -II, -III and ERF cohorts present a leptokurtic distribution

ranging from 0 to 7.5 D (mean, 0.97 D); 0 to 5.625 D (mean, 0.91 D); 0

to 5.875 D (mean, 0.83 D); and 0 to 5.37 D (mean, 0.609 D),

respectively, with a right skew of 1.97, 1.79, 2.01, and 2.25,

respectively (Supplementary Table S1 [see Supplementary Material

and Supplementary Table S1, http://www.iovs.org/lookup/suppl/

doi:10.1167/iovs.12-10463/-/DCSupplemental]).

Australian Cohort. The Australian Twin Eye study included

subjects examined as part of the Twin Eye Study in Tasmania and the

Brisbane Adolescent Twin Study, between 2004 and 2009. In total this

study included 1809 subjects from 786 families, 18 years old or older at

the time of the examination. Ethical approval was obtained from the

Royal Victorian Eye and Ear Hospital, University of Tasmania, Australian

FIGURE 1. Manhattan plot of 2.8 million single nucleotide polymorphisms (SNPs) for a meta-analysis of seven cohorts for astigmatism. The�log10 P

values are plotted against position in each chromosome. Chromosomes are shown in alternating contrasts for clarity. The strongest association is on
chromosome 2.
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Twin Registry, and Queensland Institute of Medical Research and

adhered to tenets of the Declaration of Helsinki. Subjects underwent

cycloplegia (following instillation of tropicamide 1%), and refraction

for both eyes was measured using a Humphrey-598 automatic refractor

(Carl Zeiss Meditec, Inc., Miami, FL). The normalized value, after

applying the inverse normal transformation, of the absolute of the

mean cylinder of both eyes was used for analysis. The distribution of

absolute cylinder was similar to the one used in the other cohorts,

leptokurtic distribution with a right skew of 2.8. Absolute cylinder

ranged between 0 and 4 D, and the mean was 0.38 D (60.01)

(Supplementary Table S1 [see Supplementary Material and Supple-

mentary Table S1, http://www.iovs.org/lookup/suppl/doi:10.1167/

iovs.12-10463/-/DCSupplemental]).

1958 British Birth Cohort. The 1958 British birth cohort was a

prospective population-based study that initially included 17,000

newborn children whose births occurred within the first week of

March 1958. All participants gave informed written consent to

participate in genetic association studies, and the study was approved

by the South East Multicentre Research Ethics Committee (MREC),

Oversight Committee for the biomedical examination of the 1958

British birth cohort and adhered to tenets of the Declaration of

Helsinki. Biomedical examination protocols were approved by the

South East MREC.

The phenotype for this cohort was absolute cylinder (mean of both

eyes) measured with noncycloplegic autorefraction (Retinomax 2;

Nikon). Absolute cylinder was normalized a posteriori, using inverse

normal transformation. A total of 1658 randomly chosen subjects from

this cohort, all 44 to 45 years old, were included in the GWAS. This

group included 760 females and 898 males, and the average

astigmatism value was 0.49 (60.49 D), ranging from 0 to 5.625 D.

The distribution of astigmatism was leptokurtic with a right skew of

3.2 (Supplementary Table S1 [see Supplementary Material and

Supplementary Table S1, http://www.iovs.org/lookup/suppl/doi:10.

1167/iovs.12-10463/-/DCSupplemental]).

Genotyping and Quality Control

TwinsUK Cohort. Genotyping was carried out using a combina-

tion of Illumina arrays (Illumina, Inc., San Diego, CA): HumanHap 300k

Duo HumanHap 610-Quad, and 1M-Duo and 1.2M-Duo. The imputa-

tion was performed with reference to HapMap (http://www.hapmap.

org, available in the public domain by the International HapMap

project) release 22 CEU (Utah residents with Northern and Western

European ancestry from the CEPH collection) using IMPUTE version

2.21 In total, this panel has complete information for 2.6 million single

nucleotide polymorphisms (SNPs), of which up to 874,733 SNPs are

directly genotyped (HumanHap300: 303,940 SNPs; HumanHap610Q:

553,487 SNPs; and HumanHap1M and 1.2M: 874,733 SNPs) for all

individuals. As part of quality control, SNPs were excluded if they had

a call rate �97%, a minor allele frequency (MAF) �0.05, or significant

deviations from Hardy-Weinberg equilibrium (HWE) (P � 10�6). A

principal component analysis was performed in order to confirm the

genetic ancestry of this cohort by comparison to standard HapMap

Phase 2 population controls.

Dutch Cohorts: RS I-III and ERF. In the RS-I cohort, genotyping

was performed using Infinium II HumanHap 550 chip version 3.0 array

(Illumina); the RS-II cohort was genotyped using HumanHap 550 Duo

Arrays and Human 610 Quad Arrays (Illumina), and the RS-III cohort

was genotyped using Human 610 Quad Arrays (Illumina) only. For ERF,

DNA was genotyped with one of four different platforms (Illumina 6K,

Illumina 318K, Illumina 370K, and Affymetrix 250K). The genotyped

set was imputed using MACH,22 resulting in an analysis of a total of 2.5

million SNPs from 530,683 genotyped SNPs (RS cohorts) and 495,478

genotyped SNPs (ERF). Exclusion criteria for SNPs were a MAF �0.01,

an HWE of P < 10�6, or an SNP call rate �90%.
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Australian Cohort. The Australian cohort was genotyped using

the Human Hap610 Quad array. The genotyped panel was imputed

using MACH22 with HapMap data obtained from people of northern

and western European ancestry, resulting in a total of 2.3 million SNPs,

including 513,908 SNPs with complete genotype information. For

quality control, SNPs were excluded in accordance with a series of

quality control filters, including an SNP call rate <95%, a MAF <0.01,

and a P value for HWE test of <10�6. Genotypic data for non-European

ancestral outliers were excluded using a principal component analysis

by comparing Australian twin data with 16 global populations taken

from HapMap Phase 3.

1958 British Birth Cohort. Genotyping was carried out primarily

using a Human Omni 1M-duo chip (Illumina), which contains 910,582

SNPs (n¼ 1000). Exclusion criteria for SNPs were MAF <0.02, SNP call

rate <95%, and HWE P <1 3 10�4. Additional genotypes (n ¼ 658)

were obtained using SNP Array version 6.0 (Affymetrix, Inc., Santa

Clara, CA), HumanHap 550 Duo Arrays, and Cardio-Metabochip

(Illumina), where most of the samples were genotyped two or more

times using different chips.

Statistical Analysis

Association was analyzed using GenABEL23 in the TwinsUK cohort,

GRIMP24 in the RS I–III cohorts, ProbABEL software25 in the ERF study,

Merlin26 in the Australian study, and PLINK27 in the 1958 British birth

cohort. The presence of heterogeneity was calculated using Cochran’s

Q and I2 test statistic.28,29

Summary statistics (effect sizes) for the risk (minor) allele were

combined from seven family and population-based association studies

involving Caucasian individuals of European ancestry in the TwinsUK,

Dutch (RS-I, RS-II, RS-III, and ERF), Australian, and 1958 British birth

cohorts. Meta-analysis was performed using the fixed effect inverse

variance-weighted method in genome-wide association meta-analysis

(GWAMA) software tool for meta-analysis of whole-genome association

data.30

Quantile-quantile (Q-Q) plots were used to evaluate the overall

significance of the genome-wide association results and the potential

effect of population stratification. The genomic control inflation factor

was calculated for the overall samples as described previously.31 The

genomic control values for the directly genotyped SNPs were 1.003

(TwinsUK), 1.054 (RS-I), 1.012 (RS-II, -III), 1.037 (ERF), 1.01 (Australian

cohort), and 1.002 (British birth cohort). The linkage disequilibrium

(LD) patterns (including McVean’s fine scale recombination rate and

squared correlation coefficient) were investigated for the associated

loci including the susceptibility loci by using data from HapMap

project.

RESULTS

No genome-wide significant evidence for association was
observed for any single cohort, assuming a threshold P value
of 5 3 10�8 as previously suggested32–34; therefore, we
proceeded with the meta-analysis. A meta-analysis of seven
cohorts (TwinsUK, RS-I, RS-II, RS-III, ERF, Australian, and 1958
British birth cohorts) consisting of 22,100 individuals of
European descent was conducted. After genomic control
correction for each component study, the association data for
2.8 million autosomal SNPs were combined into a fixed effect
additive model meta-analysis using inverse variance-weighted
model. The genomic control inflation for the overall samples
was small (kgc ¼ 1.018), suggesting that the observed results
were not confounded by population stratification which is
reflected in the alignment of the Q-Q plot of the meta P values
(Supplementary Fig. S1 [see Supplementary Material and
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Supplementary Fig. S1, http://www.iovs.org/lookup/suppl/
doi:10.1167/iovs.12-10463/-/DCSupplemental]). There was al-
so no evidence of significant heterogeneity across studies, I2

being between 1% and 7% for all SNPs meta-analyzed
(heterogeneity for the most significantly associated markers is
shown in Supplementary Table S2 [see Supplementary Material
and Supplementary Table S2, http://www.iovs.org/lookup/
suppl/doi:10.1167/iovs.12-10463/-/DCSupplemental]).

There were a number of loci associated with astigmatism at
various levels of statistical significance, although none met the
strictest criteria of conventional genome-wide significance
(Fig. 1, Table, and Supplementary Table S3 [see Supplementary
Material and Supplementary Table S3, http://www.iovs.org/
lookup/suppl/doi:10.1167/iovs.12-10463/-/DCSupplemental]).
The SNP with the strongest association was rs3771395 (meta-
analysis, P¼ 1.97 3 10�7), which was followed by two SNPs in
perfect LD with each other: rs10226930 and rs7802427 (meta-
analysis, P¼7.76 310�7 and P¼1.06 310�6, respectively), and
in turn followed by rs795544 (P¼ 1.19 3 10�6), rs12445126 (P
¼ 1.75 3 10�6), and rs9445732 (P¼ 2.03 3 10�6). The lead SNP
lies in an approximately 121.4-kb LD block region, demarcated
by recombination hot spots, with no other SNPs correlated and
associated with astigmatism (Fig. 2). This LD block on
chromosome 2p13.3 region overlaps with the first intron of
the ventral anterior homeobox 2 (VAX2) gene (Fig. 2). This is a

small gene with a span of 32.9 kb, which encodes a homeobox
protein. The rs795544 and rs12445126 SNPs are intergenic,
situated 232 kb downstream of the SHH gene; rs795544 is
located within intron 28 of the DNAH5 gene; rs12445126 is
located 175 kb downstream of the XYLT1 gene, and rs9445732
falls in a desert region.

The direction of the effect was negative for the G allele of
rs3771395 SNP, representing a protective factor for astigma-
tism (Fig. 3). The magnitude of the effect for the top loci
tended to be slightly higher in the RS-I and -II cohorts (betas¼
�0.125 and �0.108, respectively) and the 1958 British birth
cohort (beta ¼ �0.086) than in the other studies (betas ¼
�0.062, �0.067, �0.043, and �0.036 for RS-III, ERF, TwinsUK,
and Australian cohorts, respectively). This SNP is common in
the CEU HapMap populations, with a MAF of 0.12 across all
cohorts.

DISCUSSION

Genetic susceptibility to astigmatism is poorly understood.
Here we report a multistage study of over 22,000 individuals
for the purpose of identifying genetic variants underpinning
astigmatism. Although none of the 2 million markers analyzed
met the stringent multiple-testing criteria for genome-wide

FIGURE 2. Regional association plot for the 2p13.3 (VAX2) risk loci region. Meta-analysis –log P values were plotted against the chromosomal map
position. The color of each SNP reflects its r2 value, with the top SNP (blue and genotyped across all cohorts), changing from gray to yellow,
orange, and red with increasing r2 value. The lead SNP is not in LD with any of the surrounding SNPs in the region. Estimated McVean’s fine-scale
recombination rates (from HapMap Phase II) are plotted in light blue. Gene annotations were adapted from the University of California at Santa Cruz
genome browser.
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statistical significant association, our analysis has identified the
VAX2 gene, a candidate gene involved in susceptibility to
astigmatism because of the highly suggestive statistical
evidence (meta-analysis, P ¼ 1.97 3 10�7) and biological
plausibility deriving from its known functionality.

VAX2 is an eye-specific homeobox gene, explicitly involved
in the development of the ventral eye.35 This and the VAX1

gene are members of a subgroup of homeobox-containing
genes, the VAX subfamily. VAX2 expression is restricted to the
ventral region of the prospective neural retina in vertebrates
and is required for ventral eye specification.35–37 It controls the
patterning of the dorsoventral (DV) axis of the eye, and
misexpression of VAX2 in chicks and mice determines a
ventralizing effect on the developing eye and retinotectal
projections along the DV axis, with a resulting abnormal eye
phenotype.37,38 The ventralization process is achieved through
repression of the PAX6 gene by VAX2 expression.39 Studies in
amphibians have shown that fluctuations in astigmatism,
correlated with changes of the refractive power along the
vertical meridian, are particularly prevalent in the ventral visual
field.40,41 The mechanism underpinning astigmatism in the

ventral field is not understood, although astigmatism is induced

by the corneal surface, in which the curvature tends to

decrease from dorsal to ventral aspects.

VAX2 also plays an important role in controlling retinoic

acid (RA) metabolism in the developing eye in vertebrates,

particularly in maturation of the retina,42 but RA is also

involved in development of the cornea.43 RA has been shown

to influence eye growth in animal models.44 RA is mainly

produced by the choroid, and its synthesis is altered by form

deprivation with diffusers or by introduction of defocusing

lenses in front of the eye. It is part of a signal cascade from

retina to sclera which results in changing ocular elongation and

therefore influences refractive error.44

Another gene of potential interest is the sonic hedgehog

(SHH) gene, essential for the proper development and

patterning of several vertebrate tissues including the eye. SHH

is associated with several ocular disorders in humans, such as

cyclopia, anophthalmia, microphthalmia, and coloboma.45–47

Nanophthalmos (a small-eye phenotype) was reported to be

associated with irregular astigmatism and corneal steepening.48

FIGURE 3. Forest plot showing the beta coefficients (effect size) for the top associated SNP rs3771395 in the various populations studied. Pooled
data are represented as a diamond. Vertical line (beta ¼ 0) indicates no association with astigmatism.
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Recently, a genome-wide meta-analysis for corneal astigma-
tism in five Asian case-control studies identified a susceptibility
locus in the platelet-derived growth factor receptor (PDGFRA)

gene on chromosome 4q12.14 Our study failed to replicate any
of the top associated signals with corneal astigmatism (SNPs
rs17084051, P ¼ 0.40; rs17084051, P ¼ 0.52; rs2307049, P ¼
0.51; rs7660560, P¼0.56; rs2228230, P¼0.08; rs4864872, P¼
0.08; rs3690, P ¼ 0.10). There are various reasons for the
failure to replicate: different study designs; different LD
patterns across ethnicities (resulting in differences in allele
frequencies for specific SNPs); distinct underlying genetic
mechanisms between corneal and refractive astigmatism.

Effects conferred by individual loci in highly complex
diseases are often too small to be detected by population
panels such as those used by the current generation of GWAS.
Even pooling of results from multiple populations, totaling over
22,000 subjects in this study, has not afforded formal genome-
wide statistical significance. Clearly, even larger studies will be
needed to identify risk variants. Large collaborative efforts,
such as the Consortium of Refractive Error and Myopia
(CREAM) study involving 31 cohorts from four continents,
with over 40,000 individuals, are in progress and may replicate
and validate our findings and identify further susceptibility loci
for astigmatism. Potentially, pursuing alternative phenotypes
pertaining to astigmatism such as polar values, which take into
account the axis of astigmatism, could be of benefit. WTR
astigmatism is common in children, and with age there is a shift
toward increasing ATR (and therefore decreasing WTR)
astigmatism; subjects with corneas that retain WTR astigma-
tism may ‘‘resist’’ gravity, and subjects with ATR gravity may
have more lax corneas, making the axis physiologically
relevant. Additionally, there is evidence suggesting astigmatism
axis is related to the level of ametropia, astigmats with higher
spherical ametropia are more likely to have WTR axes.6 It is
biologically plausible that genes might influence the amount of
WTR astigmatism more than overall astigmatism, and genes
underlying WTR astigmatism could also be indirectly associated
with high levels of ametropia including myopia. Alternatively
an association test fitting a dominant model could also enrich
GWAS signals, as dominant genetic effects account for most of
the astigmatism genetic variance in heritability studies.12

In summary, we have presented a meta-analysis of
astigmatism in seven Caucasian populations and identified a
locus associated with astigmatism, but not at genome-wide
level of significance, in the VAX2 gene region, which is a
biologically plausible candidate gene. This finding may allow
new insights into astigmatism and advance the understanding
of refractive error. However, functional studies will be required
to confirm a role for VAX2 in development of astigmatism.
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