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Background: Ceramide synthase 2 null mice, which cannot synthesize very-long chain ceramides, display severe
hepatopathy.
Results: These mice have elevated sphinganine and altered N-acyl chain ceramides that disrupt mitochondrial function by
modifying respiratory chain activity.
Conclusion: Alteration of mitochondrial sphingolipids results in formation of reaction oxygen species in liver.
Significance: Ceramides with defined acyl chains influence oxidative stress signaling pathways.

Ceramide is a key intermediate in the pathway of sphingolipid
biosynthesis and is an important intracellular messenger. We
recently generated a ceramide synthase 2 (CerS2) null mouse
that cannot synthesize very long acyl chain (C22-C24) cer-
amides. This mouse displays severe and progressive hepatopa-
thy. Significant changes were observed in the sphingolipid pro-
file of CerS2 null mouse liver, including elevated C16-ceramide
and sphinganine levels in liver and in isolated mitochondrial
fractions. Because ceramide may be involved in reactive oxygen
species (ROS) formation, we examinedwhether ROS generation
was affected in CerS2 null mice. Levels of a number of anti-
oxidant enzymes were elevated, as were lipid peroxidation, pro-
tein nitrosylation, and ROS. ROS were generated from mito-
chondria due to impaired complex IV activity. C16-ceramide,
sphingosine, and sphinganine directly inhibited complex IV
activity in isolated mitochondria and in mitoplasts, whereas
other ceramide species, sphingomyelin, and diacylglycerol were
without effect. A fluorescent analog of sphinganine accumu-
lated in mitochondria. Heart mitochondria did not display a
substantial alteration in the sphingolipid profile or in complex
IV activity. We suggest that C16-ceramide and/or sphinganine
induce ROS formation through the modulation of mitochon-
drial complex IV activity, resulting in chronic oxidative stress.
These results are of relevance for understanding modulation of
ROS signaling by sphingolipids.

Ceramide, a key intermediate in the pathway of sphingolipid
(SL)5 metabolism (1–4), is synthesized by a family of ceramide
synthases (CerS), each of which adds acyl chains of defined
length to the sphingoid long chain base (5, 6). Major advances
concerning the biological role of the CerS and of the ceramide
species that they generate have been obtained from studies
using genetically modified mice in which one of the CerS genes
has been ablated. A CerS1 null mouse displays cerebellar Pur-
kinje cell neurodegeneration due to reduced levels of C18-cer-
amide (7, 8), and a CerS3 null mouse displays defects in the skin
barrier due to loss of ultralong-chain (�C26) ceramides (9).
We recently generated a CerS2 null mouse that lacks C22-

C24-ceramides with a concomitant elevation by an as-yet
unknownmechanismofC16-ceramide and sphinganine in liver
(10). This mouse displays severe hepatopathy (11) and hepatic
insulin resistance (12), defects in myelin in the central nervous
system (13), and a number of pronounced biophysical changes
in the properties of membrane lipids (14, 15).
The hepatopathy of CerS2 null mice is characterized by a

number of features, including enhanced hepatocyte apoptosis
and proliferation (11). High throughput RNA expression anal-
ysis in liver revealed up-regulation of genes associated with cell
cycle regulation, protein transport, cell-cell interactions and
apoptosis, and down-regulation of genes associated with inter-
mediary metabolism such as lipid and steroid metabolism, adi-
pocyte signaling, and amino acid metabolism (11). In addition,
significant changes were observed in levels of genes associated
with anti-oxidant activity (16–18) by 2 weeks of age (Table 1),
suggesting that reactive oxygen species (ROS) might play a role
in hepatopathy.
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ROS are a variety of molecules and free radicals derived from
molecular oxygen (19). ROS affect cellular function in either a
positive or negative fashion, depending on the cell type and on
the intensity and the duration of the exposure (19–21). The
superoxide anion (O2

. ) is the precursor ofmost ROS and amedi-
ator inmost oxidative chain reactions. Themitochondrial elec-
tron transport chain contains several redox centers that may
leak electrons to O2, constituting the primary source of O2

. in
most tissues (19).
A link between SLmetabolism and ROS generation has been

reported (22–25). We now analyze ROS production in CerS2
null mouse liver. ROS levels were elevated along with a reduc-
tion inmitochondrialmembrane potential. Furthermore,mito-
chondrial respiratory chain dysfunction was observed due to
the impairment of complex IV activity by C16-ceramide and
sphinganine. Our data are consistent with the notion that cer-
amides with defined acyl chain lengths impact down-stream
signaling pathways in which ROS are involved.

EXPERIMENTAL PROCEDURES

Materials—The following antibodies were used: anti-nitroty-
rosine (Abcam), anti-glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (Millipore), anti-4-hydroxynonenal (HNE)-Michael
adduct (Calbiochem), and goat anti-rabbit peroxidase-conjugated
(HRP) secondary antibody (Jackson ImmunoResearch). 4-Nitro-
benzo-2-oxa-1,3-diazole (NBD)-sphinganine was from Avanti
Polar Lipids, Alabaster, AL.
Mice—WT and CerS2 null mice were maintained in a con-

stant atmosphere under special pathogen-free conditions.
Experimental protocols were approved by the Institutional
Animal Care and Use Committee of theWeizmann Institute of
Science. Mice were sacrificed using CO2. Livers were harvested
and transferred to either liquid nitrogen or a fixative agent.
RNA Extraction and Polymerase Chain Reaction—Total

RNAwas isolated using the RNeasymini kit (Qiagen) according
to themanufacturer’s instructions, which included the addition
of �-mercaptoethanol. cDNA synthesis was performed using a
Verso cDNA kit (Thermo Scientific). RT-PCR was performed
using a SYBR Green PCR reaction master mix (Finnzyme) and
an ABI Prism 7000 Sequence Detection System (Applied Bio-
systems). The primer concentration was 1 nM in a reaction vol-
ume of 20 �l. Each reaction was performed in duplicate. The
thermal cycling parameters were as follows: step 1, 50 °C for 2
min; step 2, 95 °C for 10 min; step 3, 95 °C for 15 s, 60 °C for 1
min. Step 3 was repeated for 40 cycles and was followed by a
dissociation step. The relative amounts of mRNA were calcu-

lated from the cyclic threshold values using hypoxanthine-gua-
nine phosphoribosyltransferase (HPRT) or TATAbinding pro-
tein (TBP) for normalization.Normalizationwas assessed using
geNorm software. Results are presented as mean of -fold
-change of mRNA levels in experimental samples versus con-
trols samples. Primers are given in Table 2.
Electron Spin Resonance—ESR measurements were per-

formed using a Magnettech Miniscope MS100 spectrometer
equipped with a microwave X-band bridge. The spectrometer
operates at 9.3–9.55 GHz and 20-milliwatt microwave. Ten
minutes before collection of blood, mice were injected intrave-
nously with 4-phosphono-oxy-2,2,6,6-tetramethylpiperidine-
N-hydroxyl (75 �g/kg). Blood was drawn from the heart under
ketamine:xylazine anesthesia and measured immediately using
glass capillaries.
Immunohistochemistry—Livers were fixed in 4% paraformal-

dehyde for 2 days and then embedded in paraffin. Paraffin sec-
tions (4-�m thick) were deparaffinized, and endogenous per-
oxidase activity was blocked by treating with 0.3% (v/v)
hydrogen peroxide and 0.5% (v/v) HCl in methanol for 30 min.
Antigen retrieval was performed using 10 mM citric acid (pH
6.0) for 10 min. To reduce the nonspecific signal, sections were
blocked using 20% (v/v) normal horse serum (Vector Laborato-
ries) and 0.2% (v/v) Triton X-100 for 2 h. Sections were incu-
bated with an anti-HNE-Michael adduct antibody at a dilution
of 1:300 in 2% (v/v) normal horse serum and 0.1% (v/v) Triton
X-100 overnight at 4 °C. After several rinses in PBS, tissue sec-
tions were incubated with a goat anti-rabbit peroxidase-conju-
gated (HRP) secondary antibody at a 1:200 dilution in 2% (v/v)
normal horse serumand0.1% (v/v)TritonX-100 for 1 h at room
temperature. Peroxidase activity was detected by incubation
with 3,3�-diaminobenzidine for 10min. Sections were rinsed in
distilled H2O, counterstained with hematoxylin, rinsed again
under running tap water, and covered with coverslips using
Entellan (Merck) as mounting agent.
Lipid Peroxidation—Lipid peroxidation in liver homoge-

nates was determined by measuring levels of hydroxynonenal-
histidine (HNE-His) protein adducts, which were quantified
using the Oxiselect HNE-His Adduct ELISA kit (Cell Biolabs,
Inc.). Protein samples were adsorbed onto a 96-well plate.
HNE-protein adducts were probed with an anti-HNE-His anti-
body followed by an HRP-conjugated secondary antibody. Lev-
els of HNE-protein adducts were determined using a standard
curve prepared fromapredeterminedHNE-bovine serumalbu-
min standard.

TABLE 1
mRNA expression levels of anti-oxidant enzymes
Digital gene expression analysis of anti-oxidant enzymes in liver is shown. The data are taken from the EntrezGene ID gene list from the supplementary material in
Pewzner-Jung et al. (11). Results are -fold change of mRNA levels of CerS2 null mice versusWT, n � 3; p values are in parentheses.

-Fold change (null versus WT)
Protein Gene annotation 14 days old 30 days old

Glutathione peroxidase 4 Gpx4 NDa 2.27 (�0.1)
Glutathione peroxidase 7 Gpx7 1.54 (�0.05) 2.56 (�0.005)
Glutathione peroxidase 3 Gpx3 5.62 (�0.001) 6.46 (�0.001)
Glutathione S-transferase mu 1 Gstm1 2.29 (�0.05) 2.32 (�0.001)
Glutathione S-transferase pi 1 Gstp1 ND 4.60 (�0.001)
Superoxide dismutase 1, soluble Sod1 ND 1.86 (�0.001)

a Not detected.
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Protein Extraction and Western Blotting—Liver tissues were
lysed in �6 volumes of PBS supplemented with a protease
inhibitor mixture (Sigma). Tissues were homogenized by soni-
cation. Protein was quantified using the BCA reagent (Pierce).
Fifty �g of protein was electrophoresed on a 12% SDS-poly-
acrylamide gel and transferred to a nitrocellulose membrane.
Blots were incubated with primary antibodies followed by a
horseradish peroxidase-conjugated secondary antibody. Bound
antibodies were detected using the SuperSignal West Pico
chemiluminescent substrate (Thermo Scientific).
Mouse Hepatocyte Cultures—Hepatocytes were isolated as

describedwith somemodifications (26, 27).Micewere perfused
through the inferior vena cava with Hanks’ buffered salt solu-
tion containing 5 mM KCl, 5 mM glucose, 25 mM NaHCO3, and
0.4 mM EDTA preheated to 42 °C. Perfusion was performed
using a peristaltic pump at a rate of 4 ml/min for 4 min. The
buffer was immediately replaced with liver digest media (Invit-
rogen) preheated to 42 °C for 12 min. The liver was collected in
10ml of plating medium (DMEM supplemented with 10% fetal
bovine serum, 2 mm sodium pyruvate, 2% penicillin/strepto-
mycin, 1�mdexamethasone, and 0.1�minsulin). The liverwas
dissected using tweezers and passed through a cell strainer
(70-�mnylon). Cells were centrifuged at 50 � gav (5 min, 4 °C).
The pellet was resuspended in 50% Percoll in plating medium.
After centrifugation, dead cells were removed, and the pellet
was washed twice using plating medium. Cells were seeded at a
density of 5 � 105 cells/1.5 ml in collagen-coated 6-well plates.
The hepatocytes anchored to the dishes within 2 h. Medium
was replaced 2 h after plating with DMEM supplemented with
0.2% BSA, 2 mM sodium pyruvate, 2% penicillin/streptomycin,
0.1 �M dexamethasone, and 1 nM insulin. Culture dishes were
maintained at 37 °C in a 5%CO2-humidified incubator. In some
experiments hepatocytes were incubated with ascorbic acid (4
mM) for 18 h.
ROS and Reactive Nitrogen Species—ROS and reactive nitro-

gen species (RNS) were measured using 6-carboxy-2�,7�-di-
chlorodihydrofluorescein diacetate (H2DCF-DA) (Invitrogen)
and 4-amino-5-methylamino-2�,7�-difluorescein (DAF-FM)
(Invitrogen), respectively. Hepatocytes were incubated with
100 �M concentrations of either probe in PBS for 30 min at
37 °C. Cells were washed 3 times and incubated with PBS for an
additional 3 h. Cells were detached from the plates using tryp-
sin-EDTA, centrifuged at 250 � gav for 5 min, and resuspended
in PBS. Conversion of the non-fluorescent H2DCF-DA to DCF
and DAF-FM to benzotriazole was monitored by FACS (BD
Biosciences) at an excitation wavelength of 495 nm and an
emission wavelength of 530 nm.

SL Analysis—SL analyses by electrospray ionization-tandem
mass spectrometry were conducted using a PE-Sciex API 3000
triple quadrupole mass spectrometer and an ABI 4000 quadru-
pole-linear ion trap mass spectrometer (28–31).
Isolation of Enriched Mitochondrial Fractions—Liver was

minced on ice and homogenized using a Teflon glass homoge-
nizer at 250 rpm in 250 mM sucrose, 2 mM EDTA, 10 mM Tris
(pH 7.4), and 50 IU heparin (SETH buffer). Homogenates were
centrifuged at 1000 � gav (10 min, 4 °C). The supernatant was
collected, transferred to clean tubes, and centrifuged at
14,000 � gav (15 min, 4 °C). The mitochondrial pellet was
washed at 14,000 � gav and resuspended in a small volume of
SETHbuffer (32), aliquotted, and stored at�70 °C. Protein was
determined by the Lowry method (33).
Mitoplast Preparation—Mitoplasts were prepared from iso-

lated liver mitochondria using 0.2% digitonin as described (34).
Mitochondrial ROS Production—Mitochondrial ROS

production was determined spectrofluorometrically using
H2DCF-DA (35). Mitochondria (0.25 mg of protein/ml) were
incubated at 30 °C with 2 �MH2DCF-DA and 10mM succinate.
DCF fluorescence was monitored using a Synergy HT micro-
plate reader (Bio-Tek Instruments, Vinoosky, VT) at an excita-
tion wavelength of 485 nm and emission wavelength of 520 nm.
Respiratory Chain Enzymes—Citrate synthase, rotenone sen-

sitive NADH coenzyme Q reductase (complex I), succinate
dehydrogenase (complex II), succinate cytochrome c reductase
(complex II� III), and cytochrome c oxidase (complex IV)were
determined in isolated liver mitochondria using standard spec-
trophotometric methods (36). When assaying the effect of
sphinganine and ceramides, the lipids or vehicle were added to
the assay buffer and preincubated with the mitochondria for 5
min at 37 °C. All lipids were dissolved in ethanol or ethanol:
dodecane (98:2, v/v); the solvents themselves had no effect.
Mitochondrial Membrane Potential—Mitochondrial mem-

brane potential (	�m) was estimated using JC-1 (Invitrogen)
(37). Hepatocytes were incubated with 0.4 �M JC-1 in mainte-
nance media for 15 min at 37 °C. Cells were detached from the
plates using trypsin-EDTA, centrifuged at 250 � gav for 5 min,
and resuspended in PBS. Quantification was performed by
FACS (BD Biosciences) at an excitation wavelength of 498 nm
and an emission wavelength of 535 nm (for green fluorescence)
and at an excitation wavelength of 560 nm and an emission
wavelength of 590 nm (for red fluorescence).
NBD-Sphinganine Labeling—Human skin fibroblasts were

grown on 25-mm glass coverslips in DMEM supplemented
with 20% fetal bovine serum. Cells were fixed with 0.5% glutar-
aldehyde for 10 min at room temperature, washed 3 times with
DMEM, and incubated for 30 min at 4 °C with 5 �M NBD-
sphinganine complexed with defatted bovine serum albumin.
After incubation, cells were washed with DMEM. Background
fluorescence was reduced by incubation four times with 3.4 mg
of defatted bovine serum albumin/ml DMEM at 4 °C followed
by washing in PBS (38). Cells were incubated with 2 �M Mito-
tracker red (Invitrogen) before fixation. Glass coverslips were
mounted on slides and observed by fluorescence microscopy
(Olympus BXUCB).
Statistics—p values were calculated using a two-tailed

unpaired samples Student’s t test.

TABLE 2
Primers used for RT-PCR
F, forward; R, reverse.

Gene Primers Reference

Gsta1 F, 5�-CGCCACCAAATATGACCTCT-3�
R, 5�-TTGCCCAATCATTTCAGTCA-3�

Gstm3 F, 5�-CACCCGCATACAGCTCATGAT-3� 58
R, 5�-TTCTCAGGGATGGCCTTCAA-3�

Hprt1 F, 5�-TGCTCGAGATGTCATGAAGG-3� 59
R, 5�-AATCCAGCAGGTCAGCAAAG-3�

TBP F, 5�-TGCTGTTGGTGATTGTTGGT-3�
R, 5�-CTGGCTTGTGTGGGAAAGAT-3�

ROS Generation in a CerS2 Null Mouse

FEBRUARY 15, 2013 • VOLUME 288 • NUMBER 7 JOURNAL OF BIOLOGICAL CHEMISTRY 4949



RESULTS

Elevated Oxidative Stress in CerS2 Null Mice—To examine
the levels of anti-oxidant gene expression in CerS2 null mouse
liver, mRNA expression of twomembers of the Gst family (16–
18) was analyzed by RT-PCR. An �10-fold increase in Gsta1
and Gstm3 was observed in 30-day-old mice, with a smaller
elevation in 14-day-oldmice (Fig. 1A). Gst activity increased by
1.5-fold in 1-month-old mice (Fig. 1B).
Lipid peroxidation occurs upon free radical attack on the

unsaturated bonds of membrane fatty acids leading to forma-
tion of reactive compounds such as 4-HNE (39, 40). In liver
sections taken from 1- and 7-month-old mice, cytoplasmic
labeling of HNEwas detected in CerS2 null but not inWTmice
(Fig. 1C). Similar results were obtained by ELISA (Fig. 1D).
Nitrotyrosine levels were also elevated in 4-month-old CerS2
nullmice (Fig. 1E) and in some livers of 1-month-oldmice (data
not shown). We conclude that significant oxidative damage
occurs in the liver of CerS2 null mice.
To determine if changes in anti-oxidant gene expression cor-

relate with ROS elevation, levels of free radicals were examined
by ESR using 4-phosphono-oxy-2,2,6,6-tetramethyl-piperi-
dine-N-hydroxyl (PPH) as a spin trap for hydroxyl and super-
oxide free radicals. An �2–3-fold increase in signal amplitude
was observed in CerS2 null mice at 1 and 4 months of age (Fig.
1, F andG), demonstrating that ROS accumulate in the blood of
CerS2 null mice and cause chronic oxidative stress, which may

be the cause of the increase in anti-oxidant-protective
mechanisms.
Role of Mitochondria and the Mitochondrial Respiratory

Chain in ROS Generation in CerS2 Null Mice—To determine
whether hepatocytes are the source of free radicals, ROS and
RNS were measured in isolated hepatocytes. ROS (Fig. 2A) and
RNS (Fig. 2B) were significantly elevated in hepatocytes from
2.5-month-old CerS2 null mice. ROS formation was also ele-
vated in isolated liver mitochondria (Fig. 3), consistent with the
notion (19, 24) that the mitochondrial electron transport chain
is the primary source of ROS.
We next analyzed the activity of electron transport chain

complexes I-IV in isolated liver mitochondria fractions. Activ-
ities were normalized to citrate synthase activity, as citrate syn-
thase activity was similar in CerS2 null mice mitochondria
compared with WT (315 
 52 versus 306 
 60, respectively).
No changes were observed in the activity of complexes I and III,
but a partial reduction in complex II and amarked reduction in
complex IV activity were detected in mitochondria from
1-month-old CerS2 null mice (Fig. 4A). A reduction in complex
IV activity was also detected in cultured hepatocytes (Fig. 4B).

Mitochondrial membrane potential (	�m) was impaired in
CerS2 null hepatocytes (Fig. 5A). Three antioxidants, ascorbic
acid, �-tocopherol, and N-acetyl-L-cysteine, were incubated
with hepatocytes. Ascorbic acid was most effective in reducing
ROS levels (Fig. 5B), but despite this reduction, mitochondrial

FIGURE 1. Oxidative stress markers in CerS2 null mouse. A, quantitative real-time-PCR analysis of Gst isozymes in liver is shown. Results are fold-change of
mRNA levels of CerS2 null mice versus WT at the indicated ages. Values are the means 
 S.D., n � 3. *, p � 0.05; **, p � 0.01. B, Gst activity in 1-month-old mouse
liver is shown. Values are the means 
 S.D., n � 3. *, p � 0.05. C, immunohistochemical staining of 4-HNE is shown. Scale bar � 25 �m. D, shown are 4-HNE levels
in 4 month-old mice liver. Values are the means 
 S.D., n � 3. *, p � 0.05. E, shown is a Western blot of nitrotyrosine in livers of 4-month-old mice liver. GAPDH
was used as loading control. Results are from a typical experiments repeated three times. F, shown are representative ESR spectra of 4-phosphono-oxy-2,2,6,6-
tetramethyl-piperidine-N-hydroxyl-radical adducts in the blood of 1-month- and 4-month-old mice. G, shown is quantification of amplitude intensity (n � 2 for
1-month-old and n � 2 for 4-month-old). *, p � 0.01.
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membrane potential was unaltered (Fig. 5C), implying that ROS
are not the primary cause of mitochondrial membrane poten-
tial impairment in CerS2 null hepatocytes.
Analysis of the sphingolipid profile in the same mitochon-

drial fractions used to assay the activity of the electron trans-
port chain complexes and to assay mitochondrial membrane
potential demonstrated similar changes to those observed in
whole liver (10). Thus, levels of C22-C24-ceramide were barely
detectable, whereas levels of C16-ceramide were significantly
elevated (Fig. 6A). Similarly, sphingosine and sphinganine lev-
els were elevated by �2- and �50-fold, respectively (Fig. 6B).
To gain mechanistic insight into the mode of mitochondrial

dysfunction, the effect of exogenously added SLs on complex IV
activity was examined in isolatedmitochondria fromWTmice.
Remarkably, C16-ceramide, sphingosine, and sphinganine,
which accumulate inCerS2nullmouse liver (10), each inhibited
complex IV activity, and an additive effect was observed when
they were added together (Fig. 7A). Neither C24:0- nor C24:1-
ceramide had any effect on complex IV activity. C16-sphingo-
myelin, which is also elevated in mitochondrial fractions (data
not shown), had a small but statistically insignificant inhibitory
effect on complex IV activity. Moreover, C16:0-C18:1-diacylg-
lycerol, which is similar in its hydrophobic properties to C16-

ceramide, had no effect on complex IV activity (Fig. 7A). None
of the exogenously added lipids affected complex IV activity
in mitochondria from CerS2 null mice (Fig. 7B), suggesting
maximal inhibition of complex IV activity in CerS2 null
mouse liver mitochondria. Similar results were obtained in
mitoplasts (Fig. 7C). Together, these results demonstrate that
ROS generation is caused by direct inhibition of complex IV
activity by two of the lipids that accumulate in CerS2 null mice
liver, namely C16:0-ceramide and sphinganine.

FIGURE 2. ROS and RNS levels in CerS2 null mouse hepatocytes. Representative and quantified FACS analysis of ROS levels using H2DCF-DA (A) and RNS
levels (B) using DAF-FM. Values are the means 
 S.D., n � 3. *, p � 0.05, **, p � 0.01.

FIGURE 3. ROS levels in isolated mitochondria from CerS2 null mice. ROS
levels were measured by DCF fluorescence. Values are means 
 S.D., n � 3.

FIGURE 4. Enzymatic activities of mitochondrial respiratory complexes.
Activities of mitochondrial complexes normalized to citrate synthase (CS) in
liver mitochondria obtained from 1-month-old mice (A) and hepatocytes iso-
lated from 2.5-month-old mouse liver (B) are shown. Activities are normalized
to citrate synthase. Values are the means 
 S.D. n � 3. *, p � 0.05. **, p � 0.01.
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To examine whether sphinganine is able to accumulate in
mitochondria, human skin fibroblasts were incubated with
NBD-sphinganine and Mitotracker. NBD-sphinganine labeled

FIGURE 5. Mitochondrial membrane potential in hepatocytes. A, shown is a representative FACS analysis of mitochondrial membrane potential estimated
using JC-1. The percent of hepatocytes with low 	�m was calculated from the lower gate. n � 4. B, shown are ROS levels after PBS or ascorbic acid treatment.
C, mitochondrial membrane potential after ascorbic acid treatment is shown. Values are the means 
 S.E., n � 3– 6. *, p � 0.01; **, p � 0.001.

FIGURE 6. SL profile of a liver mitochondrial fraction. Mass spectrometry
analysis of ceramide acyl chain length (A) and sphingosine and sphinganine
levels (B) in a mitochondrial fraction isolated from liver is shown. Values are
the means 
 S.D., n � 4.

FIGURE 7. Effect of sphinganine, sphingosine, and ceramides on mito-
chondrial complex IV activity. Complex IV activity was measured in mito-
chondria isolated from the liver of 2-month-old WT mice (A), mitochondria
from the liver of 2 month-old CerS2 null mice (B), and mitoplasts from WT
mice (C). Values are means 
 S.D. n � 3. **, p � 0.01.
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a number of intracellular organelles including the mitochon-
dria (Fig. 8). No metabolism of NBD-sphinganine occurred
because cells were fixed before incubation. In addition, cells
were incubated with the CerS inhibitor, fumonisin B1, before
incubation with NBD-sphinganine, and an identical labeling
pattern was observed.
Finally, we examinedwhether similar changes were observed

in heart. In contrast to liver, no changes in the activity of any of
themitochondrial complexes were observed (Fig. 9A). Levels of
very long chain ceramides were depleted, and there appeared to
be a small increase in C16-ceramide, but the latter was not
statistically significant (Fig. 9B). Sphingosine and sphinganine
were also elevated (Fig. 9C) but to a much lower extent than in
liver.

DISCUSSION

The main findings of the current study are that C16-cer-
amide, sphinganine, and possibly sphingosine modulate the
mitochondrial respiratory chain by direct inhibition of complex
IV. As a consequence, ROS are generated, which leads to
chronic oxidative stress.We cannot exclude the possibility that
other factors contribute to the elevation inROS levels; however,
the detection of ROS in mitochondria suggests that the mito-
chondrial electron transport chain is the primary source of
ROS. It should be emphasized that the mechanism by which
C16-ceramide levels are elevated (or, similarly, the mechanism
by which C18-ceramide is elevated in brain (13)) is not known,
but our current study demonstrates that this elevation is dele-
terious to the liver.
Although previous studies have demonstrated that ceramide

can trigger ROS generation (41, 42), no studies are available
comparing the role of ceramides with different natural acyl
chain lengths on either the respiratory chain complex or on
ROS generation. Studies are available examining the role of
short acyl chain ceramide analogs (i.e. comparing C2- and
C6-ceramide with C16-ceramide (42–44)), but these studies
are limited because the short acyl chain analogs are very differ-

ent in their biophysical properties to their long and very long
acyl chain counterparts.
The role of ceramides with defined acyl chain lengths has

received great attention over the past few years (3) in large part
due to the discovery of the CerS (5) and due to the realization
that mammalian cells expend significant effort regulating cer-
amide acyl chain composition. Specific ceramides are known to
play defined roles in different signaling pathways (45, 46) and in
cell pathologies, and we now add an additional pathway to this
growing list by demonstrating that C16-ceramide, but not
C24:0 or C24:1-ceramides, directly inhibit complex IV activity
leading to ROS generation and oxidative stress. The specificity
of the effect ofC16-ceramide is further strengthened by the lack
of effect of C16:0-C18:1-diacylglycerol. Both of these lipids
have similar hydrophobic properties, but the lack of effect of the
latter on complex IV demonstrates a specific mode of interac-
tion between C16:0-ceramide and complex IV.
The mechanism by which C16:0-ceramide accesses complex

IV in living mitochondria is currently unknown. There was
considerable controversy concerning the role of SLs in mito-
chondria function (47), but recent studies measuring SL levels
both in isolated mitochondria (48) and on isolation of enzymes
of SL metabolism from mitochondria (49–52) have suggested
that SLs are involved in regulation of mitochondrial function.
This is supported by the involvement of the mitochondrial
pathway in the pathology of a CERT-knock-out mouse (53).
Unfortunately, no tools are available to determine the precise
subcellular (or suborganellar) localization of long or very long
chain ceramides. Recently, a fluorescent analog of sphinganine,
NBD-sphinganine, has become available (54); sphinganine has
been previously shown to inhibit complex IV activity and to
increase ROS generation (43). Using NBD-sphinganine, we
detected significant mitochondrial labeling in both live and
fixed cells. Clearly, additional tools are required to determine
the precise quantitative relationship between SLs/sphingoid
long chain bases and mitochondria.

FIGURE 8. NBD-sphinganine in mitochondria. The distribution of NBD-sphinganine fluorescence was compared with that of Mitotracker red fluorescence.
Scale bar � 10 �m; the upper panels show NBD-sphinganine distribution in a whole cell, and the lower panels show NBD-sphinganine in mitochondria. Data are
from a representative experiment repeated three times.
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The mitochondrial inner membrane lipid composition is of
importance for the stabilization of the respiratory chain com-
plexes. This is exemplified by the fact that inborn errors of
cardiolipin biosynthesis lead to diseases causing mitochondrial
dysfunction (Barth syndrome) due to destabilization of the res-
piratory chain supercomplexes, specifically cytochrome c oxi-
dase (55, 56). Despite the lack of detailed information about the
mechanism by which sphinganine, sphingosine, and C16-cer-
amide gain access to complex IV in mitochondria, our data are
consistent with the idea that their mode of interaction is highly
specific and may involve competition with either the cyto-
chrome c binding site or displacement of phospholipids that are
bound to the enzyme (57).
CerS2 null mice display a progressive and severe hepatopa-

thy. Our current results demonstrate that chronic oxidative
stress in these mice may be responsible for some of this pathol-
ogy. Attempts to reduce levels of ROS in cultured hepatocytes
using antioxidants were successful, but this did not alter mito-
chondrial membrane potential. This implies that although oxi-

dative stress plays a critical role in some pathological features,
other mechanisms are at play that likely impact upon the hepa-
topathy of theCerS2 nullmouse.Whether these other potential
mechanisms are also related to direct interactions of C16-cer-
amide or sphinganine with specific pathways or, rather, are due
to the lack of very long chain sphingolipids remains to be
established.
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