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Abstract
The flow of interstitial fluid and the associated interstitial fluid pressure (IFP) in solid tumors and
surrounding host tissues have been identified as critical elements in cancer growth and
vascularization. Both experimental and theoretical studies have shown that tumors may present
elevated IFP, which can be a formidable physical barrier for delivery of cell nutrients and small
molecules into the tumor. Elevated IFP may also exacerbate gradients of biochemical signals such
as angiogenic factors released by tumors into the surrounding tissues. These studies have helped to
understand both biochemical signaling and treatment prognosis. Building upon previous work,
here we develop a vascular tumor growth model by coupling a continuous growth model with a
discrete angiogenesis model. We include fluid/oxygen extravasation as well as a continuous
lymphatic field, and study the micro-environmental fluid dynamics and their effect on tumor
growth by accounting for blood flow, transcapillary fluid flux, interstitial fluid flow, and
lymphatic drainage. We thus elucidate further the non-trivial relationship between the key
elements contributing to the effects of interstitial pressure in solid tumors. In particular, we study
the effect of IFP on oxygen extravasation and show that small blood/lymphatic vessel resistance
and collapse may contribute to lower transcapillary fluid/oxygen flux, thus decreasing the rate of
tumor growth. We also investigate the effect of tumor vascular pathologies, including elevated
vascular and interstitial hydraulic conductivities inside the tumor as well as diminished osmotic
pressure differences, on the fluid flow across the tumor capillary bed, the lymphatic drainage, and
the IFP. Our results reveal that elevated interstitial hydraulic conductivity together with poor
lymphatic function is the root cause of the development of plateau profiles of the IFP in the tumor,
which have been observed in experiments, and contributes to a more uniform distribution of
oxygen, solid tumor pressure and a broad-based collapse of the tumor lymphatics. We also find
that the rate that IFF is fluxed into the lymphatics and host tissue is largely controlled by an
elevated vascular hydraulic conductivity in the tumor. We discuss the implications of these results
on microenvironmental transport barriers, and the tumor invasive and metastatic potential. Our
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results suggest the possibility of developing strategies of targeting tumor cells based on the cues in
the interstitial fluid.

1 Introduction
Vascularized tumor growth is a complex process spanning a wide range of spatial and
temporal scales, and involves inter-related biophysical, chemical and hemodynamic factors
in the interplay between tumor formation, vascular remodeling, and angiogenesis. In the
early stages of carcinogenesis, tumor cells are believed to be supported by the pre-existing
vasculature sustaining the normal tissue. red These factors remodel the surrounding pre-
existing vessel network without necessarily generating new vessels (e.g., by cooption and
circumferential growth (Holash et al., 1999a; Holash et al., 1999b)). The secretion of TAF
also leads to tumor-induced angiogenesis as the vasculature becomes unable to support the
increasing number of tumor cells, causing new blood vessels to form from the pre-existing
vascular network (Raza et al., 2010; Folkman, 1971) through endothelial cell sprouting,
proliferation, anastomosis, and remodeling. These processes enable oxygen and cell
nutrients circulating in the vasculature to be transported and released closer to the hypoxic
tumor cells. However, the interaction between tumor cells and the surrounding vasculature is
abnormal due to inadequate signaling from the tumor cells, leading to the creation of new
vessels that are inefficient, tortuous and leaky (De Bock et al., 2011; Greene & Cheresh,
2009; Hashizume et al., 2000; Jain, 2001). In order to elucidate these complex processes
from a biophysical perspective, modeling of vascularized tumor growth has been an
important focus in mathematical oncology, red e.g., see the recent reviews (Byrne, 2010;
Lowengrub et al., 2010; Frieboes et al., 2011; Roose et al., 2007; Astanin & Preziosi, 2007;
Harpold et al., 2007; Anderson & Quaranta, 2008; Deisboeck & Couzin, 2009; Ventura &
Jacks, 2009).

Two critical components in tumor growth and vascularization are the interstitial fluid
pressure (IFP) and the interstitial fluid flow (IFF) in the tumor and surrounding tissues.
Mathematical models of IFP and macromolecule transport were pioneered in (Baxter & Jain,
1989) under several simplifying assumptions including radial symmetry and spatially
uniform blood vessel distributions and intravascular pressures. The models demonstrated
that in steady-state, the IFP attains a plateau profile in which the IFP is high and nearly
constant in the tumor interior and drops to a lower value near the tumor boundaries and
surrounding host tissues. Accordingly, there is little IFF in the tumor interior whereas near
the tumor boundary, the IFF is mainly directed outward towards the surrounding tissue.
Experimentally, such plateaus of IFP have been observed in tumor samples (Lunt et al.,
2008; Milosevic et al., 2008; Boucher et al., 1990). An increase in IFP has been implicated
in the development of barriers to the transport of drugs and macromolecules in the tumor
microenvironment (Ferretti et al., 2009; Jain, 1987a; Jain, 1987b). This has led to the
concept of vascular normalization to reduce IFP and to decrease transport barriers to
improve drug penetration into tumors (Jain, 2001; Jain, 2005b; Tong et al., 2004; Jain et al.,
2007). Further, other biological factors in the tumor microenvironment, such as TAFs
(Phipps & Kohandel, 2011) and CCR7 ligands (Shields et al., 2007), can be convected by
the interstitial fluid flow similar to drug molecules, which indicates that IFP and IFF may
also play an important role in biochemical signaling (Shieh & Swartz, 2011). IFF may also
promote tumor invasion via autologous chemotaxis up gradients of CCR7 ligands (Shields et
al., 2007). In order to predict tumor progression and response to therapy, it is therefore
necessary to model and simulate both IFP and IFF.

Recently, mathematical models have been developed to investigate the role of IFP and IFF
on the transport of TAFs and tumor-induced angiogenesis and on the chemotaxis of tumor
cells in response to gradients of various ligands. For example, (Phipps & Kohandel, 2011)
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assumed that TAFs were convected with the IFF using Darcy’s law as the constitutive
assumption relating IFP with IFF, and a simplified measure of angiogenic activity (Stoll et
al., 2003) was used. It was found that under the conditions of spherical symmetry and a
fixed tumor radius, the highest TAF concentrations were located in the tumor interior,
angiogenesis was suppressed in the tumor core, and angiogenic activity was greatest near the
tumor boundary, consistent with experimental observations (Endrich et al., 1979; Fukumura
et al., 2001). In (Shields et al., 2007), a Darcy-Stokes (Brinkman) model was used to
simulate the velocity field around a single cell to investigate the effect of IFF on gradients of
CCR7. It was found that IFF could increase the gradient by approximately a factor of three
compared to pure diffusive transport. red Recently, IFP, IFF and vascularized tumor growth
were coupled dynamically in a model developed by (Cai et al., 2011). Here, we extend this
line of research by incorporating a lymphatic system and a pre-existing vasculature.

In recent work (Macklin et al., 2009), we developed a model of vascularized tumor growth
following a strategy pioneered by (Zheng et al., 2005) and further developed by red (Bartha
& Rieger, 2006; Lee et al., 2006a; Welter et al., 2008; Welter et al., 2009; Welter et al.,
2010; Frieboes et al., 2010). In particular, we coupled a continuum model of solid tumor
progression (Cristini et al., 2003; Zheng et al., 2005; Macklin & Lowengrub, 2008), which
accounts for cell-cell, cell-ECM adhesion, ECM degradation, tumor cell migration,
proliferation, and necrosis, together with an angiogenesis model (Anderson & Chaplain,
1998; Pries et al., 1998; Pries et al., 1992; McDougall et al., 2002; Stephanou et al., 2005;
McDougall et al., 2006; Pries et al., 2009), which incorporates sprouting, branching and
anastomosis, endothelial cell (EC) proliferation and migration, blood flow and vascular
network remodeling. red The tumor and angiogenesis models were coupled via oxygen
extravasated from vessels and TAFs secreted by tumor cells. Oxygen, which represented the
total effects of growth-promoting factors, was assumed to affect the phenotype of tumor
cells and secretion of TAFs. In particular, hypoxic tumor cells were assumed to secrete
TAFs, which initiated sprouting and branching in the vasculature. Once newly formed
vessels anastomosed (looped), blood was able to flow through the neo-vascular network,
which was modeled using a non-Newtonian Poiseuille law. Stresses induced by the growing
tumor and blood flow, were assumed to induce remodeling of the vascular network.

In this paper, we extend this previous model to account for (i) IFP and IFF; (ii) lymphatic
vessels and drainage; and (iii) transcapillary interstitial fluid flow (e.g., vessel leakage). We
model the lymphatic vessels using a continuum approach. We do not model the process of
lymphangiogenesis – see (Friedman & Lolas, 2005; Pepper & Lolas, 2008) for such models
– but instead we model the lymphatic drainage capacity, which is affected by the hydrostatic
tumor pressure and the degradation of ECM by matrix degrading enzymes (MDE). We
investigate how nonlinear interactions among the vascular and lymphatic networks and
proliferating tumor cells influence IFP, IFF, transport of oxygen, and tumor progression. We
also investigate the consequences of tumor-associated pathologies such as elevated vascular
hydraulic conductivities and decreased osmotic pressure differences.

The outline of the paper is as follows. In Sec. 2 we present the mathematical models, and
describe the numerical algorithm and parameter choices in Sec. 3. Then we present the
results in Sec. 4 and discuss them in Sec. 5. In the appendices, we present modeling details
regarding microenvironmental interactions (Appendix A) and TAFs (Appendix B).

2 The Mathematical Model
In this section, we present the coupled systems of equations for tumor growth, IFF and IFP,
lymphatic vessels and drainage, and angiogenesis and intravascular flow. We describe each
system and the coupling between them.
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2.1 The Tumor Progession Model
Following (Macklin et al., 2009), we divide the tumor Ω into three regions: the proliferating
region ΩP where the tumor cells have sufficient oxygen levels for proliferation; a hypoxic
region ΩH where the oxygen levels are sufficient for the cells to survive (above the threshold
σN) but not enough to sustain normal metabolic activity (below the threshold σH); and a
necrotic region ΩN where the oxygen level is so low (below the threshold σN) that the tumor
cells die and are degraded. We also track the necrotic core and its interface ΣN. See Fig. 1.

2.1.1 Oxygen Transport—The transport of oxygen, nutrients and growth factors (here
generically referred to as “oxygen”) is modeled by a quasi-steady reaction-diffusion
equation (for the oxygen concentration σ), since oxygen is transported much faster than the
characteristic time for cell proliferation. We assume that oxygen is supplied by the pre-
existing vasculature and the neo-vasculature at the rate , diffuses into the host and
cancerous tissues with diffusivity coefficient Dσ, is uptaken by normal cells with rate λhost
and proliferating and hypoxic tumor cells with rates λσ and λhyp, and degrades with rate
λnec in the necrotic core. Accordingly, the equations are given by (Macklin et al., 2009):

(1)

(2)

The oxygen supplied by the vascular network is modeled as:

(3)

where  is an overall transfer rate, 1vessel denotes the characteristic function of the
vascular network (e.g., equals 1 at the locations of the vessels and otherwise equals 0), h is
the hematocrit in the blood, H̄D and h̄min are the normal value of hematocrit in the blood and
the minimum hematocrit needed to extravasate oxygen, respectively. The positive part is
denoted by +. In addition, Pf is the IFP, Pe is an effective pressure (see below in Sec. 2.1.3),
and kPf measures the sensitivity of the vessels to IFP. Eq. (3) is very similar to that used
previously in (Macklin et al., 2009) with the exception that the IFP regulates oxygen
extravasation instead of the hydrostatic tumor pressure which was used in (Macklin et al.,
2009). red Here, the hydrostatic tumor pressure affects oxygen extravasation indirectly
through collapse of blood vessels and the resultant change in blood flow. On the other hand,
IFP may affect oxygen extravasation by impeding the transcapillary fluid flux that carries
oxygen. Note that oxygen may also be delivered via transcapillary diffusion. In Eq. (3),
these effects are combined, and we characterize the strength of feedback from the IFP on
oxygen extravasation with the parameter kPf. We discuss the effect of IFP on oxygen

extravasation further in Sec. 5. Finally, no-flux boundary conditions  are used in the
far-field.

2.1.2 Tumor Mechanics and the Cell Velocity—The interaction between the tumor
cells, the ECM and host cells is influenced by a combination of forces which contribute to
the cell velocity field. The proliferating tumor cells generate hydrostatic stress that also
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exerts a force on the ECM and host cells. The cells respond to pressure variations by
overcoming cell-cell and cell-ECM adhesion and may move passively (pushed by
proliferating cells), and actively (via chemotaxis and haptotaxis) through the interstitial
space. The ECM may also deform, degrade and remodel in response to pressure and to
enzymes released by the cells. Following previous work (Macklin & Lowengrub, 2005;
Macklin & Lowengrub, 2006; Macklin & Lowengrub, 2007; Macklin & Lowengrub, 2008;
Macklin et al., 2009), we assume that cellular motion within the ECM can be described as an
incompressible fluid in a porous medium. Thus, the cell velocity may be modeled as being
proportional to all forces following Darcy’s law. We also model all the solid phases
(including ECM) as moving with a single cellular velocity field. Accordingly, the velocity is
given by:

(4)

where Pc is the hydrostatic tumor pressure, μ is the cell-mobility, which models the net
effects of cell-cell and cell-matrix adhesion, E is the ECM density (e.g. non-diffusible
matrix macromolecules such as fibronection, collagen or laminin) and χE is the haptotaxis
coefficient. In Eq. (4), the first term models the passive, hydrostatic pressure-induced
motion while the second models active, haptotaxis movement. We do not consider
chemotaxis here. Assuming that the density of cells is constant in the proliferating region of
the tumor, we may associate the growth of the tumor with the rate of volume change:

(5)

where λp is the net proliferation rate. Together with Eq. (4), the hydrostatic pressure
satisfies:

(6)

We assume that the rate of cell mitosis in the proliferating region is proportional to the
amount of oxygen present and that apoptosis may occur. We also assume volume loss may
occur in the necrotic region and that there is neither proliferation nor apoptosis in the host
tissue and hypoxic regions:

(7)

where A is the apoptosis rate and GN is the rate of volume loss in the necrotic core,
assuming water is removed and cellular debris is degraded constantly. Cell-cell adhesion can
be modeled as a surface tension-like jump boundary condition at the interface Σ between the
host and tumor regions, assuming a uniform cell–cell adhesion throughout the tumor:

(8)

where G is a parameter that represents the strength of cell-cell adhesion of the tumor and κ
is the mean curvature of the interface. At the necrotic boundary ΣN, we assume Pc and vc are
continuous :

(9)

Wu et al. Page 5

J Theor Biol. Author manuscript; available in PMC 2014 March 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which implies

(10)

where n is the unit outward normal to Σ. The velocity of the tumor-host interface is

(11)

In the far-field, the pressure is assumed to satisfy no-flux boundary conditions ∂Pc/∂n = 0.

2.1.3 Model of IFP and IFF—We assume the water and cell volume fractions are φf and
φc, respectively, where

(12)

For simplicity, we assume that φf and φc are constants. We further assume that the liquid and
solid phases have equal densities. Appealing to mass conservation, we have:

(13)

where vf and vc are the IFF and cell velocity, respectively, and SV represents the source of
interstitial fluid from the vasculature and SL represents the sink of interstitial fluid into the
lymphatic network. The term SV is taken to be

(14)

where λV f is the fluid exchange rate from vessels and Pe is an effective pressure (defined
below). We may relate λV f to the vessel surface area per unit volume VT for transport in the

interstitium as .

The effective pressure Pe is defined as the IFP value that yields zero net volume flux out of
the vasculature (Baxter & Jain, 1989), and is given by

(15)

where the blood vessel pressure Pv is computed from the vasculature flow (see Eq. (24)
below), ω is the average osmotic reflection coefficient for plasma proteins, πv is the osmotic
pressure of the plasma and πi is the osmotic pressure of the interstitial fluid.

We model the lymphatics by a continuous density field L. We assume that the fluid drainage
capacity in the interstitium is proportional to the local lymphatic density, that the lymphatic
density is decreased by the action of matrix degrading enzymes and that drainage can also be
regulated by the tumor stress-induced collapse of lymphatic vessels. We further assume
there is no flow from the lymphatic system into the interstitium. Therefore, the drainage by
the lymphatic system is modeled as:

(16)
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where 1Pf>PL is a volume indicator function, and c(Pc, L) is regulated by the tumor
hydrostatic pressure and lymphatic density:

(17)

where KLmin and KLmax are partial collapse thresholds. For small hydrostatic pressures P
below the partial collapse threshold KLmin, c(P, L) increases with P and the drainage
increases as pressure from the cells pushes fluid into the lymphatic vessels (Lymmax×L at
the maximum). When the pressure increases beyond KLmin, the lymphatic vessels begin to
partially close and c(P, L) subsequently decreases and reaches 0 at and beyond KLmax where
the lymphatic vessels collapse. Also, we assume the continuous lymphatic vessel field is
degraded by the matrix degrading enzyme, M (described in the Appendix) at rate λML, thus

(18)

Simultaneously, we have for the cell velocity derived from Eq.5:

(19)

where λM is the rate of mitosis/apoptosis. Cell death thus provides a fluid source while
proliferation provides a sink. By Darcy’s law, vf = −K∇Pf and combining Eqs. (13)–(19), we
have:

(20)

for the IFP, where drainage occurs when Pf exceeds the effective lymphatic drainage
pressure PL.

Interestingly, from Eq.20 we can demonstrate that the average tumor IFP becomes
insensitive to lymphatic drainage as the vascular hydraulic conductivity increases. Let us
simplify Eq. (20) by eliminating the cell uptake φcλMλp(σ), the constraint 1Pe>Pf and
1Pf>PL. Then, integrating the result over the computational domain we obtain ∫ω λV f (Pe −
Pf) dx + ∫ωc λV f(Pe − Pf) dx = ∫ωL λf L c(P, L)(Pf − PL) dx, using the Neumann boundary
condition (which is the case for all our studies) where ΩL is the functional region of
lymphatics. If we further simplify the equation by assuming the λV f = λVT, where λVT is a
constant fluid extravasation rate in the tumor region Ω and models the product of the
vascular hydraulic conductivity and tumor vascular surface area per volume, we obtain

. This formula
shows that increasing λVT in the tumor decreases the sensitivity of the average tumor IFP to
the lymphatic drainage. We also conclude that average Pf in tumor is at least linearly
dependent on the average tumor Pe, which increases where the osmotic pressure difference
decreases. We also show in Sec. 4.4 that the spatial distribution of IFP is insensitive to the
lymphatic parameters as the vascular hydraulic conductivity increases.

2.2 Angiogenesis and blood flow in the capillary network
Following (McDougall et al., 2002; McDougall et al., 2006), we define the vasculature on a
Cartesian grid. A vessel node is the basic unit located at a grid point and the vasculature
configuration is given by the connection between neighbouring nodes. Responding to the
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TAF released by the hypoxic cells in the tumor, endothelial cell sprouts are generated, grow
and fuse to expand the vascular network. red In previous work (Macklin et al., 2009), the
pre-existing vasculature is described as a continuous vessel density field and an explicit
parent vessel lying at one of the boundaries. New and pre-existing vessels are insulated from
each other: New sprouts can be generated from the explicit parent vessel or its descendent
and they are unable to anastomosis with the pre-existing vessels. Here we describe the pre-
existing vasculature as grid-like network where sprouts can be generated from and fuse into,
analogous to (Bartha & Rieger, 2006; Lee et al., 2006a; Welter et al., 2008; Welter et al.,
2009; Welter et al., 2010).

During angiogenesis, the sprouting pattern along stimulated vessels can be mediated by
Notch-Delta signaling between adjacent endothelial cells (ECs) that ensures no adjacent ECs
sprout simultaneously under the influence of TAF (Williams et al., 2006; Hellström et al.,
2007; Jakobsson et al., 2009). A theoretical study focusing on the details of lateral inhibition
was performed by (Bentley et al., 2008) and the resulting pattern is considered in (Welter et
al., 2009). Here we also incorporate this sprout generating pattern. After sprouts are
generated, they advance according to TAF and ECM gradient stochastically following
(McDougall et al., 2002; McDougall et al., 2006; Macklin et al., 2009). In the developing
capillary network, blood begins to flow and the blood vessel pressure and flow are computed
along the vessels. The vessel radius is adapted to the local vessel pressure, shear rate and
metabolite level following (Pries et al., 1998). In (McDougall et al., 2002; McDougall et al.,
2006), the vasculature is assumed to consist of cylindrical segments connected at vessel
nodes and obeying fluid conservation with no fluid extravasation due to vessel leakiness
taken into consideration. The flow rate Qqp from two connected vessel nodes q to p can be
determined from a Poiseuille-like model (Fung, 1997):

(21)

where Pvp and Pvq are the corresponding blood pressures, Rpq is the radius of the vessel
segment from q to p, the apparent viscosity μapparent = μplasma · μrel where μplasma is the
plasma viscosity and μref is the relative viscosity as a function of blood hematocrit and
vessel radius (Pries et al., 1998).

In this paper, we consider flow conservation in the presence of transcapillary fluid flux.
Thus, for each node p:

(22)

where q represents all the neighboring nodes and

(23)

is the fluid extravasation rate at node p into the interstitium.

Coupling the flux of fluid into the interstitium with the blood flow, we solve the blood
vessel pressure Pv along the vessel network by:

(24)
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2.3 Stimuli influencing vessel radius adaptation
Following (Pries et al., 1998; McDougall et al., 2002; McDougall et al., 2006; Macklin et
al., 2009), the vessel radii are adapted in response to wall shear stress, intravascular pressure
and hematocrit. Accordingly, the change in radius ΔR over a time unit is given by:

(25)

(26)

(27)

(28)

where Swss is the stimulus from wall shear stress τω, and τref is a constant included to avoid
singular behavior at low shear rates. The wall shear stress τω is calculated from (Pries et al.,
1998; Pries et al., 1992):

(29)

where μapp is apparent viscosity and can be computed as a function of vessel radius and
hematocrit (see the previous references). The term |Q| is the absolute value of the flow rate,
which will be specified numerically later. Further, Sp is the stimulus by the intravascular
pressure (considering only the vessel pressure) in the form of τe(Pv) from:

(30)

where the values are obtained from (Pries et al., 1998; McDougall et al., 2002; McDougall et
al., 2006; Macklin et al., 2009). Finally, Sm is the stimulus from the flow carrying
hematocrit, where Qref is a reference flow rate that is assumed to be larger than most of the
flows in the network. The parameters kp and km are the intensity coefficients. red We are
aware vessel dilation by circumferential growth as a result of endothelial cell proliferation
may be dominant inside the tumor (Erber et al., 2006; Holash et al., 1999a). This was
implemented in (Bartha & Rieger, 2006; Lee et al., 2006a; Welter et al., 2008; Welter et al.,
2009; Welter et al., 2010) but this is beyond the scope of this paper, where we emphasize the
effect of solid tumor pressure. We will investigate circumferential growth in a future work.

2.3.1 Hydrostatic-induced vessel collapse—red Cancer cells are known to compress
intratumor vessels, which may result in a decrease in effective vessel radii that may recover
after the excessive stress by cell proliferation is removed (Padera et al., 2004). In the radius
adaptation model used in (Pries et al., 2010), the shrinking tendency Ss is set to a constant Ss
= ks, where ks is the tendency to shrink. Here, however, we couple the vascular collapse due
to the tumor pressure into Ss to obtain:

(31)
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When the tumor pressure Pc is smaller than the pressure-sensing level PCT, the formula is
the same as the original version. When the pressure increases beyond PCT, the shrinking
tendency is assumed to increase with Pc at rate kpc. red This may result in a vanishing
effective radius representing vessels that have entirely collapsed. This may in turn be
followed by partial recovery if the stress is relieved. Implementation details are in Sec.3.2.2.
We are aware of the important role of wall shear stress on vessel wall degradation and
collapse (Holash et al., 1999a), which is due to poor circulation in the vascular network
following tumor-pressure induced vessel collapse. Using an ad-hoc model for tumor
pressure, (Bartha & Rieger, 2006; Lee et al., 2006a; Welter et al., 2008; Welter et al., 2009;
Welter et al., 2010) previously considered the effects of wall shear stress on vessel collapse.
We will model this effect in a future work.

3 Numerical details
3.1 The coupling of variables in the continuous field

To solve for the oxygen concentration, tumor pressure, IFP and other diffusible chemical
factors (MDE and TAF), we discretize the corresponding elliptic/parabolic equations (1),
(4), (20), (32) and (34) in space using centered finite difference approximations and the
backward Euler time-stepping algorithm. The discrete equations are then solved using a
nonlinear adaptive Gauss-Seidel iterative method (NAGSI)(Macklin & Lowengrub, 2007;
Macklin & Lowengrub, 2008). The ghost cell method developed in (Macklin & Lowengrub,
2008) is used to implement the tumor pressure jump condition at the interface in Eq.(8). In
previous work (Macklin et al., 2009), each equation was solved separately by lagging the
source terms. We found that this could lead to non-biophysical oscillations of the fields in
time and space. We eliminate this behavior by iteratively solving the system of equations for
the oxygen concentration, tumor pressure, IFP and blood vessel pressure together to steady
state at each time step, e.g., the system of equations is discretized implicitly in time. The
hematocrit level is computed once every few iterations, which is affected by the blood flow
and in turn influences the oxygen extravasation. Note that the vessel radii, however, are still
discretized explicitly. We use the level set method to update the tumor viable/necrotic
region, the tumor-host interface and the viable-necrotic interface. Further details on the
numerical implementation can be found in (Macklin et al., 2009) and the references therein.

3.2 Angiogenesis model
The Cartesian mesh for the tumor growth system coincides with that used for the vessel
network. redFor a fixed tumor geometry and TAF distribution, the vascular network is
grown using the same time steps as the tumor. The sprout generation process is described in
Sec. 3.2.1 and the movement of sprouts is according to (Anderson & Chaplain, 1998;
Stephanou et al., 2005; Chaplain, 1995). After each update of the network, the blood
pressure and flow in Eq. (24) are solved together with the IFP, oxygen, and pressure to the
steady state. Then the vessel radius is updated explicitly using the same time steps as the
tumor growth. red

3.2.1 Contact units and sprout generation—A contact unit consists of a group of
vessel nodes connected with cylindrical segments; here 15 nodes are used. If a vessel node
within a contact unit has a TAF level beyond a stimulating threshold, the contact unit
becomes activated. Activated contact units compete along the vessel as described below. We
put all activated contact unit candidates into set ΩS∪T, then we do the following:

• From ΩS∪T, we mark contact units with higher level of TAF than their immediate
neighbors along the vasculature as the first population of tip generating units T1
and mark their neighbors as S1.
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• If ΩS∪T\S1\T1 is not empty, we mark another population of the tip generating units
and neighboring units in the same way as the previous step.

•
Repeat the above until the set  becomes empty.

Then  are the tip generating units and  are the neighboring non-tip units, out of all
the activated candidates. We generate sprouting or branching nodes in each tip generating
units by choosing the one with maximal TAF level within the unit. A contact unit can have
at most only one sprouting node. In this way, we avoid the generation of two or more
branches within a short distance, and we model the result of Notch-Delta signaling and
lateral inhibition (Bentley et al., 2008).

3.2.2 Radius collapsing selection—The update of the vessel radius follows the
methods in (Pries et al., 1998; McDougall et al., 2002; Macklin et al., 2009), after which the
vessels are evaluated for possible collapse if the radius R has become too small (e.g., R <
Rmin, where Rmin = 2e − 6m). For each vessel segment,

• if the radius R is equal to or larger than Rmin, the vessel radius is updated via Eq.
(25).

• if R is smaller than Rmin and P < PCT, set R = Rmin and remain adapting according
to Eq. 25. This simulates the case of a vessel that was collapsing but the pressure
has been relieved.

• if R is smaller than Rmin and P > PCT, set R = 0 and stop adapting. This simulates
the case of a vessel that has now collapsed due to the pressure.

• if R is 0 and P < PCT, then set R = Rmin and begin adaptation. This simulates the
case of a vessel that was collapsed, but the pressure has decreased to the point that
minimum flow can occur.

• if R is 0 and P > PCT, maintain R = 0. This simulates a collapsed vessel remaining
collapsed due to the high pressure.

• if the blood vessel pressure Pv is computed to be 0 due to the collapsing of all the
connected vessels, set R = 0. This simulates the collapse of a whole group of
vessels for which the flow has stopped.

3.3 Overall Computational Solution Technique
1. At each time step, iteratively solve Eqs.(1), (4), (20) and (24) together for the

oxygen concentration, tumor pressure, IFP and blood vessel pressure. At each
iteration, pressure and oxygen are implicitly solved and the position of the hypoxic
region is updated until all variables converge. The hypoxic region is identified by:
ΩH = {x : σ (x, t) < σH} ∩ Ω. The hematocrit level is updated every 500 iterations.
With this number of iterations, the hematocrit level was found to be consistent with
physiological conditions. We then use the solution σ to update the position of the

necrotic core: . We then rebuild φN, a level
set function, that represents the updated region ΩN (Macklin et al., 2009), and
update the position of the tumor/host interface Σ and the necrotic/viable ΣN by
advecting the level set functions φ and φN.

2. Solve Eq.(34) for the TAF concentration using the updated hypoxic region ΩH from
step 1 and update the MDE concentration and ECM density according to Eqs. (32)
and (33).
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3. Update the vessel radius and the collapsing selection according to Eqs.(25) and the
algorithm described in Sec. 3.2.2.

4. Using the updated tumor position in step 1, and the TAF, MDE and ECM obtained
in step 2, grow the vasculature and go back to step 1.

4 Simulation and Parameter Studies
We begin by presenting a simulation of vascular tumor growth under the effect of blood/
lymphatic vessels fluid extravasation/drainage with the parameters listed in Table 1 for the
lymphatics, Table 2 for the discrete vasculature and Table 3 in the Appendix for the tumor
model in which the parameters are as in (Macklin et al., 2009). At first, oxygen
extravasation is not affected by IFP (kPf = 0). Then, we consider the effects of IFP on
oxygen extravasation (kPf > 0), and discuss the effects of lymphatic/blood vessel collapse on
the tumor growth. Finally, we discuss the role of elevated vascular/interstitial hydraulic
conductivities and attenuated osmotic pressure differences on the interstitial fluid dynamics
and vascular tumor growth.

4.1 Initialization of the tumor and vascular network
The simulations are performed on a 2 × 2mm2 area with a uniform pre-existing vascular
network arranged on a Cartesian grid (Fig. 2)red, which was also done in (Bartha & Rieger,
2006). We impose a pressure gradient on the boundary of the domain starting with 3750 Pa.s
at the lower left and with the pressure at the upper right equal to 3000 Pa.s with linear
pressure decrements in between. Thus the 16 vessel nodes along the left and bottom
boundaries are inlets while the other 16 vessel nodes along the right and top boundaries
outlets. We then calibrate the model such that the vasculature provides sufficient oxygen (σ
= 0.76 ~ 1) to support normal tissue metabolism (Intaglietta et al., 1996). A small avascular
(Fig. 2) tumor is then placed at the center of the domain. Since the tumor consumes more
oxygen than the surrounding tissue, the oxygen level in the tumor region is smaller. As the
tumor grows, the oxygen concentration in the tumor interior decreases and cells become
hypoxic (blue) and necrotic (brown), see Figs. (3 – 6).

4.2 Simulation of tumor growth and IFP
In Figs. 2–6, we present the evolution of a vascular tumor and the vascular network when
the vessels are leaky and the lymphatic vessels are functional. In this simulation, kPf = 0, so
that IFP does not affect oxygen extravasation. At early times (t = 1.5 days), vessel sprouts
form but there is very little functional neovasculature, and all the extravasating fluid (and the
drainage by the lymphatic system) is localized around the pre-existing vasculature. At later
times, tumor growth and angiogenesis continue and the neovasculature is more functional
(Figs. 3–6). The IFP in the tumor is now elevated because of fluid extravasation from the
neovasculature and the pressure-induced collapse of the lymphatic network by proliferating
tumor cells. Accordingly, there is little lymphatic drainage in the tumor interior. The
drainage instead occurs a small distance from the tumor margin. The oxygen, vessel pressure
and TAF distributions become progressively more heterogeneous as a result of the interplay
between tumor growth and the vascular response. Oxygen is elevated outside the tumor as
well as in certain regions inside where there are newly formed functional vessels. The
heterogeneous oxygen distribution leads to heterogeneous distributions of hypoxic and
necrotic cells, which in turn leads to a heterogeneous distribution of TAF and vessel sprouts.
The vessel pressure generally is high in the lower left and low at the upper right, due to the
imposed inflow/outflow boundary conditions. By day 18, the tumor is approximately 1.5
mm in diameter. As the tumor grows, the IFP increases significantly reflecting the inhibited
drainage of the interstitial fluid by the pressure-induced lymphatic collapse, which extends
further into the host tissue with little drainage. The IFP inside the region where there is little
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drainage results in outward flow of interstitial fluid flow into regions of the host tissue with
more functional lymphatics and better drainage. Figs. 7 and 8 show the tumor cell velocity
and interstitial fluid velocity which are both directed from the tumor to the host tissue. The
interstitial fluid velocity is particularly large at the tumor boundary.

When IFP inhibits oxygen extravasation, the tumor growth and the host vascular response is
qualitatively similar, although the tumor grows more slowly. Compare the middle column of
Fig. 13, where kPf = 0.5, with Fig. 6.

4.3 Vessel resistance, IFP and tumor growth
Next, we vary the blood/lymphatic vessel resistance to the hydrostatic pressure and quantify
the consequences on IFP and tumor growth.

4.3.1 Resistance of blood vessels to hydrostatic pressure—In Figs. 9 and 10, we
present an evolution sequence (t = 12, 18) of vascular tumor growth and host angiogenic
response, for a moderate level of vessel resistance PCT = 2.0. The lymphatic vessels are
assumed to be fully functional c(Pc, L) = 1. The other parameters correspond to those used
in Figs. 2–6. The hydrostatic pressure induces blood vessel collapse, and leads to
heterogeneous delivery of oxygen in the tumor microenvironment. The collapse is mainly
confined to the tumor interior at early times, while vessels in the tumor microenvironment
collapse at later times. The blue and red ovals denote regions where significant numbers of
vessels have collapsed (e.g., having zero radius). In addition, vessel collapse also induces a
loss of functionality of vessels downstream of the collapsed vessels until the network is able
to re-organize. Because the lymphatic drainage is unimpaired by the hydrostatic pressure,
the IFP is significantly smaller than that in Figs. 6. In Fig. 11, we compare the results using
less resistant blood vessels (PCT = 1.0, left column) and more resistant blood vessels (PCT =
3.0, right column). The center column corresponds to the result from Fig. 10.

Because vessel collapse reduces oxygen and nutrient transport to the tumor
microenvironment, the tumor size increases as PCT increases and the vessels become more
structurally sound. This is quantified in Fig. 12 where the equivalent radius (radius of circle
with the same enclosed area) of the tumors are plotted. Note that the change in radius tends
to become linear in time as the tumor grows red since proliferation is confined to the tumor
boundary, in agreement with recent experimental results (Lee et al., 2006b) and theoretical
predictions (Alvord Jr, 1977; Cristini et al., 2003; Brú et al., 1998; Brú et al., 2003; Bartha
& Rieger, 2006; Lee et al., 2006a; Welter et al., 2008; Welter et al., 2009; Welter et al.,
2010). In addition, the hydrostatic pressure also increases as a function of PCT due to
enhanced proliferation. Accordingly, we find that the maximum hydrostatic pressure also
increases with PCT.

4.3.2 Resistance of lymphatic vessels to hydrostatic pressure—We next
investigate the effects of lymphatic vessel resistance to the hydrostatic pressure by varying
the parameter KLmax in Eq. (17). The results are presented in Figs. 13–15. A large region
develops when the lymphatics are easily collapsed, and extends well beyond the tumor into
the host where there is no drainage of interstitial fluid (Fig. 13, left column). Accordingly,
the region where the IFP is high is also high, which impairs the extravasation of oxygen. See
(Fig. 14) as well, which shows the average IFP in the tumor. This in turn impedes the
growth of the tumor and leads to a large fraction of the tumor to become hypoxic and
necrotic (Fig. 15 shows the equivalent tumor radius as a function of time). As KLmax is
increased, the lymphatic vessels are more resistant to collapse and as a consequence, there is
more fluid drainage, oxygen delivery and tumor growth, as seen in Fig. 14 at late times. At
early times, the growth is more strongly influenced by stochastic variations in the vascular
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structure (e.g., different realizations show different ordering in the tumor radii as a function
of KLmax at early times t ≲ 10).

4.3.3 Resistance of both blood and lymphatic vessels to hydrostatic pressure
—We next consider the combined effects of blood and lymphatic vessel collapse. Unlike the
simulations shown in Figs. 9 – 12, the lymphatic vessels may now collapse. In particular, we
fix KLmax and vary PCT. The results are presented in Figs. 16 and 17 which show the
evolution of the average IFP and the equivalent tumor radius, respectively. As PCT
increases, the IFP also increases because the blood vessels resist collapse and thus are better
able to extravasate liquid. However, the effect seems to saturate due to the feedback between
IFP, oxygen extravasation, lymphatic drainage, and tumor growth. For example, oxygen
extravasation is reduced as IFP increases, which results in less proliferation, less lymphatic
vessel collapse and better drainage of interstitial fluid. As PCT increases beyond a critical
threshold, these processes begin to balance one another. The oscillation in the curves for PCT
= 1 and PCT = 2 results from the vessel recovery and collapse, and is an artifact of the
simulation by not solving this part of the system implicitly. For the case PCT = 3, no blood
vessels collapse since the tumor pressure Pc never exceeds 3 because the IFP impedes
nutrient extravasation and tumor cell proliferation.

4.4 The effect of tumor vascular pathologies
It is known experimentally that vascular hydraulic conductivity λV f may result from
weakened junctions between vascular endothelial cells, which can be caused by increased
VEGF concentrations (e.g., (Gavard & Gutkind, 2006)) as well as decreases in the number
of pericyte and smooth muscle cells surrounding the vessels (e.g., (Daneman et al., 2010)).
In addition, the interstitial hydraulic conductivity Ki in the tumor may also be elevated if the
tumor extracellular matrix (ECM) density is smaller than that in the host (e.g., (Levick,
1987)). Finally, an accumulation of plasma proteins in the tumor tissue due to poorly
functioning lymphatics and an elevated vascular hydraulic conductivity may lead to a
decrease in the osmotic pressure difference across blood vessel walls ω(πv − πi) (e.g.,
(Burgen & Francombe, 1962; Baxter & Jain, 1989)). We explore these pathological effects
on the IFP distribution while at the same time varying the lymphatic collapsing threshold.
To best illustrate the effects, we fix the tumor morphology and the vascular network.

As a control, we consider a case in which the host and tumor regions share the same
interstitial hydraulic conductivity Ki, vascular hydraulic conductivity λV f and osmotic
pressure difference ω(πv − πi), but the lymphatic collapse threshold KLmax is varied. The
result is shown in Fig. 18, where it is seen that a smaller lymphatic collapsing threshold
KLmax contributes to a larger drainage-free zone for the same tumor and vasculature
configurations.

We now explore and compare individual pathological effects under different lymphatic
vessel distributions. We plot the IFP through the tumor center. In Fig. 19, the red curve is
the IFP distribution and the red curve in Fig. 20 is the IFP gradient in the tumor directed
outward ∇Pi · nout, where nout is the outward normal vector, and which corresponds to the
outward speed of the fluid in the control tumor in Fig. 18. The brown curve corresponds to
the situation where ω(πv − πi) is smaller in the tumor than the host. The green and blue
curves correspond to the cases where λV f and Ki in the tumor are larger than that in the
host, respectively. In each case, a smaller lymphatic collapsing threshold contributes to
higher IFP (Fig. 19) red and the IFP gradient ∇Pi · nout spikes farther from the tumor center
(Fig. 20). The diminished osmotic pressure difference (brown curves in Fig. 19) contributes
to higher IFP while the IFP is sensitive to different lymphatic distributions. Elevated
vascular hydraulic conductivity in the tumor (green curves in Fig. 19) also contributes to
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higher IFP but is fairly insensitive to different lymphatic distributions, as suggested by the
analysis in Sec. 2.1.3. This enables the tumor to maintain a hypertension profile under
variations of the lymphatic system. Elevated tumor interstitial hydraulic conductivity (blue
curves in Fig. 19) flattens the IFP distribution and contributes to a plateau profile in the
tumor when the lymphatics collapse easily (the blue curve when KLmax = 1 in Fig. 19). red
Except for the cases with attenuated osmotic pressure difference (brown), all the other cases
exhibit tumor IFP values lying in the range of experimentally measured values (1000–2000
Pa, (Boucher et al., 1990)). The inconsistency with experimentally observed IFP when there
is an attenuated osmotic pressure difference is likely due to the large imposed pressure
distribution (3000–3750 Pa) on the boundary of the domain.

In Fig. 21 we quantify the average IFF red velocities leaving the tumor, either to the tumor
lymphatics (left) or the host tissue (right) versus KLmax. This gives insight into how
variation in lymphatic resistance may affect tumor cell metastasis under various pathological
conditions. red We compute the average IFF velocity (μm/s) of fluid leaving through the
tumor lymphatics by taking the total drainage in the tumor (μm3/s) divided by the tumor
area (μm2). We compute the average velocity of fluid flowing into the host tissue by taking
the total flow into the host (obtained as the net fluid extravasation in the tumor, subtracting
the amount drained by the lymphatics, which has units μm3/s), divided by the effective

tumor boundary (obtained by , which has units μm2. Note that VT is the
characteristic volume of the tumor– see Table 1). The largest red velocities of IFF leaving
the red tumor into the host tissue (right panel) occur when all pathologies are included
(attenuated osmotic pressure differences, elevated vascular and interstitial hydraulic
conductivities; cyan), followed by the case in which both the vascular and interstitial
hydraulic conductivities are elevated (black). The green curve denotes the case in which
only the vascular hydraulic conductivity is elevated, while the brown, blue and red curves
mark the cases with attenuated osmotic pressure differences, elevated interstitial hydraulic
conductivity and the control, respectively. red The IFF velocity at the tumor boundary was
reported in the order of 0.1μ m/s from experimental measurements (Jain, 1987b), which is
satisfied when KLmax ≥ 2 with elevated vascular hydraulic conductivities (cyan, black and
green). Further, the red increase of the IFF velocity into the host tissue saturates because the
IFP (and IFF) saturates as KLmax increases (recall Figs. 19 and 20) while red the IFF
velocity into the lymphatics continues to increase (left panel) since the lymphatic vessels are
more resistant to collapse as KLmax increases. Note that when redKLmax < 2, all the
lymphatic vessels in the tumor are collapsed so that the rate of IFF removal to the
lymphatics is zero. Thus for all cases the IFF is solely directed into the host tissue when red
KLmax < 2. When the interstitial hydraulic conductivity is elevated (blue), observe that red
almost all the interstitial fluid leaves the tumor through the tissue and not through the
lymphatics for all KLmax. This is because when the interstitial hydraulic conductivity is
elevated, the IFP distribution is flatter and broader than the other cases (recall Fig. 19) and
thus elevated hydraulic conductivity contributes to a more uniform regulating effect on
oxygen extravasation. This in turn makes the hydrostatic tumor pressure distribution more
uniform and collapses more tumor lymphatic vessels compared to the other three cases (red,
brown and green) with the same lymphatic resistance, even though the maximum IFP is
lower than those cases (red, brown, green) when the interstitial hydraulic conductivity is
elevated (Fig. 19). red This is consistent with the behavior observed when there is elevated
vascular hydraulic conductivity.

5 Discussion
We have extended previous vascular tumor modeling work by accounting for interstitial
fluid pressure (IFP) and flow (IFF) as well as drainage by lymphatic vessels. We have
considered blood flow with leaky vessels and have coupled the transcapillary flux with IFP.
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In contrast with previous work where oxygen extravasation was directly regulated by the
tumor hydrostatic pressure, here regulation occurs via IFP and the hydrostatic pressure
indirectly regulates extravasation by contributing to the collapse of both lymphatic and
blood vessels. We have also replaced the continuous pre-existing vessel field in previous
tumor modeling work by a discrete vascular network, which is the sole source of oxygen
extravasation. In this way, the coupling between discrete angiogenesis and the continuous
tumor model via oxygen is more absolute. To solve the system numerically, we develop a
fully implicit discretization, which eliminates the occurance of non-biophysical oscillations
of the fields in time and space when each equation were to be solved separately by lagging
the source terms (as was done in previous work (Macklin et al., 2009)).

In agreement with experimental observations, tumor pressure-induced blood vessel collapse
is seen to contribute to hypoxia and necrosis while the pressure-induced collapse of
lymphatic vessels contributes to large IFP and large IFF directed towards the host tissue,
both of which contribute barriers to transport of oxygen, nutrients and potentially
chemotherapy agents to the tumor. The effect of tumor pressure is not localized - vessels can
be forced to collapse if they become fully deprived of blood flow due to the collapse of
vessels upstream. Also, neighboring vessels and those downstream of collapsed vessels may
be partially deprived of blood flow due to changes in the flow network.

We also investigated the effect of tumor vascular pathologies, including elevated vascular
and interstitial hydraulic conductivities inside the tumor as well as diminished osmotic
pressure differences, on the fluid flow across the tumor capillary bed, the lymphatic
drainage, and the IFP. We identified a combination of tumor lymphatic conditions and
elevated interstitial hydraulic conductivity that contributes to a plateau of the IFP across the
tumor and a collapse of tumor lymphatic vessels, both of which are observed in experiments
(e.g., (Boucher et al., 1990)). In particular, our results revealed that elevated interstitial
hydraulic conductivity together with poor lymphatic function is the root cause of the plateau
profile, which expands upon earlier work by (Baxter & Jain, 1989) who considered all the
pathologies simultaneously in the context of a simpler model. Thus, our model suggests the
following testable prediction: If the tumor IFP exhibits a plateau, then the interstitial
hydraulic conductivity in the tumor is elevated. Taking this together with experimental data
that correlates increased tumor interstitial hydraulic conductivities with decreased ECM
densities in the tumor (Levick, 1987), we predict that if the tumor ECM density is smaller
than that in the host tissue (which can be assessed non-invasively), then the tumor IFP
exhibits a plateau, which makes the tumor hydrostatic pressure more uniform and results in
strong vascular and interstitial fluid transport barriers to the tumor that, in the absence of
other effects, suggests that standard chemotherapy would be less effective than might
otherwise be the case. A more complete description of transport barriers should also take
into account the binding of drugs to the ECM (Brown et al., 2003; Minchinton & Tannock,
2006; Tredan et al., 2007), this will be considered in a future work.

It has been reported that interstitial fluid flow contributes to tumor invasion and metastasis
directly through CCR7 signaling (Shields et al., 2007; Shieh & Swartz, 2011). In particular,
tumor cells chemotax up gradients of CCR7 ligands, which are released into the interstitial
fluid by lymphatic endothelial cells and tumor cells themselves. We have found that the rate
that IFF is fluxed into the lymphatics and host tissue is largely controlled by an elevated
vascular hydraulic conductivity in the tumor. This provides another testable model
prediction: tumors with increased vascular hydraulic conductivity (which could be measured
non-invasively) are more likely to be locally invasive and to metastasize via the lymph
system than those without. We also find that when the tumor vascular hydraulic conductivity
is increased relative to the host, the IFF and IFP spatial profiles in the tumor are largely
insensitive to the lymphatic collapse parameter KLmax. This results in a non-monotone
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dependence of the IFF on KLmax as described in Sec. 4.4. In particular, taking KLmax
large, which increases the resistance of the lymphatic vessels to collapse, actually decreases
the rate of IFF into the host tissue and with it the risk of local invasion. Instead, it is more
likely that invasion/metastasis occurs through drainage into the lymphatic system. Thus, our
results suggest the possibility of developing strategies of targeting tumor cells based on the
cues in the interstitial fluid.

red In this study, we made several simple assumptions that each may lead to a more
extensive investigation. First of all, we assume the IFP affects oxygen extravasation through
the transvascular fluid flux, thus a higher IFP distribution hinders tumor growth in time by
decreasing the oxygen transfer to the tissue (see Fig. 15). To our knowledge, there is no
direct evidence that IFP is associated with oxygen extravasation but when the IFP and blood
pressure are comparable, tumor cell hypoxia is increased and there is an unfavorable
treatment response (Jain, 2005a). Note if there is no feedback from IFP on oxygen
extravasation, then lymphatic resistance would not affect tumor growth as shown in Fig. 15
and tumors with elevated interstitial hydraulic conductivity alone would not collapse most of
tumor lymphatic vessels since the oxygen extravasation would be more uniform. However,
vascular pathologies also may be for responsible correlations between high IFP and
insufficient oxygen delivery (Cai et al., 2011). Future studies are needed to further elucidate
the correlation between IFP and oxygen extravasation.

In this investigation, we have simplified the pre-existing vascular network to be a small
patch of capillaries in an arteriole-venous vessel network. We modeled only the capillary
portion of the network. The imposed blood pressure values at the 32 boundary vessel nodes
as well as the host tissue osmotic pressure difference ensure there is no intravasation of fluid
from the interstitium to the blood if there is no tumor, consistent with the modern
experimental results which show that dynamically intravasation occurs rarely in the capillary
portion of the network, except in the organs for fluid absorption functions (i.e., kidney,
intestine and lymph nodes). See the review (Levick & Michel, 2010) for details. In future
work, we will explicitly model the arteriole-venous vessel network, following methods
developed in (Welter et al., 2009).

Further, here we incorporated the vessel collapse by tumor stress (Padera et al., 2004) using
vessel radii adaption model by (Pries et al., 1998). We explicitly connected tumor pressure
with decreases of vessel radii and the eventual collapse, which creates an avascular region
through excessive proliferation. The effect of tumor pressure is not localized - vessels can be
forced to collapse if they become fully deprived of blood flow due to the collapsing of the
upstream vessels, analogous to (Bartha & Rieger, 2006). Also, those neighboring and
downstream vessels of the collapsed ones may be partially deprived of blood flow due to the
change of the flow network. Note that the collapsed vessels in our simulations can be
recovered as the tumor stress decreases followed by the neighboring vessels while they may
undergo regression and contribute to irreversible vascular geometric remodeling (Bartha &
Rieger, 2006; Welter et al., 2009). In our model, we did not consider tumor vessel
circumferential growth (Erber et al., 2006). In future work, we will consider this effect
following methods developed by (Bartha & Rieger, 2006; Welter et al., 2009).
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A Microenvironment interactions
In vascular tumor growth, the viable tumor cells and endothelial cells (ECs) remodel the
extracellular matrix (ECM) by releasing degrading proteolytic enzymes. Following previous
work (Macklin et al., 2009), we model the tumor microenvironment by introducing E
representing the extracellular matrix density (ECM) and M representing the level of
degrading proteolytic enzymes (MDE) which are assumed to satisfy (Macklin et al., 2009):

(32)

(33)

The MDEs are produced by the viable tumor cells (ΩV = ΩP ∪ ΩH) and neo-vascular sprouts

with the rates  and , respectively. For simplicity, we assume only the sprouting
ECs release MDEs which diffuse into the microenvironment with constant but small DM and

decay with the rate . We assume that MDE used up in the interaction with the ECM

with the rate  are negligible with the MDE production, thus the term

 only applies to the dynamics of ECM, which can also be produced by the
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viable tumor cells and tip ECs with the rates  and , respectively. We also take

the zero Neumann boundary condition  in the computation of MDE.

B Tumor angiogenesis factors
When tumor cells become hypoxic, they release tumor angiogenesis factors (TAF, e.g.,
members of the VEGF family). Here, we assume TAFs are released by hypoxic tumor cells
with rate λ̄prod, diffuse into the tissue with constant diffusion coefficient DT, are uptaken by

surrounding ECs with rate , and decay of a constant rate . Thus, we have the
following (Macklin et al., 2009):

(34)

In the far-field at the boundary of the computational domain, we take Neumann boundary

conditions: 

C The effect of ECM on χE and μE
The tumor response to pressure and ECM adhesion gradients are mediated by
hetereogeneous sensitivities, which are modeled using non-constant cell-mobility and
haptotaxis coefficients. We follow (Macklin et al., 2009), who postulate a certain level of
ECM required for focal adhesion-based migration (too much focal contact strength could
retard the detachment of cell’s trailing edge from the ECM), and specify the haptotaxis
coefficient as a non-monotone function of E:

where pχ is a non-monotone interpolating function. See details for other parameters in Table
(3).

As in (Macklin et al., 2009), we take μE to be a monotone decreasing function of E:

where pμ is a smooth interpolating function. See details for other parameters in Table (3).
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Highlights

• We study interstitial fluid pressure/flow (IFP/IFF) during vascular tumor
growth.

• Vessel collapse results in transport barriers and decreased tumor growth rate.

• High interstitial hydraulic conductivity leads to plateau profile in tumor IFP.

• Increasing vascular hydraulic conductivity maintains high IFP in tumor.

• Tumor vascular pathologies promote local invasion and metastasis through IFF.
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Figure 1.
Schematic description of the tumor.
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Figure 2.
Tumor growth at day 0.07: a small avascular tumor (Row 1, Column 1) is placed at the
center of the domain. As the tumor grows, the oxygen concentration in the interior decreases
and cells become hypoxic (blue) and necrotic (brown in Figs.4-6). Hypoxic cells (blue in
Row 1, Column 1) release TAF into the domain (Row 3, Column 3). Vessel pressure (Row
2, Column 3) on the boundary starts with 3750 Pa.s at the lower left and 3000 Pa.s at the
upper right with linear increments in between. The 16 vessel nodes along the left and bottom
boundaries are inlets while the other 16 vessel nodes along the right and top boundaries are
outlets. Red blood cells (RBCs) are transported along the blood stream carrying oxygen,
which is quantified by the hematocrit level (Row 2, Column 1). Oxygen (Row 1, Column 3)
is calibrated (σ = 0.76 ~ 1) to support normal tissue metabolism. Since the tumor uptakes
more oxygen than the surrounding tissue, the oxygen level in the tumor region is smaller.
The vessels extravasate fluid (Row 1, Column 2) and the fluid is drained (Row 2, Column 2)
by functional lymphatic vessels. Slightly higher interstitial pressure (Row 3, Column 2) can
be seen to coincide with the vasculature.
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Figure 3.
Tumor growth at day 1.50: vessel sprouts form (Row 1, Column 1), which have not yet
anastomosed near the tumor in order to provide large enough flow to transport RBCs (Row
2, Column 1). Note the discrepancy between the newly updated vasculature and the full
hematocrit level (0.45) coverage. However, fluid is extravasated (Row 1, Column 2) from
newly formed vessels even before anastomosis begins.
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Figure 4.
Tumor growth at day 6.75: growth and angiogenesis continue and new loops in the
neovasculature (Row 1, Column 1) are formed enabling vascular flow (Row 2, Column 1),
thus leading to a higher oxygen concentration (Row 1, Column 3) near the tumor. As a
result, the hydrostatic pressure (Row 3, Column 1) in the interior further increases and
reaches around 1.10, which is larger than KLmin = 0.75 in the lymphatic drainage function
c(Pc,L). The IFP in the tumor is then elevated because of more fluid extravasation from the
neovasculature as well as the decrease in drainage (Row 2, Column 2) by the degrading
lymphatic density L and lowering of hydrostatic pressure Pc.
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Figure 5.
Tumor growth at day 10.5: there is little lymphatic drainage (Row 2, Column 2) in the tumor
interior. Oxygen (Row 1, Column 3) is elevated outside the tumor. The IFP increases (Row
3, Column 2) significantly, reflecting the inhibited drainage of the interstitial fluid by both
degradation of the lymphatics and pressure-induced lymphatic collapse.
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Figure 6.
Tumor growth at day 18.0: the tumor is approximately 1.5 mm in diameter. The drainage
occurs at a small distance from the tumor-host boundary (see the boundary projected on the
drainage plot in Row 2, Column 2). Oxygen (Row 1, Column 3), vessel pressure (Row 2,
Column 3) and TAF (Row 3, Column 3) distributions become progressively more
heterogeneous as a result of the interplay between the growing tumor and the vasculature.
The heterogeneous oxygen distribution leads to inhomogeneous distributions of hypoxic and
necrotic cells (Row 1, Column 1), which in turn leads to inhomogeneous distribution of TAF
and vessel sprouts. The elevated IFP (Row 3, Column 2) reaches into the surrounding tissue
where there is little drainage.
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Figure 7.
Cell velocity with hydrostatic pressure contours from Fig. 6: the pressure drops
approximately linearly from the inside of the tumor to the outside, and the velocity is
generally outward except at the tumor interior where this velocity is directed towards the
necrotic region (see arrows at the upper right corner).
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Figure 8.
Interstitial fluid velocity with IFP contours from Fig. 6: In the well drained tissue, the
interstitial fluid velocity direction is pointing from the vasculature locations to the avascular
regions. At the interface region where the IFP level changes steeply, the fluid velocity is
towards the well-drained regions and the speed is the largest. Inside the drainage-free area,
the fluid velocity is extremely small.
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Figure 9.
Tumor growth at day 12.0 for PCT = 2.0 with fully functional lymphatic vessels: vessel
collapse is mainly confined to the tumor interior, resulting in zero vessel radius (highlighted
by the red oval), zero blood vessel pressure (highlighted by the light blue oval), zero
hematocrit level (highlighted by the light blue oval) and zero fluid extravasation
(highlighted by the red circle).
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Figure 10.
Tumor growth at day 18.0 for PCT = 2.0 with fully functional lymphatic vessels: as the
tumor grows, vessels in the tumor microenvironment collapse (the ovals depict where
vessels have collapsed), resulting in zero blood vessel pressure (highlighted by the light blue
oval), zero hematocrit level (highlighted by the light blue oval) and zero fluid extravasation
(highlighted by the red oval). The hematocrit level near the collapsed region is decreased
due to the decrease in flow after vessel collapse.
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Figure 11.
Tumor growth at day 18 varying PCT. (Column 1: PCT = 1, Column 2: PCT = 2 and Column
3: PCT = 3.) Tumor size and pressure increase as PCT increases, while the zero hematocrit
level region expands as PCT decreases.
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Figure 12.
The effective tumor radius vs. time for different blood vascular resistances PCT and fully
functional lymphatics c(P,L) = 1. Here, PCT = 1 (blue), PCT = 2 (green) and PCT = 3 (red)
are shown. The growth speed increases with PCT. The effective radius is computed by

.
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Figure 13.
Tumor growth at day 18 with varying KLmax. ( Column 1: KLmax = 1, Column 2: KLmax = 2
and Column 3: KLmax = 3). Tumor size increases with KLmax, while the drainage-free zone
expands and the tumor IFP decreases as KLmax increases.
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Figure 14.
Tumor IFP average for different lymphatic resistances KLmax for fully functional blood
vasculatures (e.g., PCT = ∞). Here, KLmax = 1 (red), KLmax = 2 (green) and KLmax = 3
(blue) are shown. The average IFP decreases as KLmax increases.
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Figure 15.
The effective tumor radiii for different KLmax from Fig. 14 (KLmax = 1 in red, KLmax = 2 in
green and KLmax = 3 in blue). At late times (e.g., t ≈ 18), the growth rate increases as KLmax
increases, due to the inhibitory effect of IFP on oxygen extravasation. The behavior at early
times (e.g., t ≲ 10) is influenced by stochastic effects.
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Figure 16.
The average IFP in the tumor vs. time with KLmax = 2 and different blood vessel collapse
resistances PCT (PCT = 1 in blue, PCT = 2 in green and PCT = 3 in red). The IFP average still
increases as PCT increases, but saturates as PCT exceeds KLmax. The oscillation in the curves
PCT = 1 and PCT = 2 results from the vessel recovery and collapse, and is an artifact of the
simulation caused by not solving for the vessel radii implicitly. For the case PCT = 3, no
blood vessels collapse since the tumor pressure Pc never exceeds 3 because the IFP impedes
nutrient extravasation and tumor cell proliferation.
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Figure 17.
The effective tumor radius vs. time with KLmax = 2 and different PCT from Fig. 16 (PCT = 1
in blue, PCT = 2 in green and PCT = 3 in red). The growth rate still increases as PCT
increases, but the effect of increasing PCT saturates; compare to Fig. 12 where the
lymphatics are fully functional.
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Figure 18.
Control tumor sample at day 18 with different KLmax (Column 1: KLmax = 1, Column 2:
KLmax = 2, Column 3: KLmax = 3). The tumor and host tissue share the same vascular/
interstitial hydraulic conductivity and osmotic pressure difference. See the red curves in
Figs. 19 and 20 for the corresponding cross sectional IFP profile and outward gradient in the
tumor center, respectively.
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Figure 19.
Cross sectional IFP distribution at y = 1mm (the domain center) with the same tumor and
vasculature configurations and different KLmax under the following conditions: matched
vascular/interstitial hydraulic conductivity and osmotic pressure difference (red curves),
attenuated osmotic pressure difference inside the tumor (brown curves), elevated vascular
hydraulic conductivity (green curves) and elevated interstitial hydraulic conductivity (blue
curves). red The two vertical red lines correspond to the tumor boundary. Compared with
the control (red curves), an attenuated osmotic pressure difference (brown) elevates the
tumor IFP and is sensitive to changes in lymphatic function; an elevated interstitial hydraulic
conductivity (blue) effectively flattens the tumor IFP and presents a plateau profile together
when lymphatic function is impaired (KLmax = 1); elevated vascular hydraulic conductivity
(green) both elevates the IFP and maintains its profile under changes in lymphatic function.
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Figure 20.
Cross sectional outward IFP gradient |∇Pi · nout| along y = 1mm (the domain center) under
the same conditions as in Fig. 19. red The two vertical red lines correspond to the tumor
boundary. In all cases, there is an velocity outward from the tumor, which is small inside the
tumor and larger at the tumor boundary, consistent with Fig. 8. The elevated vascular
hydraulic conductivity (green curve) contributes to a larger outward gradient at the tumor
boundary and an elevated interstitial hydraulic conductivity (blue curve) decreases the
outward gradient inside the tumor. The color scheme is the same as in Fig. 19.
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Figure 21.
Quantitative study of average IFF red velocity leaving the tumor through the tumor
lymphatics (left) and into the host tissue (right). Cyan: All pathologies considered
(attenuated osmotic pressure difference across the vessel wall, elevated vascular and
interstitial hydraulic conductivities); Black: Elevated vascular and hydraulic conductivities;
Green: Elevated vascular hydraulic conductivity; Brown: Attenuated osmotic pressure
difference; Blue: Elevated interstitial hydraulic conductivity; Red: Control. These graphs
indicate that the interstitial flow red velocities are most affected by elevated vascular
hydraulic conductivity. Note that when KLmax = 1, all the lymphatic vessels in the tumor
are collapsed so that the rate of IFF removal to the lymphatics is zero. Thus in all cases the
IFF is solely directed into the host tissue when KLmax = 1. When the interstitial hydraulic
conductivity is elevated (blue), redmore interstitial fluid leaves the tumor through the tissue
red than through the lymphatics for all KLmax redcompared with control (red) since
redmore lymphatic vessels in the tumor are collapsed in this case. Further, the redincrease of
IFF redvelocity into the host tissue redsaturates as KLmax increases. See text for further
explanation.
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Table 1

The parameter values for the lymphatics and IFP.

Physiological Name Parameter Unit Values and References

cell volume fraction φc 1 0.5

water volume fraction φf 1 0.5

pressure induced drainage maximum Lymmax 1 1.8

natural draining rate by lymphatics λf L per pa·s 5.0e-6

rate by cell mitosis λM per s 0.77e-5

characteristic volume VT μm3 1000

lymph partial collapsing threshold KLmin 1 0.75

lymph collapsing threshold KLmax 1 1 (left column in Fig. 13, 18–20, red in Fig. 14–15)

2 (Fig. 2–12,16–17 middle column in Fig. 13, Fig. 18–
20), green in Fig. 14–15

3 (right column in Fig. 13, 18–20, blue in Fig. 14–15))

interstitial hydraulic conductivity Ki μm2 per pa·s 0.64e-2 (All except blue curves in Figs. 19 – 21), (Baxter & Jain,
1989)
3.1e-2 (blue curves in Figs. 19 – 21), (Baxter & Jain, 1989)

vessel wall hydraulic conductivity KV f μm per pa·s 0.27e-5, (All except green curves in Figs. 19 – 21), (Baxter &
Jain, 1989)
2.1e-5, (green curves in Figs. 19 – 21), (Baxter & Jain, 1989)

osmotic pressure difference ω(πv − πi) pa 1333, (All except brown curves in Figs.19 – 21), (Baxter & Jain,
1989)
667, (brown curves in Figs.19 – 21), computed from (Baxter &
Jain, 1989)

rate of degradation of lymphatics by MDE λML 1/M★ 1.0

σ extravasation sensitivity to Pf kP f 1 0 (Fig. 2–8)
0.5 (Fig. 9–21)
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Table 2

The key parameter values for the vasculature.

Physiological Name Parameter Scaled by or Unit Values

response rate of radius to intravascular
pressure

kp kwss, the response rate
of radius to wall shear

stress

1.0

response rate of radius to metabolic stimulus km kwss 1.0

natural shrinking tendency of vessel radius ks kwss 2.24

response rate of radius to tumor pressure kpc kwss 0.76

blood vessel collapsing threshold PCT 1 1 (left column in Fig. 11, red in Fig.
12,16–17)

2 (middle column in Fig. 11, green in
Fig. 12,16–17)

3 (right column in Fig. 11, blue in Fig.
12,16–17)
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Table 3

The tumor model parameter values used in all the simulations (from (Macklin et al., 2009)).

Physiological Name Parameter Scaled by or Unit Values

oxygen diffusion characteristic value of discharge haematocrit Dσ

H̄D , a characteristic dimensional unit as a
fraction

1.0
0.45

minimal value needed for oxygen extravasation h̄min unit as a fraction 0.0

coefficient oxygen diffusion coefficient

rate of cell mitosis λM unit: per s 0.77e-5

characteristic volume VT unit: μm3 1000

uptake rate of oxygen in proliferating tumor region
, the characteristic rate of oxygen uptake in the

proliferating tumor region

1.5

uptake rate of oxygen in host microenvironment 0.12

uptake rate of oxygen in hypoxic tumor region 1.3

decay rate of oxygen in necrotic tumor region 0.35

baseline rate of oxygen transfer from vessels 0.25

TAF diffusion coefficient DT 0.005

production rate of by TAF hypoxic tumor cells

.

1.0

natural decay rate of TAF 0.001

rate of binding by vessel tips 0.006

minimum value of ECM used in haptotaxis coefficient E★, the concentration of ECM secreted by tumor
cells

0.1

maximum value of ECM used in haptotaxis coefficient 0.9

minimum haptotaxis rate χ̄E, min 0.0

maximum haptotaxis rate χ̄E, max 0.25

apoptosis rate A unit: per day 0

necrosis rate GN unit: per day 0.2

tumor aggresiveness rate G unit: per day 26.8

MDE diffusion coefficient DM λM l2, where l is the length scale 1.0

production rate of MDE by tumor cells

.

λM 100.0
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Physiological Name Parameter Scaled by or Unit Values

natural decay rate of MDE λM 10.0

production rate of MDE by vessel tips

.

λM 1.0

rate of production of ECM by tumor cells

.

λM 2.72

rate of production of ECM by vessel tips

.

λM 0.1

rate of degradation of ECM by MDE 1/M★ 1.0

minimum value of ECM used in mobility coefficient E★ 0.0

maximum value of ECM used in mobility coefficient E★ 1.0

minimum tumor mobility μ̄min μ ★ 1.0

maximum tumor mobility μ̄max μ ★ 4.0
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